Information Management geitVEI(E

Oracle to DB2

Conversion Guide
for Linux, UNIX, and Windows

Step-by-step guide to migrating from
Oracle to DB2 9.1

Conversion examples -
including XML conversion

~ Step-by-step guide to
MTK tool usage

Whei-Jen Chen
An Na Choi
Marina Greenstein

Scott J Martin

Fraser McArthur

Carlos Eduardo Abramo Pinto
Arthur V Sammartino

Nora Sokolof

ibm.com/redbooks Red h OOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Oracle to DB2 Conversion Guide for Linux, UNIX,
and Windows

August 2007

SG24-7048-01

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Second Edition (August 2007)

This edition applies to DB2 Version 9 for Linux, UNIX, and Windows, Oracle 9i, Oracle 10g.

© Copyright International Business Machines Corporation 2003, 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices Xiii
Trademarks e Xiv
Preface XV
The team that wrote thisbook L. XV
Acknowledgments. Xviii
Become a publishedauthor Xix
Comments Welcome. XiX
Summaryofchanges. XXi
August 2007, Second Edition. XXi
Chapter 1. Introduction. 1
1.1 DB2 family of products 2
1.1.1 DB2 9 Autonomic computing features. 7
1.2 Terminology.o e 9
1.2.1 Terminology mappingot e 9
1.3 Architecture overview 10
1.3.1 Memory architecture 12
1.8.2 Process architecture 15
1.3.3 Files and directory structure 20
1.3.4 Data Dictionaryand Catalog.coiiiinen... 26
1.3.5 Communication. i e 27
1.3.6 Datareplication.......... ... 30
1.4 Parallel database architecture. 32
1.4.1 Real ApplicationClusters i, 32
1.4.2 DB2 Enterprise with the Database Partitioning Feature (DPF). 33
Chapter 2. Conversion methodology.............................. 35
2.1 Pre-conversiontasks. 36
2.1.1 IBM Software Migration Project Officeteam................... 37
2.2 IBMconversionstrategy 39
2.2.1 Assessmentphase 40
2.2.2 Conversion phasettt e 41
2.2.3 Thetestphase i 43
2.2.4 Implementation and cutoverphase. 44
2.2.5 Migration project skills, roles, and responsibilities 45
2.3 Additional migration resources 46
2.4 Conversion planning technical considerations 47

© Copyright IBM Corp. 2003, 2007. All rights reserved. iii

iv

241 Taskscheduling i 47

242 Auditingo 48
2.4.3 National Language support.t 49
2.4.4 Authentication and authorization. 50
245 Datapartitioning 53
2.4.6 Oracle Externaltables. 54
2.4.7 Oracle bigfiletable spaces 55
2.4.8 Tablespacedesign.t 56
2.4.9 Dataencryption. i 58
2.4.10 Disasterrecoverysolutions. 59
2.4.11 Oracle Database Resource Manager 61
2.4.12 Replication considerations i 62
2.4.13 Data Warehouse considerations. 63
Chapter 3. MTK e e e i 65
3.1 MTKOVeIVIEW . . .o 66
3.1.1 MTKAfactso 67
3.1.2 MTKfeatures. i 68
3.1.3 MTKGUIlinterface i 69
3.1.4 Migrationtasks 70
3.1.5 The MTKSQL Translator 75
3.2 MTKplanningo 76
3.2.1 Operating system and version requirements 76
3.2.2 MTK hardware requirements. 77
3.2.3 MTK software requirements 77
3.2.4 MTK requirements for data extraction. 78
3.25 Wheretoinstal MTK. 81
3.3 MTKiinstallation. 81
3.3.1 Windows installation 82
3.3.2 UNIX and Linux Installation. 82
3.3.3 Verifying the environment for creating MTK Java UDFs.......... 83
Chapter 4. Portingwith MTK 89
4.1 Preparationforporting. 90
4.2 Overview of available documentation.......................... 90
4.3 Running MTK ... e 91
4.3.1 Migrationdetails 91
4.3.2 Creating and opening an MTK project 92
4.4 Extracting or importing metadata into MTK. 93
4.4.1 Choosingobjectstoextract. 96
4.4.2 Import or extract strategies i i 99
4.4.3 Viewing extractedfiles L. 102
45 TheConverttask. e 104

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

4.6 The Refinetask. e 107

4.6.1 Message categories and migrationimpact 109
4.6.2 The Messagessub-tab 111
4.6.3 Translator Messages. 115
4.6.4 Refining the metadata conversion. 119
4.7 The Generate Data Transfer Scriptstask 122
4.7.1 Creatingunload and load scripts. 125
4.7.2 Files generated by the Generate Data Transfer Scripttask 126
4.8 DeploytoTarget e 127
4.8.1 Considerationsttt 128
4.8.2 Deploymentstrategy 131
4.8.3 Deploymentresults. 135
4.9 NeXt StePS . ..o e 138
4.10 Converting the remainingobjects 138
4.10.1 Translator Messages.t 140
4102 Statuso e e 149
4.11 Deployment of the remainingobjects 149
4.11.1 Verificationreport 151
4.12 Manual conversion for ORA_EMP database objects 153
4.12.1 Stored procedures. e 158
4.12.2 Manual deployment of stored procedures. 162
Chapter 5. Conversionreference............ 165
5.1 TO0IS . oo e 166
5.1.1 Developer Workbench. i 166
5.1.2 The DB2 Command Window. 167
5.1.3 Control Center. 169
5.1.4 Recommended readingmaterials.......................... 171
5.2 Comparing SQL PLand inline SQLPL........... 171
5.2.1 Create proceduret 172
522 Createtrigger ... 173
5.2.3 Createfunction 175
5.2.4 Variables declaration and assignment 177
5.2.5 Conditional statements and flow control 179
53 Dynamic SQL e 180
5.4 CUrsOr CONVEISIONottt e e e e e e e 184
5.4.1 Converting an explicit cursorinaprocedure. 185
5.4.2 Converting an explicit cursor in functions and triggers 187
5.4.3 Convertingcursorattributes 188
5.5 Collections.o 193
5.5.1 Nestedtablesandvarrays, 193
5.5.2 Bulkcollect 195
5.5.3 Passing result sets between procedures 197

Contents v

Vi

5.6 Conditionhandling. 200

5.6.1 Condition handling in stored procedure 201
5.6.2 Condition handling in triggers and functions 204
5.6.3 Converting RAISE_APPLICATION_ERROR 205
5.7 Package initialization. 206
5.8 Global variables. e 207
5.9 Hierarchical queries. 209
5.10 Printoutput messages. 212
5.11 Implicitcastingin SQL. 213
5.12 OUter JOIN. . . e e 215
5.13 Decode statement. 217
5.14 ROWNUM . ..o e e 218
5.15 INSERT, UPDATE, DELETE returningvalues 219
5.16 Selectfrom DUAL e e 219
5.17 Manipulatingdate andtime........... 220
5.18 Setoperations.t 223
5.19 Function that returnsrowtype o 224
5.20 Localfunctions e 225
5.21 Partitioningand MDC e 227
522 %ROWTYPE and %TYPE i 236
523 MERGE 238
5.24 INdeX CONVEISIONottt e 241
5.24.1 Differences between OracleandDB2...................... 241
5.25 Oracledatabase links i 242
5.26 Temporarytables e 246
5.27 Concurrency and transaction 247
5.27.1 Read CONCUIMENCYottt e e 248
5.27.2 Update CONCUITENCYttt 251
5.27.3 Miscellaneous differences. 253
5.27.4 Transaction i e 253
5.28 EnCryplion e 254
5.29 Oracle multitable, conditional, and pivotinsert 257
5.30 Additional considerations e 258
5.30.1 Building C/C++routines, 258
5.30.2 BuildingJavaroutines. i 261
Chapter 6. Dataconversion 265
6.1 Data conversion ProCesSS.ttt e 266
6.2 Timeplanning e 267
6.3 Data movement through flatfiles. 268
6.3.1 Moving data usingthe MTK 269
6.3.2 Usingshellscripts. 269
6.3.3 Using Oracle’s stored procedures., 273

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

6.4 Alternative ways formovingdata 276

6.4.1 Data movement through namedpipes 276
6.4.2 WebSphere FederationServer............................ 276
Chapter 7. Applicationconversion 279
7.1 DB2 application development introduction 280
7.1.1 Embedded SQL. 280
7.1.2 Driver sSUPPOM . . .o e 282
7.2 Application migrationplanning o o 285
7.3 Self-build application. 288
7.3.1 Converting Oracle Pro*C applicationstoDB2. 288
7.3.2 Converting Oracle Java applicationstoDB2. 297
7.3.3 Converting Oracle Call Interface applications. 305
7.3.4 Converting ODBC applications 311
7.3.5 Converting Perl applications 312
7.3.6 Converting PHP applications 316
7.3.7 Converting .NET applications ii.... 324
7.4 Package applications migrationplanning 330
7.4 SAP . 331
Chapter 8. XML conversion 335
8.1 DB2 XML data type introduction 336
8.1.1 DB2 pureXML native storage 336
8.1.2 DB2decomposition. 338
8.2 Converting the XML datamodel 339
8.2.1 XML data type differences 340
8.2.2 XML schema conversion and registration. 342
8.2.3 Oracle unstructured and structured storage to DB2 pureXML 350
8.2.4 Oracle structured storage to DB2 decomposition.............. 353
8.3 XML datamovement. 354
8.3.1 Exporting XML datafromOracle........................... 354
8.3.2 Inserting XML dataintoDB2..........., 356
8.3.3 Importing XML dataintoDB2 359
8.3.4 XMLvalidation. 360
8.4 Converting XML queriesttt 362
8.4.1 SQL/XML. 362
8.4.2 XQUEIY . ..ttt 365
8.4.3 Updatesanddeletes. 368
8.4.4 Referential Integrity. 369
8.5 Converting XML indexesot 370
8.6 Converting XML in stored procedures. 374
8.6.1 Comparison OVEIVIEW ot 375
8.6.2 Converting an Oracle procedure with XMLtoDB2............. 376

Contents vii

viii

8.6.3 The Oracle procedures vt 377

8.6.4 DB2stored procedure. 381
8.6.5 Other restrictions or limitations 385
8.7 Converting XML in Java applications 386
8.7.1 UDBC Arivers. e 387
8.7.2 XMLretrieval. 388
8.7.3 Java XMLinsert 393
8.7.4 Java XML update 398
8.7.5 XMLType object method mapping 404
8.8 XML toolsand utilities 417
8.8.1 Oracle Enterprise Manager, DB2 Control Center 417
8.8.2 Oracle JDeveloper, DB2 Developer Workbench. 420
8.9 Bestpractices 421
Chapter 9. Scriptconversion 423
9.1 Dataload sCrpts 424
9.1.1 Data load migration approach. 425
9.1.2 Loading fixed-formatfields 425
9.1.3 Loading variable-lengthdata. 426
9.1.4 Initializations in the Oracle SQL*Loader control file 427
9.1.5 Loading data into multipletables. 427
9.2 Oracle Data Pump scriptsot 428
9.2.1 Data Pump migration approach 430
9.2.2 Transferringaschema i .. 430
9.2.3 Exportdataoperations 433
9.2.4 Import data functionality L. 435
9.3 Administration scripts 437
9.3.1 Dynamic performance views and table function 437
9.3.2 Systemcatalogviews 439
9.3.3 Frequently used commands and DDLsbyDBA 440
9.3.4 Backup scriptsconversiono 441
9.4 Toolsandwizards 443
9.5 Reporttools. 445
Chapter10. Testing. i 447
10.1 Planningo e 448
10.1.1 Principles of softwaretests............... 448
10.1.2 Testdocumentation. 448
10.1.3 Testphases. 451
10.1.4 Time planning and time exposure. 452
10.2 Data checkingtechnique. i 454
10.2.1 IMPORT/LOAD MESSAQES . . . v vttt i e e i e 454
10.2.2 Datachecking scripts 457

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

10.3 Code and applicationtesting. 460

10.3.1 Viewsanitycheck 460
10.3.2 PL/SQL to SQL PL objectcheck. 461
10.3.3 Applicationcodecheck i .. 462
10.3.4 SeCUMtYot 462
10.3.5 Tools for testing and problem tracking 463
10.4 Troubleshooting. 463
10.4.1 Interpreting DB2 informational messages. 464
10.4.2 DB2 diagnostic10gs o 465
10.4.3 DB2 supportinformation................. 470
10.4.4 Problem determinationtools 472
10.5 Initialtuningo 487
10.5.1 Tablespaces. e 487
10.5.2 Physical placement of database objects. 489
10.5.3 Bufferpools. 491
10.5.4 Largetransactions. i 496
10.5.5 SQL executionplan. i 500
10.5.6 Configuration Advisor 503
10.5.7 Design AdViSOr e 509
Chapter 11. Database administration and management............. 513
11.1 DB2 administrationtools. 514
11.1.1 DB2 command line processor., 514
11.1.2 DB2 Control Center. e 516
11.2 Instance managementcommands 520
11.2.1 Managinginstances i, 520
11.2.2 Retrieving instance information. 525
11.2.3 Managing instance configuration parameters................ 528
11.2.4 Settingregistry variables., 533
11.3 Database management. 535
11.3.1 Managingdatabases. 535
11.3.2 Managing node and database directories. 538
11.3.3 Managing database configuration parameters 542
11.3.4 Managingtablespaces............ 546
11.3.5 Managing bufferpools. 551
11.3.6 Managing database security 555
11.3.7 Managing database backup and recovery 558
11.4 Automatic database management. 565
11.4.1 Automatic database configuration......................... 567
11.4.2 Automaticstorage 572
11.4.3 Automated REORG on tables andindexes. 573
11.4.4 Automatic statistics collection 574
11.4.5 Automaticbackup 575

Contents ix

X

11.4.6 Utility throttling. 575

11.4.7 Automatic diagnostics using Health Monitor. 576
11.5 MONItoringo e 578

11.5.1 Monitoringtools. 578

11.5.2 Monitoring database objects. 581

11.5.3 Applications activity. 589
Appendix A. Datatypes 597
A.1 Supported SQL datatypes inC/C++, 598
A.2 Supported SQL datatypesindava...............iiiiiii. 602
A.3 Mapping Oracle data types to DB2 datatypes.................... 605
Appendix B. Terminology mapping.............................. 607
Appendix C. Functionmapping............... 611
C.1 Numeric functionmapping i e 612
C.2 Characterfunctionmappingot 615
C.3 Date and time functionmapping. i i 632
C.4 Conversion and cast function mapping. 649
C.5 Aggregate function mapping. 658
C.6 Comparison and NULL-related function mapping. 662
C.7 Encoding, decoding, encryption, and decryption function mapping 663
Appendix D. Oracle Call Interface (OCI) mapping 667
Appendix E. Converter for SQL*Loader 673
E.1 Converting control files for Oracle SQL*Loader 674
E.2 Generation of additional DB2 commands. 678
Appendix F. Example Oracledatabase 683
F.1 Table definition 683
F.2 Viewdefinition. 686
F.3 Procedureandfunctions. i 687
F.4 Packages e 694
F B THgOers. .o 696
Appendix G. Additionalmaterial 701
Locating the Web material 701
Usingthe Web material i 701

System requirements for downloading the Web material 703

How to use the Web material 703
Related publications 705
IBM Redbooks 705
Otherpublications i e 705

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

ONliNE rBSOUICES . . . i ittt e e e e e e e e e e 707

HowtogetIBM Redbooks 708
Helpfrom IBM 708
INdeX . .. e 709

Contents xi

Xii Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2003, 2007. All rights reserved. Xiii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™ IBM® Rational®

AIX® IMS™ Redbooks®

AS/400® iSeries® Redbooks (logo) ¢@ ®
Cloudscape™ i5/0S® REXX™

DB2 Connect™ Lotus® Tivoli®

DB2 Universal Database™ 0OS/390® WebSphere®

DB2® PowerPC® z/OS®
developerWorks® POWER™ zSeries®

DRDA® pureXML™ 1-2-3®

Informix® QMF™

The following terms are trademarks of other companies:

SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Snapshot, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance,
Inc. in the U.S. and other countries.

Enterprise JavaBeans, Java, JavaBeans, JDBC, JRE, J2EE, J2SE, Solaris, and all Java-based trademarks
are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Excel, Microsoft, SQL Server, Visual C++, Visual Studio, Windows NT, Windows Server, Windows, and the
Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Xiv Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Preface

IBM® DB2 has long been known for its technology leadership. This IBM
Redbooks® publication, intended for technical staff who are involved in an
Oracle® to DB2 conversion project, is an informative guide that describes how to
migrate the database system from Oracle to DB2 Version 9 on Linux®, UNIX®,
and Microsoft® Windows® platforms.

This book provides conversion methodology and step-by-step instructions for
installing and using IBM Migration Toolkit (MTK) to port the database objects and
data from Oracle to DB2. It illustrates, with examples, how to convert the stored
procedures, functions, and triggers. Application programming and conversion
considerations are discussed, along with the differences in features and
functionality of the two products.

In addition, you can find script conversion samples for data loading, database
administration, and reports that are useful for DBAs. The testing section provides
procedures and tips for conversion testing and database tuning. The laboratory
examples are performed under Oracle 10g and DB2 Version 9. However, the
migration process and examples can be applied to Oracle 7, 8, and 9i.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2 system administration.
Whei-Jen is an IBM Certified Solutions Expert in Database Administration and
Application Development, as well as an IBM Certified IT Specialist.

An Na Choi is a Field Technical Sales Specialist with the Information
Management department of SWG in South Korea. After graduating from
university, she worked for a local IT company for two years developing an
encyclopedia application. An Na has supported DB2 and Informix® products
including DB2 Database server, Tools, WebSphere® Information Integrator and
Informix Dynamic Server, and DB2 for SAP® for eight years. As a presales
engineer, An Na has performed benchmark tests and participated in Oracle to
DB2 conversion projects. She has extensive experience in deploying IBM

© Copyright IBM Corp. 2003, 2007. All rights reserved. XV

XVi

Information Management solutions to many customers with DB2, Informix
Dynamic Server, DB2 on SAP, WSII and many other tools.

Marina Greenstein is a Senior Certified Consulting IT Software Specialist with
the IBM Database Migration Team. She is an IBM Certified Solutions Expert who
joined IBM in 1995 with experience in database application architecture and
development. During the 11 years Marina has been with the DB2 Migration
Team, she has assisted customers in their migrations from Microsoft SQL
Server™, Sybase, or Oracle databases to DB2. She has presented migration
methodology at numerous DB2 technical conferences and at SHARE. She is
also the author of multiple articles and a white paper about DB2 migration.

Scott J Martin is a DB2 Technology Consultant with the IBM Innovation Center
(IIC) for Business Partners in Waltham, MA, which is part of IBM Developer
Relations. He has 25 years of IT experience with IBM, and is a certified
Advanced Database Administrator for DB2 LUW V8.1, a certified Application
Developer for the UDB Family, and a certified Database Administrator for DB2
for z/ OS®. For the past four years with the 1IC, Scott has helped business
partners convert their applications from Oracle, SQL Server, and MySQL to DB2
for LUW and DB2 for z/OS. In this role, Scott has also managed DB2
performance enablements and performed a variety of architecture and database
administration tasks supporting business partners. Prior to this, he spent 13
years with IBM Global Services performing Application Development, Database
Administration, and Database Tuning for DB2 mainframe environments.

Fraser McArthur is a DB2 Technical Consultant with the Information
Management Partner Enablement organization at the IBM Toronto Lab, where
he has worked for the last seven years. He focuses on assisting IBM Data
Services Business Partners, performing application migrations and performance
tuning, which can involve anything from low-level and detailed application
development and troubleshooting to high-level database design and
administration. Recently, his focus has been on DB2 pureXML™. Fraser also
conducts DB2 technical workshops and publishes the occasional article to IBM
developerWorks® for the DB2 community.

Carlos Eduardo Abramo Pinto is an IT Specialist for Database Administration
in IBM Global Services in Brazil, supporting IBM local and international
customers. He has more than 11 years of IT experience in a wide range of client
and server platforms, including technical and system support of the Windows
operating system, Oracle, DB2, and Microsoft SQL Server databases in UNIX,
Linux and Windows platforms. He is also specialized in Oracle Real Application
Clusters implementation and support. Carlos is an IBM DB2 Certified Database
Administrator on DB2 UDB V8.1 for Linux, UNIX and Windows, an Oracle
Certified Professional on Oracle 8i, 9i and 10g databases, a Microsoft Certified IT
Professional Database Administrator and Database Developer for Microsoft SQL

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Server 2005, a Microsoft Certified Database Administrator for Microsoft SQL
Server 7 and 2000, and a Microsoft Certified System Engineer on Windows NT®
4 and 2000.

Arthur V Sammartino is a Certified Consulting I/'T Specialist with the IBM
Database Migration Team (also known as SMPO). He is responsible for assisting
customers who are considering a database migration from competitive RDBMS
products (Oracle, Sybase, or Microsoft SQL Server) to IBM DB2 residing on
Linux, UNIX, Windows, or the z/OS platforms. In addition to his conversion
responsibilities, his experience includes supporting clients with application
development environment and setup concerns, as well as migration tool
installation and education. Art is certified as both an IBM Database Administrator
and an IBM Application Developer. He has been a contributing author for the IBM
Redbooks DB2 UDB v7.1 Porting Guide, Oracle to DB2 UDB Conversion Guide,
and DB2 9 pureXML Guide. He also assisted with Microsoft SQL Server to IBM
DB2 UDB Conversion Guide, and was a co-author of the article “Using DB2
routines to ease migration.”

Nora Sokolof is a Certified Consulting Brand Sales IT Specialist with the IBM
DB2 Migration Team (also known as the SMPO). She holds a Master of Science
degree in Software Engineering from Pace University. She has been with IBM for
more than 20 years, and has held positions as a DB2, Informix, Oracle and
PeopleSoft® development DBA. She also designed the first IBM flexible benefits
enrolliment database in 1993. Nora is an IBM Certified Database Administrator.
She is also the author of several white papers including “Transitioning from I1BM
Informix to DB2 - Database Comparisons and Migration Topics”, and has
co-authored the following IBM Redbooks publications: Planning for a Migration of
PeopleSoft 7.5 from Oracle/UNIX to DB2 for 0S/390, Database Transition:
Informix Dynamic Server to DB2 Universal Database, and Database Strategies:
Using XPS and DB2 Universal Database.

Preface xvii

e B e

rner, left to right, row 1:

Figure 1 Left to right: Carlos, An Na, and Fraser. Upper right co
Art and Nora, row 2: Marina and Scott

Acknowledgments

Thanks to the following people for their contributions to this project:

Deb Jenson
IBM Software Group, Information Management, Competitive Technology

Michael Gao
Sam Poon
IBM Software Group, Information Management Enablement Support

Matthias Nicola

Miso Cilimdzic

George Lapis

Ted Wasserman

Priti Desai

IBM Silicon Valley Laboratory

xviii Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Barry Faust
IBM Software Migration Office

Takashi Tokunaga
Information Management Technical Sales and Services, IBM Japan

Fadel Fiani

Stefan Hummel

Ranjit K. Kalidasan

Ken Leonard

Artur Wronski

Authors of Oracle to DB2® UDB Conversion Guide, SG24-7048

Emma Jacobs, Sangam Racherla
International Technical Support Organization, San Jose Center

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!
We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:
» Use the online Contact us review Redbooks form found at:
ibm. com/redbooks
» Send your comments in an E-mail to:

redbooks@us.ibm.com

Preface Xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

XX Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes

for SG24-7048-01

for Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows
as created or updated on August 8, 2007.

August 2007, Second Edition

This revision reflects the addition, deletion, or modification of new and changed
information.

New information

Migration methodology

Conversion planning technical consideration
XML conversion

Database administration and management

v

vYvyy

Changed information

» IBM Migration Toolkit
» DB2 product family
» Migration examples

© Copyright IBM Corp. 2003, 2007. All rights reserved. XXi

XXii Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Introduction

Since migrating from Oracle to DB2 for Linux, UNIX, and Windows requires a
certain level of knowledge in both environments, the purpose of this chapter is to
introduce the architectural overview of both Oracle and DB2. This is meant to
facilitate the understanding of both architectures, taking into consideration that
the reader may be an Oracle or a DB2 DBA.

This chapter includes the following topics:

» DB2 9 family of products
» Terminology
» Architectural overview including:
— Processes architecture
— Memory architecture
— Directory structure
— Oracle data dictionary and DB2 catalog
— Database connectivity
— Replicating
— Partitioned database architecture

© Copyright IBM Corp. 2003, 2007. All rights reserved. 1

1.1 DB2 family of products

In the era of Information On Demand, IBM Information Management software
offers a wide range of products to accommodate different business needs and
technical requirements in order to provide customers with a robust and scalable
enterprise wide solution.

Beginning with DB2 9, the DB2 Universal Database™ for Linux, UNIX, and
Windows product name has been simplified by removing “Universal Database”
and “UDB”. This change has been implemented on user interfaces, in
documentation, and in packaging materials. Previous versions of DB2 database
products and documentation retain “Universal Database” and “UDB” in the
product naming. Also starting in DB2 9, the term data server is introduced to
describe the product. A data server provides software services for the secure
and efficient management of structured information. DB2 9 is a hybrid relational
and XML data server.

DB2 offers database solutions that run on all platforms including Microsoft
Windows, AIX®, Solaris™, HP-UX, Linux, AS/400®, OS/390® and z/OS.
Furthermore, DB2 technologies support both 32-bit and 64-bit environments,
providing support for 32-bit operating systems on Linux on x86 and Windows,
and 64-bit operating systems on UNIX, Linux and Windows. The DB2 product
family comprises a variety of packages that provide customers with choices
based on business need. The following lists the DB2 product offerings for Linux,
UNIX, and Windows:

» DB2 Enterprise 9
DB2 Enterprise 9 is the ideal data server for the most demanding workload. It
easily scales to handle high-volume transaction processing, multi-terabyte
data warehouses, and mission critical applications from vendors such as
SAP. It is also designed to provide 24x7x365 availability, including: High
Availability Disaster Recovery (HADR), Tivoli® System Automation, Table
Partitioning, Multidimensional Data Clustering (MDC), Materialized Query
Tables (MQTs), Full intra-query parallelism, and the Connection
Concentrator. Platforms supported are Linux, UNIX, and Windows.

» DB2 Workgroup 9
DB2 Workgroup 9 is the ideal data server for deployment in a departmental,
workgroup, or medium-sized business environment, suitable for transaction
processing or complex query workloads on servers with up to four processors
and 16 GB of memory. Platforms supported are Linux, UNIX, and Windows.

» DB2 Express 9
DB2 Express 9 is the ideal entry level data server, which provides very
attractive entry-level pricing. Suitable for transaction processing or complex
query workloads on servers with up to two processors, it can address up to

2 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

four GB of memory. Platforms supported are Linux, Solaris x86, and
Windows.

DB2 Express-C

DB2 Express-C is a version of DB2 Express 9 for the community. It is a
no-charge data server for use in development and deployment of
applications including: XML, C/C++, Java™, .NET, PHP, and more. DB2
Express-C also includes pureXML for free, while it is a purchasable
feature for all other DB2 products. DB2 Express-C can be run on up to two
dual-core CPU servers, with up to 4 GB of memory, any storage system
setup, and with no restrictions on database size or any other artificial
restrictions. Platforms supported are Linux and Windows. DB2 Express-C
can be seamlessly upgraded to any of the other DB2 9 products, without
modifying your database or your application.

» DB2 9 value-added features
While DB2 9 includes capabilities that serve the needs of most deployments,
additional capabilities are required for certain application types, workloads, or
environments that are not needed by every deployment. Rather than build a
one-size-fits-all offering, IBM makes these capabilities available as optional
features to give you the flexibility to purchase only what you need. The
following are the available value-added features, along with the required DB2
product in parentheses:

— pureXML (Enterprise, Workgroup, Express)
The DB2 pureXML feature seamlessly integrates XML and relational data
and unlocks the latent potential of XML by providing simple efficient
access to XML with the same levels of security, integrity, and resiliency
taken for granted with relational data. DB2 9 stores XML data in a
hierarchical structure that naturally reflects the structure of XML. This
structure, along with innovative indexing techniques, allows DB2 to
efficiently manage this data and eliminate the complex and
time-consuming parsing typically required for XML.

— Storage Optimization (Enterprise)
The DB2 Storage Optimization feature gives you the ability to compress
data on disk in order to decrease disk space and storage infrastructure
requirements and can save up to 80% in storage space. Since disk
storage systems can often be the most expensive components of a
database solution, even a small reduction in the storage subsystem can
result in substantial cost savings for the entire database solution.

— Advanced Access Control (Enterprise)
The Advanced Access Control feature increases the control you have over
who can access your data using label-based security. Label Based
Access Control (LBAC) lets you decide exactly who has write access and
who has read access to individual rows and individual columns. LBAC
controls access to table objects by attaching security labels to them. Users

Chapter 1. Introduction 3

4

attempting to access an object must have its security label granted to
them. When there's a match, access is permitted; without a match, access
is denied.

Performance Optimization (Enterprise, Workgroup, Express)

The DB2 Performance Optimization feature includes two critical
components (DB2 Performance Expert and DB2 Query Patroller) that can
significantly improve the overall responsiveness of your data server and
database applications. DB2 Performance Expert and DB2 Query Patroller
are complementary tools to improve data server performance, response
times, and throughput. While DB2 Query Patroller enables you to focus on
queries (with the ability to hold, schedule, cancel, fix, and prioritize
queries), DB2 Performance Expert allows you to focus on overall DB2
system, operating system, and application performance, which can be
monitored and analyzed over time.

Database Partitioning (Enterprise)

The DB2 Database Partitioning feature (DPF) can be used to manage a
large database better by dividing it into multiple partitions that are
physically placed on one or more servers offering a great deal of flexibility
in scalability. This requires no changes at all from an application's or
user's perspective—everything still looks and acts like a regular database.
Most often, DPF has been used by customers with very large databases
who have partitioned the database across a cluster of multiple inexpensive
servers instead of undertaking the overhead of a large higher-cost server.

Geodetic Data Management (Enterprise)

The Geodetic Data Management feature provides the ability to store,
access, manage, or analyze location-based round earth information for
weather, defense, intelligence, or natural resource applications for
commercial or government use. It provides the ability to manage and
analyze spatial information with accuracies in distance and area by
treating the earth as a continuous spherical coordinate system.

Real Time Insight (Enterprise)

The DB2 Real-Time Insight feature is powered by the DB2 Data Stream
Engine, which enables organizations to store and forward high volumes of
data from multiple data streams. The data messages from the feed can be
aggregated, filtered, and enriched in real time before being stored or
forwarded. DB2 Data Stream Engine can load high volumes of data into
the DB2 data server and make that data available to queries in real-time
through SQL.

Homogenous Federation (Enterprise, Workgroup, Express)

The DB2 Homogeneous Federation feature delivers the ability to easily
manage and access remote DB2 (mainframe and distributed) and Informix
data servers as local tables. Homogeneous federation meets the needs of

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

customers that require unified access to data managed by multiple data
servers.

— High Availability (included in Enterprise, available in Workgroup,
Express)
The DB2 High Availability feature provides 24 x 7 availability for your DB2
data server through replicated failover support and data recovery
modules. The three packages that comprise this feature bring a unique
aspect of high availability to the data server environment. This feature
consists of the High Availability Disaster Recovery (HADR), the Online
Reorganization feature, and IBM Tivoli System Automation for
Multiplatforms (TSA MP).

— Workload Management (included in Enterprise, available in
Workgroup, Express)
The DB2 Workload Management feature leverages the Connection
Concentrator in conjunction with either Query Patroller (QP) or the DB2
Governor to provide a more proactive, fail-safe workload environment for
your customers. Connection Concentrator allows for fail-safe operation
and load balancing of a workload, and also allows reallocation of work with
every new transaction. QP is a powerful query workload management
offering that proactively and dynamically controls submission and
execution of queries to better manage DB2 data server workloads to meet
business needs. The DB2 Governor monitors and changes the behavior of
applications that run against the DB2 data server.

» Complimentary DB2 9 software
For application development on DB2 9, the following software is available for
download free of charge:

— DB2 Developer Workbench
The DB2 Developer Workbench is an Eclipse-based tool that replaces the
Development Center in DB2 V8. Developer Workbench is a
comprehensive development environment for creating, editing, debugging,
deploying, and testing DB2 stored procedures and user-defined functions.
You can also use Developer Workbench to develop SQLJ applications,
and to create, edit, and run SQL statements and XML queries.

— DB2 Information Center
The DB2 Information Center is where you can find information that you
need to use the DB2 family of products and features. The DB2 Information
is available as a local installation, or viewable online. The online version
always contains the most up-to-date information.

— DB2 Runtime Client
The DB2 Runtime Client provides a means for applications to connect to
remote DB2 databases. It provides support for common database access
interfaces, such as: JDBC™, ADO.NET, OLE DB, ODBC, and DB2

Chapter 1. Introduction 5

Command Line Interface (CLI), and includes the drivers and capabilities to
define data sources. The DB2 Runtime client provides base client support
to handle database connections, SQL statements, XQuery statements,
and DB2 commands. It can be freely distributed with your application.

— DB2 Client
The DB2 Client includes all the functionality of the DB2 Runtime Client
plus functionality for client-server configuration, database administration,
and application development.

— DB2 Driver for ODBC and CLI
The DB2 Driver for ODBC and CLI provides runtime support for the DB2
CLI application programming interface (API) and the ODBC API. Though
the DB2 Client and DB2 Runtime Client both support the DB2 CLI and
ODBC APIs, this driver is not a part of either DB2 client. It is available
separately, installed separately, and supports a subset of the functionality
of the DB2 clients. The driver has a much smaller footprint than the DB2
Client and the DB2 Runtime Client and you can have multiple installations
of the driver on a single machine. You can include the driver in your
database application installation package, and redistribute the driver with
your applications.

— DB2 Driver for JDBC and SQLJ
The DB2 Driver for JDBC and SQLJ is a single application driver to
support the most demanding Java applications. This agile driver can be
used in type 4 or type 2 mode (with the appropriate client environment).
The driver is JDBC 3.0 compliant and supports XML and XQuery. You can
include the driver in your database application installation package, and
redistribute the driver with your applications.

— DB2 Net Search Extender (NSE)
The DB2 Net Search Extender is now available at no extra charge. To be
compatible with the new DB2 XML functions, DB2 NSE fully supports the
XML data type, and all text search functions can be used on XML
documents that are stored natively in the database. DB2 NSE continues to
support text search on XML documents stored in BLOB and CLOB data
types.

— DB2 Spatial Extender
The DB2 Spatial Extender allows you to store, manage, and analyze
spatial data (information about the location of geographic features) in DB2
along with traditional data for text and numbers. With this capability, you
can generate, analyze, and exploit spatial information about geographic
features, such as the locations of office buildings or the size of a flood
zone.

— DB2 Runtime Client merge modules (Windows)
Using the DB2 Runtime Client merge modules, you can easily add DB2

6 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Runtime Client functionality to any product that uses the Windows
Installer.

— DB2 9 National Language Pack
National language (NL) users need to download this National Language
Pack in order to receive the NL version of DB2 9 (applies to Data Server,
DB2 Client, DB2 Runtime Client, and the Spatial Extender). If you are
installing a non-English version of DB2 9, you must use one or more
additional CDs called a National Language Package. This package
contains national language support files (product files that are specific to a
language).

» The following DB2 Application Development suite is available for purchase:

DB2 Edition for Application Development Deployment

This edition offers a package for a single application developer to design,
build, and prototype applications for deployment on any of the IBM
Information Management client or server platforms. This comprehensive
developer offering includes DB2 Workgroup 9 and DB2 Enterprise 9, IDS
Enterprise Edition V10.0, Cloudscape™ V10.1, DB2 Connect™ Unlimited
Edition for zSeries®, and all the DB2 V9.1 features, allowing customers to
build solutions that utilize the latest data server technologies. The software in
this package cannot be used for production systems. You must acquire a
separate user license for each authorized user of this product.

IBM also provides federated technologies to extend the functionality of DB2. With
WebSphere Federation Server, you can access objects in many different
databases, such as Oracle, with a single query.

1.1.1 DB2 9 Autonomic computing features

Autonomics were first introduced in DB2 Version 8.2. to help provide a
computing environment that has the ability to sense and dynamically respond to
situations that occur in accordance with business policies and objectives. The
goal is to shift the burden and reduce the complexity of managing computing
environments from people to technology, to help reduce the total cost of
ownership (TCO), and increase business productivity. Simply put, an autonomic
computing environment is self-configuring, self-healing, self-optimizing, and
self-protecting. This initiative is not to replace the DBA, but instead make their
job easier as data being stored, analyzed, and metricized increases.

DB2 Version 8.2 introduced the following autonomic computing features:

» Design Advisor has been enhanced to recommend indexes, materialized
query tables (MQTs), multidimensional clustering tables (MDCs), and
partitions.

Chapter 1. Introduction 7

8

» Configure Automatic Maintenance wizard for automating maintenance
activities such as BACKUP, REORG, and RUNSTATS.

» Health Center Recommendation advisor, which monitors the state of the
database environment and can send out notifications if alarm or warning
thresholds are exceeded and can also perform scripted actions.

» Automated log file management.

» Automatic RUNSTATS profiling, which allows DB2 to monitory queries over
time and choose the best statistics collection options for optimal query
performance.

» BACKUP and RUNSTATS throttling to decrease impact on database users.
» BACKUP and RESTORE self-tuning.

» The RECOVER DATABASE command to simplify database recovery for the
DBA.

» The DFT_PREFETCH_SZ configuration parameter now supports an
automatic setting for prefetch size, which allows DB2 to choose an optimal
setting.

Building on the autonomic features and enhancements introduced in DB2
Version 8.2, some of the key DB2 9 features include:

» Adaptive, self-tuning memory allocation
This feature makes the task of DB2 server configuration easier, by
continuously and intelligently updating configuration parameters and buffer
pool sizes.

» Automatic storage support
This feature, which is enabled by default, allows for the size of your database
to automatically grow across disk and file systems and eliminates the need to
manage storage containers. Since automatic storage uses Database
Managed Storage (DMS) for regular and large data, there is improved
performance over that of System Managed Storage (SMS). This feature also
supports DPF database storage.

» Automated statistics collection
This feature, which is enabled by default, enables the automatic collection of
statistics using runstats. The process runs as a background process
whenever DB2 identifies it as being needed for query optimization.

» Automatic configuration of prefetchers and page cleaners
This feature, which is enabled by default, allows the number of prefetchers
and page cleaners to be automatically determined by DB2 based on the
server environment characteristics.

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

» Automatic table and index reorganization enhancements
This feature provides new policy options for automated table and index

reorganization.

1.2 Terminology

Before getting into the conversion process, a clear understanding of the

terminologies used in Oracle and DB2 helps you map each terminology between

Oracle and DB2. This section discusses some of these terminologies, and a
mapping between them is given.

1.2.1 Terminology mapping

Table 1-1 provides a quick reference of commonly used terminologies in Oracle

and DB2. More information about the terminology mapping is provided in
Appendix B, “Terminology mapping” on page 607.

Table 1-1 Mapping of Oracle terminology to DB2

Oracle DB2
Instance Instance
Database Database

Initialization File

Database Manager Configuration File

Table spaces

Table spaces

Data blocks Pages
Extents Extents
Datafiles DMS containers

Redo Log Files

Transaction Log Files

PL/SQL

SQL/PL

Data Buffers

Buffer Pool

SGA Database Manager and Database shared memory
Data Dictionary Catalog

Library Cache Package Cache

Large Pool Utility heap

Data Dictionary cache

Catalog cache

Chapter 1. Introduction

Oracle

DB2

SYSTEM table space

SYSCATSPACE table space

1.3 Architecture overview

10

It is useful to understand the differences between Oracle’s architecture and that
of DB2 before attempting the Oracle to DB2 migration process. Both products
include their own memory architecture, background processes, database related
files, and different configuration files. Both Oracle and DB2 consist of an instance
and the database(s) attached to that instance. This section provides a general

description of the architectures of each vendor.

Figure 1-1 is an overview of the Oracle architecture. The upper level shows the
memory architecture, the middle level is the process component, and the bottom

level shows the database component.

Oracle Architecture
Instance
Large Streams
Pool
P SG A Pool 00!
Shared Pool
G
. Data Database Redo
A .;av;: ';:'::;2’ Dictionary Buffer Log
00 Cache Cache Buffer
Oracle
User
Processes
@ DBWn CKPT LGWR @
Oracle \
Database
Archive
Log
Files

Figure 1-1 Oracle architecture overview

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 1-2 shows the DB2 architecture overview. DB2 implements a dedicated
process architecture. From a client-server view, the client code and the server
code are separated into different address spaces. The application code runs in
the client process, while the server code runs in separate processes. The client
process can run on the same machine as the database server or a different one,
accessing the database server through a programming interface. The memory
units are allocated for database managers, database, and application.

The following section discusses both architectures, detailing memory
components and background processes of both databases.

Clients
Client Client
application applicafion
‘ T | 1 DB2 Client
Shared memory and semaphores,
TCPIF, Named pipes, IPX/SPX
DB2 server l ‘ l |
«_-Writelog ___ Coordinator Coordinator
raquasis agent agent -------- '
c O
prefetch requests
1mmmmmmmmmm - » Subagents Subagents '
1 v
Victim Common prefetch
natifications Bufier request queue
] Pool(s)
Deadlock l
detector I [! Prefeichers
Scatter/Gather |
L2 I Parallel, big-block,
= - - read requests
\ - m - 3L |
t4d CH.. -
N Har O Hard | Hard
disks disks : disks
:.__ Parallel, page ___
write requests Pagea cleaners

Figure 1-2 DB2 architecture overview

Chapter 1. Introduction 11

1.3.1 Memory architecture

12

This section discusses the memory architecture in Oracle and DB2. Oracle and
DB2 allocate and use memory for instance and database operation. There are
various memory structures used for different processes. This section gives a
broader overview about how memory is allocated and used in a simple Oracle
and DB2 server.

The memory architecture of an Oracle database consists of the memory area
allocated to the Oracle instance and database upon startup. The amount of
memory allocated is controlled by parameters defined in the Oracle configuration
file.

The memory architecture of DB2 is slightly different from Oracle’s. Unlike Oracle,
the DB2 server can run multiple databases under one instance and hence has
configuration files at both the instance level (Database Manager configuration
file) and at the database level (Database configuration file).

Oracle

Oracle uses memory to run the code and share data among users. The two basic
components of the Oracle memory structure are the Program Global Area (PGA)
and the System Global Area (SGA). Figure 1-3 shows the primary memory
architecture of an Oracle server.

Instance

Library
Cache

Data dict.
cache

ServerProcess

Figure 1-3 Oracle memory architecture

The PGA is associated with the server process and contains the data and control
information. For the dedicated server configuration, the primary contents of the

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

PGA are the sort area, session information, cursor state and stack space. This is
non-sharable memory, which is writable only by the server process. The PGA is
allocated whenever a server process starts. The total size of the PGA is
controlled by the PGA_AGGREGATE_TARGET initialization parameter in
version 10g.

The SGA is the shared memory region allocated for the entire Oracle Instance.
The SGA is a group of shared memory structures in which the basic components
are the shared pool, data buffer cache, and the redo log buffer. The shared pool
contains the library cache, data dictionary cache, along with buffers for parallel
execution messages, and control structures. The library cache holds the SQL
statement text, the parsed SQL statement, and the execution plan. The data
dictionary cache contains reference information about tables, views, object
definitions, and object privileges.

The shared pool size is controlled by the SHARED_POOL_SIZE initialization
parameter. The data buffer cache stores the most recently used Oracle data
blocks. Oracle reads the data blocks from the datafiles and places them in data
buffers before processing the data. The number of buffers allocated is controlled
by DB_CACHE_SIZE. The redo log buffer is a circular buffer that contains redo
entries of the change information made to the database. These redo log buffers
are written into the redo log files and are required for the database recovery. The
sizes of the redo log buffers are controlled by the LOG_BUFFER initialization
parameter. The other memory structures of the SGA include the large pool, used
for backup purposes; the Java pool, used for Java objects; and the streams pool,
used for streams memory. For a shared server configuration in version 10g the
session information and the sort areas are in SGA instead of PGA.

DB2

The three primary memory structures in DB2 are the Instance Shared Memory
(also known as Database Manager Shared Memory), the Database Shared
Memory (also known as Database Global memory), and the Application Shared
Memory (also known as Application Global Memory). Figure 1-4 shows the basic
memory architecture of a DB2 data server.

Chapter 1. Introduction 13

Instance Shared
Memory
Database Shared Database Shared
Memory Memory
et - ======= - — -®{numdb]
Application Application
Shared Memory Shared Memory
M@ - = == = = = = = = = =~ — s{maxappls]
Agent Private Agent Private
Memory Memory
M@ - =2 = = = = = = = = =1 - == [maxagents]

Figure 1-4 DB2 memory architecture

Instance Shared Memory is allocated when the instance is started. All other
memory is attached or allocated from the Instance Shared Memory, which is
controlled by the INSTANCE_MEMORY database manager (DBM) configuration
parameter. By default, this parameter is set to automatic, which enables the DB2
server to allocate the necessary memory for the instance.

Database Shared Memory is allocated when the database is first activated or
connected to for the first time. This memory is shared by all the applications that
might connect to the database as well as the database Engine Dispatchable
Units (EDUs) or database process that runs within each database. The memory
allocated for the database process includes:

Buffer pools - equivalent to Data Buffers in Oracle

Lock list

Database heap (includes log buffer)

Utility heap - equivalent to Large Pool in Oracle

Package cache - equivalent to library cache in Oracle
Catalog cache - equivalent to data dictionary cache in Oracle

vVvyYvyvyYYyy

The buffer pools can be compared to the database buffers in Oracle, and the
package cache and catalog cache can be compared to library cache and data
dictionary cache in Oracle, respectively. Database Shared Memory is controlled
by DATABASE_MEMORY database (DB) configuration parameter. By default,
this parameter is set to automatic, which enables DB2 to calculate and allocate
the memory for the database. Table 1-2 shows the DB2 database memory
segments and the associated parameters.

14 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 1-2 Database memory segments and parameters

Database memory Parameter

Buffer pools BUFFPAGE

Lock list LOCKLIST

Database heap (includes log buffer) DBHEAP

Utility heap size UTIL_HEAP_SZ
Package cache PCKCACHESZ
Catalog cache - equivalent to data CATALOGCACHE_SZ

Application Shared Memory is allocated when an application connects to a
database. This happens only in partitioned database environments, or in a
non-partitioned database environment where intra-partition is enabled, or if the
connection concentrator is enabled. This memory is used by the connecting
agents to execute the work requested by the clients. The database manager
configuration parameter MAX_CONNECTIONS limits the maximum number of
applications that connect to the database, which in turn sets the upper limit for
the maximum Application Shared Memory allocated.

Note: For more information about DB2 Memory Management, refer to
Chapter 11 “Configuring DB2 instances and databases: Configuring DB2
memory allocation” in the Performance Guide, SC10-4222.

1.3.2 Process architecture
Any database instance is nothing but a collection of processes and memory
structures. This section discusses the processes in Oracle and DB2.

Oracle

There are two major types of Oracle processes: the user processes and the
background processes (see Figure 1-5).

Chapter 1. Introduction 15

Background
processes

User “—
processes

Figure 1-5 Oracle process architecture

User processes

Oracle creates a user process when the user or application connects to the
database. For each user process, a server process is created by Oracle to
handle the user process request to an Oracle instance. This architecture works
when the client is on a different machine. When the client and the server are on
the same machine, the user process and server process are combined into a
single process. The function of the server process is to parse the SQL statement,
read the Oracle data blocks from the datafile to the data buffer, and return the
result set to the client.

Oracle background processes

Oracle requires a number of processes to be running in the background, in order
to be operational and open to users. These processes are:

» Database writer (DBWR) - This background process writes all dirty data
blocks from the database buffer cache to the datafiles on disk. The DBA can
configure multiple DBWR processes in order to improve performance.

» Log writer (LGWR) - This is the process that handles writing data from the
redo log buffer cache onto the redo log files.

» System monitor (SMON) - This process has two functions: It performs an
instance recovery when the Oracle instance fails, and it coalesces smaller
fragments of disk space together.

» Process Monitor (PMON) - This process cleans up any remaining Oracle
processes resulting from a failing user process. Furthermore, it rolls back any
uncommitted transactions that were performed by the user.

» Checkpoint (CKPT) - This process writes log sequence numbers to the
database headers and control files.

16 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

» Recoverer Process (RECO) - This process automatically resolves failures in
distributed transactions when using the distributed database configuration.

» Archiver Processes (ARCn) - This process is used for ARCHIVELOG mode
when automatic archiving is enabled, to copy redo log files to a designated
storage device after a log switch.

» Queue Monitor Processes (QMNNR) - This optional process monitors
message queues when using Oracle Streams Advanced Queing.

DB2

For a DB2 instance to start and run, several processes are created and interact
with each other. These processes maintain the database created on the instance
and the applications connected to the database. There are several background
processes in DB2 that are pre-started, and some start on a need-only basis. This
section explains some of the important background processes.

DB2 background processes

The DB2 server activities are performed by Engine Dispatchable Units (EDUSs)
that are defined on a Windows environment as threads and as background
processes on both UNIX and Linux systems.

Like Oracle, there are many background processes dedicated to the operation of
the DB2 instance. As mentioned in the previous paragraph, some DB2
background processes are started with the instance, and others are initialized
when the database is activated by a connection. Figure 1-6 shows the necessary
background processors of the DB2 server at the instance, application, and
database level. In the following sections, we discuss some of the important
processes in each level of DB2.

Chapter 1. Introduction 17

Per Instance

..

..

Per Application

1

'

db2agent R
db2agent N

'
'

db2agent :

Figure 1-6 DB2 processor architecture

Instance level processes

The following background processes start as soon as the DB2 server is started
with the db2start command:

>

DB2 daemon spawner (db2gds) - This is a global daemon processor started
for each instance. This process starts all the EDUs (process) in UNIX.

DB2 system controller (db2sysc) - This is the system controller processor.
This is the main process. Without this process, the instance cannot function.

DB2 watchdog (db2wdog) - This process is required only on UNIX
platforms. This process is the parent process for all the processes.

DB2 format log (db2fmtlg) - This preallocates log files in the log path when
the LOGRETAIN database configuration parameter is set to ON, and the
USEREXIT parameter is set to OFF. This is similar to the optional Archiver
log (ARCn) process in Oracle and is enabled when the database is set in
ARCHIVELOG mode.

DB2 system logger (db2syslog) - This is the system logger process
responsible for writing the operating system error log.

18 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Database level processes

The following background processes are started when an active connection to
the database is established:

» DB2 log reader (db2loggr) - This process reads the log files during
transaction rollback, restart recovery, and rollforward operations. It does part
of the functions that the Oracle PMON process does.

» DB2 log writer (db2loggw) - This is the log writer process that flushes the
database log from the log buffer to the transaction log files on disk. This is
equivalent to the LGWR process in Oracle.

» DB2 page cleaner (db2pcinr) - This process is presented to make room in
the buffer pool before prefetchers read pages on disk storage and move them
into the buffer pool. Page cleaners are independent of the application agents
that look for and write out pages from and to the buffer pool to ensure that
there is room in the buffer pool. This is equivalent to the DBWR process in
Oracle.

» DB2 prefetcher (db2pfchr) - This process retrieves data from disk and
moves it into the buffer pool before the application needs the data. This does
part of the functions of the Oracle server process.

» DB2 deadlock detector (db2dlock) - This is the database deadlock detector
process. This process scans the lock list (the lock information memory
structure of DB2) and looks for deadlocked connections.

Application level processes
These processes are started for each application connecting to the database:

» DB2 communication manager (db2ipccm) - This is the interprocess
communication (IPC) process started for each application connecting locally.
This process communicates with the coordinating agent to perform database
tasks. This can be thought of as an Oracle user process connecting locally.

» DB2 TCP manager(db2tcpcm) - This is the TCP communication manager
process. This process is started when the remote client or application
connects to the database using TCP/IP communication. This process
communicates with the coordinating agent to perform database tasks. This is
equivalent to a user process in Oracle.

» DB2 coordinating agent (db2agent) - This process handles requests from
applications or connections and performs all database requests on behalf of
the application. There will be one db2agent per application unless the
connection concentrator is established. If intra-partition parallelism is
enabled, the db2agent will call DB2 subagents to perform the work.

» DB2 subagent (db2agnta) - This is an idle subagent, which works with the
db2agent process when intra-partition parallelism is enabled.

Chapter 1. Introduction 19

» Active subagent (db2agntp) - This is the active subagent that is currently
performing work. This process is used when enabling SMP parallelism, which
means having more processes achieving the same task. In order to enable
this feature in DB2, you must set the intra-parallelism database parameter to
true.

The db2agent process, with or without the combination subagents, performs a
similar function to that of the Oracle server process.

1.3.3 Files and directory structure

This section discusses important files and the common directory structure used
in Oracle and DB2. An instance and database requires a number of files such as
datafiles, configuration files, log files, etc. to operate and store data. The
directory structure gives an idea of how a product is installed and how some files
are placed on this structure.

Oracle

Every Oracle instance needs a set of files to comprise itself and operate. These
files include the datafiles, redo log files, control file, parameter file, the alert and
trace log files, and the password file, as shown in the Figure 1-7. The physical
files to mount a table space in Oracle are called datafiles. The datafiles store the
data, index and rollback segments of the Oracle database. Oracle maintains the
database transactions in a transactional log files called redo log files. There
should be at least one set of redo log files created for a database to operate.
Every Oracle database has a control file. The control file contains the entries
that describes the physical structure of the database. Every time a instance is
started, the control file is used to identify the datafiles and redo log files to start
the database.

The parameter file is used by the Oracle instance during startup. The file
contains the values for many initialization parameters used to allocate memory
and start the process for the instance to run. The password file is a security file
used for authenticating which users are permitted to start up or shut down an
instance or perform other privileged maintenance on a database with SYSDBA
or SYSOPER privileges and additionally OSDBA or OSOPER privileges. The
alert and trace log files are the diagnostics files used by the Oracle instance to
record all the dump information of the database such as internal errors, block
corruption errors, and so forth.

20 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Parameter file

Redo Log

Password file files

Alert and
Trace Log
files

Instance

Figure 1-7 Oracle database files

Oracle installation follows Optimal Flexible Architecture (OFA) standards in
creating the directories and placing the files. The OFA is a set of file naming and
placement standards. Oracle recommends following OFA standards. Using OFA,
the Oracle installation process places the Oracle software in
$ORACLE_BASE\ORACLE_HOME and database files in the
$ORACLE_BASE\oradata directory. Figure 1-8 shows a sample installation
directory structure on the 10g version of Oracle. The initialization file and the
password file reside under the dbs path in the UNIX server and database
directory in Windows server. The bin directory contains all the executable binary
files.

The $ORACLE_HOME\rdbms\admin directory contains the DDL scripts to create
the data dictionary tables and views, the administration procedures, and package
scripts. These scripts are run when creating the database manually. The
$ORACLE_HOME\network\admin directory contains the listener.ora and
tnsnames.ora files for communication process. Section 1.3.5, “Communication”
on page 27 explains more about these files.

Chapter 1. Introduction 21

Windows UNIX
c:\oracle\product\10.2.0 /u0l/app/oracle
\admin Jadmin
\ora_emp /product/10.2.0/db_1
\adump /bin
\bdump /dbs
\ edump /install
\create /1lib
. /network
\db_1 /sglplus
\BIN /rdbms
\database .
\LIB Joradata
\=sglplus
\oradata

Figure 1-8 Oracle directory structure using OFA

DB2

The primary files and directories for a DB2 instance and database include the
DMS containers, SMS containers (directory or path), DBM CFG file, DB CFG file,
Transaction log files, and the db2diag.log file. This structure is shown in

Figure 1-9. The DBM CFG file is created per DB2 instance and contains the
configuration parameters and values. This file resides under the sqllib directory
of the instance home named db2systm. This can be related to the initialization
parameter file in Oracle, but unlike Oracle, this is not a text file, but rather a
binary file and can only be updated using the UPDATE DBM CFG command.

The DB CFG file is the configuration file for each database; it stores the database
configuration values. This file is stored with the name SQLDBCON under the
database directory SQLnnnnn, where nnnnn is the database number assigned.
This file is also a binary file and can only be updated using the UPDATE DB CFG
command.

Each database contains the table space containers, which can be either DMS
containers as a physical file or partition, or SMS containers, which is a directory
in Windows and a file system path in the UNIX environment. Under SMS, a
number of different files are created to store the data and the index. The
transactional log files record the database transactions, which is required for
database recovery. The NEWLOGPATH database configuration parameter
identifies the log path if the log files are stored in a location other than the default
log path. The db2diag.log file, which is like the Oracle Alert log file, records the

22 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2 error dump information. The DIAGPATH DBM configuration parameter
identifies the location of the db2diag.log file.

DBM Cfg Fil

DB2 Instance —
db2diag.log

Database 1 DB Cfg File

SMS containers
] —_
E e

Table spaces

DMS Containers

Database 2 DB Cfg File

SMS containers

—] I'
iopries |

DMS Containers

Table spaces

Figure 1-9 DB2 Instance and database files

Figure 1-10 shows the default directory structure for a simple CREATE
DATABASE command with no TABLESPACE options specified. By default, in
DB2 9, the table spaces will be created using automatic storage. You can
optionally specify storage locations for the automatic storage on the CREATE
DATABASE command, however, if no locations are specified, the automatic
storage location uses the value specified in the DBM CFG parameter
DFTDBPATH. The catalog and user table space will then be created as DMS
containers, while the system temporary table space will be created as an SMS
container. The log files will be created in the SQLLOGDIR directory, which can
be changed by updating the NEWLOGPATH DB CFG parameter.

Chapter 1. Introduction 23

Drive/Directory

[DB2 Instance

Name
- e pation sumer o the daabase,
ooy |1 detabased start ot 1 and ncreases
L SQLOGDIR The directory for default log files
— DBNAME
L Too00000 —C0000000.CAT Ihe DMS container

for catalog tablespace

The SMS container
— T0000001 — CO0000000.TMP | for default system
temporary tablespace

The DMS container

g Ve [—C0000000.LRG for default user tablespace

Figure 1-10 DB2 directory structure for a simple create database command

The DB2 Installation path depends on the operating system in which it is
installed. On the Windows operating system, the default installation goes under
the C:\Program Files\IBM\SQLLIB directory. This path can also be changed
during the installation. On UNIX systems, the default installation path is
/opt/IBM/db2/V9.1, while on Linux the default installation path is
/opt/ibm/db2/V9.1. On UNIX systems, a sqllib directory is created under the
instance home directory and has symbolic links to actual files under the
installation directory. Figure 1-11 shows some of the installation directory
structure for the Windows environment, and the sqllib directory structure for
UNIX environments.

On UNIX, the adm directory consists of instance administration commands,
license management commands, and other commands. The backup directory
consists of the DBM configuration file backup and node configuration backup.
The bin directory consists of all DB2 command binaries. The bnd directory
contains various database bind files. The db2dump directory holds the

24 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

db2diag.log file and other trace files. All the external stored procedures and
executable programs are stored under the function directory. The Java directory
contains the JDBC driver files. The samples directory contains all the program
samples that come shipped with DB2 software.

Windows UNIX
C:\Program Files\IBM\sqllib /$DB2_HOME/sqllib
\adsm /adm
\BIN /adsm
\bnd /backup
\ecfg /bin
\DB2 /bnd
\FUNCTION /efg
\include /db2dump
\instance db2nodes.cfg
\java db2profile
\1lib /function
\license /include
\samples /java
/lib
/1ib32
/1lib64
/samples

Figure 1-11 DB2 directory structure

Configuration files

Since the Oracle instance can only support one database, its background
processes are enabled as soon as the instance is started. Therefore, Oracle has
one configuration file that is used to configure and tune the database.

The DB2 instance, however, can support multiple databases, and therefore,
consists of an instance level shared memory and a database shared memory,
running on the server side. Starting the DB2 instance will only start the instance
level processes. Database level processes, such as those that control
transactional processing tasks, logging, and writing to containers on disk are only
enabled when the database itself is activated by a user or an application
connection.

Therefore, there are two files controlling the configuration and tuning of the DB2
server and database. The first file is used to configure and tune the DB2 server
at the instance level is called the Database Manager Configuration (DBM CFG)
file. The second is a database level configuration file (DB CFG) used to control

database level parameters.

Chapter 1. Introduction 25

1.3.4 Data Dictionary and Catalog

Every RDBMS has a form of metadata that describes the database and its
objects. Essentially, the metadata contains information about the logical and
physical structure of the database, integrity constraints, user and schema
information, authorization, privilege information, and so on.

In the Oracle database, this metadata is stored in a set of read-only tables and
views called the Data Dictionary. These tables and views are updated by the
Oracle server. The Data Dictionary is owned by the user SYS and stored in the
SYSTEM table space. The base tables are all normalized and are seldom
accessed directly, hence, user accessible views are created using the
catalog.sql script. The Data Dictionary is organized under three qualifiers: the
USER_xxx views, the ALL_xxx views, and the DBA_xxx views.

The USER_xxx views show the object information owned by the current user; the
ALL_xxx views show all the object information that can be accessed by the
current user; and the DBA_xxx view is the database administrator view and
contains information on all the objects in the database. Apart from the Data
Dictionary, Oracle maintains another set of virtual tables called the dynamic
performance views; the views created on them are prefixed by V$. These views
are called the fixed views, and are available when the instance is started, without
the need of the database to be opened.

In DB2, the metadata is stored in a set of base tables and views called the
Catalog. The Catalog contains information about the logical and physical
structure of the database objects, object privileges, Integrity information, etc.

The DB2 database Catalog is automatically created when the database is
created. The base tables are owned by the SYSIBM schema and stored in the
SYSCATSPACE table space. On top of the base tables, the SYSCAT and
SYSSTAT views are created. SYSCAT views are the read-only views that
contain the object information, and SYSSTAT are the updateable views, which
contain statistical information. Users should view the catalog information through
the SYSCAT views, as the base tables are more complex and not as reader
friendly.

Unlike Oracle, DB2 does not maintain any dynamic performance views, but uses
commands to get the information from the system directory, such as LIST
DATABASE DIRECTORY, LIST TABLESPACES, LIST APPLICATIONS. Table 1-3
shows some of the commonly used views available in the Oracle Data Dictionary
and DB2 Catalog.

26 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 1-3 Data Dictionary and Catalog

Oracle Data Dictionary DB2 Catalog
DBA_TABLES SYSCAT.TABLES
DBA_TAB_COLUMNS SYSCAT.COLUMNS
DBA_TABLESPACES SYSCAT.TABLESPACES
DBA_INDEXES SYSCAT.INDEXES
DBA_TAB_PRIVS SYSCAT.TABAUTH
DBA_TRIGGERS SYSCAT.TRIGGERS
DBA_VIEWS SYSCAT.VIEWS
DBA_SEQUENCES SYSCAT.SEQUENCES
DBA_PROCEDURES SYSCAT.ROUTINES

The complete list of DB2 Catalog views can be found in SQL Reference,
Volume 1, SC10-4249.

1.3.5 Communication

This section gives an overview of the communication architecture that enables
simple client-server communication in Oracle and DB2 environments and some
of the tools used to communicate from the client.

Database accessing

Both DB2 and Oracle support dynamic and embedded static SQL interfaces.
Oracle provides the SQL*Plus tool for command line access to the database
server. SQL*Plus also comes with a GUI version. DB2 provides the Command
Line Processor (CLP) for command line access to the database server. The GUI
version for this tool is called the Command Editor. The Oracle client installation
installs the SQL*Plus tool, Oracle Net Services software, ODBC drivers, and
other tools. This software provides basic client-server communication to access
the database server. The DB2 client installation provides the DB2 runtime client,
Command Line Processor, Configuration Assistant, Command Editor, ODBC
drivers, etc. for basic client-server communication.

Oracle communication

The client-server communication in Oracle Server is handled by Oracle Net
Services. Oracle Net Services support communications on all major protocols.
The Oracle Net Services provide a communication interface between the client
user process and the Oracle server process, enabling the data transmission and

Chapter 1. Introduction 27

message exchange between Oracle server and client. The Oracle Net Services
use a technology called Transparent Network Substrate (TNS) to perform these
tasks. The TNS enables peer-to-peer application connectivity, where the two
nodes communicate with each other directly.

The Oracle Net Services provides the listener process that resides in the Oracle
server, which listens for incoming client connection requests, and maps it to the
Oracle instance. The listener is configured with one or more protocol addresses;
the client is configured with one of these protocol address and can send
connection requests to listener. A configuration file, listener.ora, is maintained in
the Oracle server that contains the protocol address, database service
information, and listener configuration parameters. The listener process is
controlled by the LSNRCTL utility; the LSNRCTL utility reads the listener.ora file
and starts the listener process. The server services information in the client is
maintained in a file called tnsnames.ora. Oracle Net Configuration Assistant and
Net Manager are graphical utilities used to configure the Oracle Net Services like
listener, service naming, and so on.

DB2 communication

DB2 supports several communication protocols for client-server communication
such as TCP/IP, NPIPE, and so on. Most protocols are automatically detected
and configured during an instance creation. The DB2COMM registry variable
identifies the protocol detected in a server. To enable a specific protocol, use the
db2set DB2COMM command. For TCP/IP, a unique port address has to be
specified in the database manager configuration. This port is registered in the
services file. For example, to reserve port 50000 with the service name
db2c_DB2, the entry in the services file is:

db2c_DB2 50000/tcp

Update this information in the database manager using the command:
db2 UPDATE DBM CFG USING SVCENAME db2c_DB2

These tasks can also be performed using the DB2 Configuration Assistant utility.
At the client, the database information is configured using either the CATALOG
command or using the Configuration Assistant. The database are configured
under a node which describes the host information like protocol and port, etc. To
configure a remote TCP/IP node, the command used is:

db2 CATALOG TCPIP NODE node-name REMOTE host-name SERVER
service-name
The service name registered in the server or the port number can be specified in
the SERVER option. To catalog a database under this node, the command is:
db2 CATALOG DATABASE database-name AS alias-name AT NODE node-name

28 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The Configuration Assistant is the GUI tool used in the client to configure a
database. Figure 1-12 shows how the Configuration Assistant is used to add a
database connection. The option “Search the network” is used to add a database
using the DB2 Discovery Method. Using this option, the DB2 servers installed in
the entire network can be searched and used to add database connection. This
is possible when the DB2 Administration Server (DAS) process is created on the
server and enabled for discovery.

Note: The DB2 Discovery method is enabled at the instance level using the
DISCOVER_INST parameter, and at database level using the
DISCOVER_DB parameter.

@

ES' Configuration Assistant - DB2COPY1

Configure | Selected Edit Wiews Tools Help -
)

= @

FGMCARTE Chanoe Detabase.
Alias fremove DetahEse hase l Location I Comment I Directory Entry Type I Protacal
DasH - M5 Remate TCRAP
FRagER o E Indrect
SAMPLE x|
TOOLSC
HMLDE -
[1.50uce | Select how you want to set up a connection
Uze thiz wizard to help you configure a connection to a DBZ database. ‘When vou or one of vour application programs needs to connect to a
database, you establish the connection by communicating with the server on which the database resides. Each DB 2 client maintaing a list of the
- databases to which it knows how to connect. Thig wizard lets you add databazes to that listT azk Overview).
Select if you have a file containing all the necessary information for accessing a remote server. Typically, pour
database administrator will provide you with the name of the access profile that containg all the information necessan
to configure connections to the required databases.
" Search the netwark
Select to find databases on your local network. ﬁ = -'
]
: : [] L [
= Manually configure a connection to a database
Select if you know all the information necessary to connect to the desired databaze. This includes the protocols
supported by the remote server, the connection configuration information, and the name of the database.
4

Figure 1-12 Configuring the database connection using Configuration Assistant

Chapter 1. Introduction 29

1.3.6 Data replication

Both Oracle and DB2 provide replication capabilities in their databases. The
main purpose of enabling replication is to have the same set of date records in
more than one location. Having two copies of the same database can be part of a
high availability solution. This section discusses the replication approach by
Oracle and DB2.

Oracle replication

Oracle has the ability to replicate data from one Oracle database to another.
Changes to an Oracle database are replicated to another Oracle database
through the capture and apply processes. Oracle replication uses triggers in
order to capture transactional changes and stores them in a local queue. Oracle
then uses packages in order to apply the replicated changes to the target
database. Oracle Enterprise Manager (OEM) may be used to perform replication
tasks.

DB2 replication

DB2 replication is an asynchronous process. The frequency of replication can be
set to minimize any delay. There are two administration interfaces through which
we can set up replication. The first is the DB2 Replication Center, which are GUI
tools provided by DB2 to define, manage, and monitor replication. The second is
the asnclp tool, which provides command line definition of replication objects.

The replication process in DB2 typically consists of identifying and setting up
three databases:

» Source database - Contains source tables that need to be replicated.

» Target database - A database server where the target tables will reside and
the apply process will take place.

» Control database - Contains the control tables storing the necessary
information for the apply program and which can reside on either the source
or target database.

To replicate data to or from a non-IBM relational database, you use the
replication and federated functions in WebSphere Replication Server for Linux,
UNIX, and Windows. The corresponding source or target replication function can
be provided by DB2 for Linux, UNIX, and Windows, or another WebSphere
Replication Server. WebSphere Replication Server supports replication to and
from the following non-DB2 targets and sources:

» Informix
» Microsoft SQL Server
» Oracle

» Sybase

30 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

» Teradata (target only)

The three types of replication provided by DB2 are: SQL replication, Q
replication, and Event publishing.

SQL replication

In SQLL replication, changes to sources are captured, and the committed
transactional data is stored temporarily in staging tables. The changes are then
read from the staging tables and replicated to corresponding target tables. With
staging tables, data can be captured and staged once for delivery to multiple
targets, in different formats, and at different delivery intervals.

You can use SQL replication to replicate data from DB2 sources to targets by
using the Capture and Apply programs. The Capture program runs on the source
system. The Capture program reads DB2 recovery logs for changed source data
and saves the committed changed data to staging tables. The Apply program
typically runs on the target system. The Apply program retrieves captured data
from staging tables and delivers the data to targets.

Q replication

In Q replication, large volumes of data are replicated at very low levels of latency.
Q replication captures changes to source tables and converts committed
transactional data to messages. This data is sent as soon as it is committed at
the source and read by the Q replication server. The data is not staged in tables.
The messages are sent to the target location through WebSphere MQ message
queues, where the messages are read from the queues and converted back into
transactional data. The transactions are then applied to target tables. There is
one transmission queue for each target.

With Q replication, you can replicate committed transactional data from DB2
sources to targets by using the Q Capture and Q Apply programs. The Q Capture
program runs on the source system. The Q Capture program reads DB2
recovery logs for changed source data and writes the changes to WebSphere
MQ queues. The Q Apply program runs on the target system. The Q Apply
program retrieves captured changes from queues and writes the changes to
targets.

Event publishing

In event publishing, changes to source tables are translated into XML messages
and sent over WebSphere MQ queues to a user application of your choice. Event
publishing uses only the Q Capture program, not the Q Apply program. The Q
Capture program captures changes that you specify when you create an object
called an XML publication. These transactions or row-level changes are then
sent to a queue. You specify which queue to use when you create an object
called a publishing queue map.

Chapter 1. Introduction 31

Event publishing gives you the flexibility to use transactional data that is
published in XML format for a wide variety of uses. You determine what happens
to the published changes. You can use them to feed data to your web
applications, trigger events, and more. If you want to replicate changes to a
target using the Q Apply program, use Q replication rather than event publishing.

1.4 Parallel database architecture

Both Oracle and IBM offer parallel architecture or clustering environments for
their databases in order to provide customers with the ability to support very
large databases (VLDBSs). This is achieved by partitioning the database over
multiple nodes or servers. Oracle offers Real Application Cluster (RAC), formerly
known as Oracle Parallel Server, and IBM offers DB2 Enterprise with the
Database Partitioning Feature (DPF), formerly known as DB2 Extended
Enterprise Edition (EEE).

There are three major architectures used to implement a partitioned
environment: Shared memory, Shared disk, and Shared nothing. This book
briefly discusses both Shared disk (Figure 1-13) and Shared nothing
(Figure 1-14) architectures. Table 1-4 shows the differences between the
technologies.

Table 1-4 Shared disk architecture vs. Shared nothing architecture

Shared disk architecture Shared nothing architecture

Requires special hardware Does not require special hardware

Non-linear scalability Provides near linear scalability

Balanced CPU or node fail-over Balanced/Unbalanced CPU or node
fail-over

Requires CPU level communication at Minimal communication

disk access

Non-disruptive maintenance Non-disruptive maintenance

1.4.1 Real Application Clusters

Real Application Clusters (RAC) is Oracle 10g’s clustering technology, which
provides an environment capable of supporting large databases. RAC is based
on a shared disk architecture aimed at achieving high availability of a distributed
environment.

32 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Storage

Storage Storage

Figure 1-13 Shared disk architecture

RAC is an extension to the Oracle database, which enables building a multi-node
database environment. RAC requires an Oracle database, and the clustering
technology provided by the platform vendor in order to achieve successful
installation and implementation.

RAC consists of three major components: nodes containing CPUs, cluster
interconnect, and storage units. The nodes are processing nodes. Typically,
every node is a symmetric multiprocessing node (SMP). As shown in

Figure 1-13, in a shared disk environment every processing node has access to
every storage unit. However, every node in the cluster has its own memory,
operating system, and database instance. The nodes do not share memory
among each other.

1.4.2 DB2 Enterprise with the Database Partitioning Feature (DPF)

IBM Information Management software extends DB2 to the parallel multi-node
(multi-partition in DB2 terminology) environment in order to provide a scalable
solution capable of supporting large amounts of data.

The database partitioning feature in DB2 is based on a shared nothing
architecture. As shown in Figure 1-14, every partition in the cluster has its own

Chapter 1. Introduction 33

dedicated memory, operating system, and storage units. An application of a
shared nothing architecture is aimed at achieving high scalability and improving
performance. The DPF option of DB2 Enterprise does not require any clustering
technologies to run. However, a high availability solution can be implemented in
conjunction with the clustering technology provided by the platform vendor.

f 1 (\ (o,
DB2 DB2 DB2

High Performance Interconnect

Partition 1] \ Partition 2 l Partition 3

Storage Storage Storage

Figure 1-14 Shared nothing architecture

DB2 Enterprise DPF uses two levels of parallelism in order to achieve good
performance:

» Intra-partition parallelism, which is the ability to have multiple processors
process different parts of an SQL query, index creation, or a database load
within a database partition. This level of parallelism can be specified in the
DBM configuration file by setting the INTRA_PARALLEL parameter to ON.

» Inter-partition parallelism, which provides the ability to break up a query
into multiple parts across multiple partitions of a partitioned database, on one
server or multiple database servers. This can be accomplished on both SMP
servers and massively parallel processing (MPP) clustered servers.

34 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Conversion methodology

This chapter describes the IBM migration strategy and the resources that are
available to assist you towards this goal. We also discuss some database
features for which reengineering can be considered during the planning time due
to the implementation differences between Oracle and DB2.

We discuss the following topics:

» IBM conversion strategy
» Additional migration resources
» Conversion planning technical considerations

© Copyright IBM Corp. 2003, 2007. All rights reserved. 35

2.1 Pre-conversion tasks

Before undertaking a migration project, there are several planning activities that
should be performed.

The following list summarizes those areas and the type of information that you
need to gather and consider:
» Perform a hardware and software architectural assessment:

— Decide on the target hardware platform for the production system.

— Understand the workload characteristics and requirements.

— Know the number of concurrent users.

— Take an inventory of software and hardware upgrades.

— Decide what machine the migration will be developed and tested on.
» Investigate the scope, duration, and cost of the project:

— Which application areas will be migrated?

— How complex is the migration?

— How many database objects and applications will be migrated?

— What are some of the differences between the source and target
databases?

— How long will the migration take?
— Obtain a ballpark estimate or proposal for work.
» Identify business dependencies:
— Are there timeline or business cycle requirements?
— Do renewal of licensing agreements impact schedules?
» Identify the people resources and skills required:
— Will resources be in-house, outsourced, or a combination of both?

— Do in-house resources have skills for both the source and target
databases?

— Are in-house resources available to perform the migration?
— Are in-house resources available to support an outsourced migration?
» Identify the services and tools that can be used during the migration.

36 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

2.1.1 IBM Software Migration Project Office team

The Software Migration Project Office team (SMPO) at IBM provides free

assistance for many pre-migration tasks. The team consists of technical

specialists whose mission is to facilitate and assist with all phases of a migration

to DB2. The team has assisted hundreds of customers with their migrations and

has database administration and application development skills for the source

databases (Oracle, SQL Server, and Sybase) that will be migrated to DB2.

Some of the tasks that the SMPO provides assistance with are:

» Selection of application areas to migrate

» Assessment of migration complexity

» Ballpark migration estimates delivered in hours

» Sample database and code conversions

» Migration tool selection and demonstrations

» Implementation of DB2 features

» Obtaining technical collateral

» Problem resolution related to the migration

» Selection of migration services

» Database administration and SQL application development comparison
presentations between the source database and DB2

In addition, the SMPO has a direct line of communication to the DB2
development teams. The benefits of this relationship are several: it provides a
conduit that assists in resolving migration related issues; it is used to advise the
developers of features that, if added to DB2, can facilitate future migrations; it
relays customer wish-lists for future DB2 features.

The SMPO ballpark estimate

A type of assistance that is frequently requested from the SMPO is a ballpark
estimate for the conversion of database objects and applications. The SMPO
uses prior experiences to deliver an estimate ranging from the least to the
maximum number of hours of effort expected. To deliver the ballpark, the SMPO
provides a questionnaire and the customer collects and returns metrical
information for the objects to be converted.

The following is an example of the types of metrics collected:
» Number of database objects including tables, indexes, and views

Chapter 2. Conversion methodology 37

» Number of database application objects including packages, procedures,
triggers and user defined functions; average lines of code and SQL
statements for each

» Number and language of application programs including lines of code and
average number of SQL statements per module

» Volume of production data to be migrated

Although the metrics of a source system are an indicator of the size and
complexity of a migration, there are other activities that are also part of most
migration projects.

Some of these activities are:

Database physical design
Testing

Performance tuning
Cutover to production
Project management
Technical education

vVvyYvyvyYyy

Note: The SMPO ballpark estimate does not include the hours required to
perform the aforementioned activities.

If the migration project is outsourced to IBM services, a proposal for work is
delivered along with an estimate in time and dollar amount. The services'
estimate uses the information collected by the SMPO questionnaire as input
(when available) and includes all activities that are part of a migration project.

In addition to metrical information and project tasks, there are additional factors
that influence the size and complexity of a migration.

Some of these factors are:

Amount and type of proprietary SQL used

Quality of data

Existence of system documentation

Database design requirements such as high availability and replication
Third party software dependencies

Operating system and hardware platform change

Availability of a dedicated machine for migration development

Extent of code freeze enforcement during migration

Length of the cutover window

Skill level of resources performing the migration

VVYVYYVYVYVYVYVYYVYY

These issues are examined more closely and taken into account during the
assessment phase of a migration project.

38 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information about the SMPO, visit the following Web site:
http://www.ibm.com/software/solutions/softwaremigration/

You may also contact your local IBM Sales Representative for information about
the SMPO.

2.2 IBM conversion strategy

The IBM worldwide DB2 Migration Center has developed a “best-practices”
methodology to help customers develop a strategy of how to best migrate their
databases to DB2. You can use this methodology to conduct your own migration
project or can contract the fee-based services of the DB2 Migration Center.

The DB2 Migration Center consists of a team of migration specialists that can
perform the entire migration or partner with your team for a more cost effective
solution. Alternatively, the DB2 Migration Center can also simply provide
direction and advice on an as-needed basis at an hourly rate. The DB2 Migration
Center team can be contacted through your IBM Sales Representative.

If you select the DB2 Migration Center to perform or participate in the migration,
you can expect a team that has completed successful migrations for over twenty
years. The result of these experiences has led to the development of a planned
approach that can minimize the risk and cost of a migration. The Migration
Center takes full advantage of all skills available at IBM including the lab
development teams. In fact, a “lab advocate” is assigned to each project to
ensure success.

Note: The SMPO differs from the DB2 Migration Center in that the SMPO is a
pre-sales team that offers non-billable migration assistance.

IBM's migration methodology consists of the following primary phases:

» Assessment
» Conversion

» Test

» Implementation and cutover

Generally a migration project is an iterative process that consists of multiple
rounds of conversion, testing, and refinement. Each phase has specific
objectives and deliverables and is described in the following sections.

Chapter 2. Conversion methodology 39

http://www-3.ibm.com/software/solutions/softwaremigration/

Note: We recommend that a dedicated machine be used during development
and testing of the migrated system.

2.2.1 Assessment phase

In this phase, it is essential to focus on system architecture analysis and
information gathering to make decisions about how the migration will be
performed. The primary objectives of this phase are to develop an overall
migration strategy, perform initial project planning, and assess the benefits and
risks of various migration options.

Other objectives include:

»

Analyze characteristics and size of the source environment

— Inventory the database objects and code to be converted.
— Validate project scope.

Devise a strategy for key issues

Coexistence of source and target databases
Ongoing application development
Change management
Performance requirements

Tool selection

Naming conventions

Database physical design

Define standards

Data migration strategy

Security planning

Cutover strategy

Project plan development

— Task assignments
— People resources are identified
— Project milestones defined

Note: If the project is outsourced to the DB2 Migration Center, this phase is
also used to validate the estimates delivered by the Migration Center prior to
starting the project. At the end of this phase, adjustments to the initial
estimates may be made.

40 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

2.2.2 Conversion phase

This phase is the core of the migration project and is divided into three
sub-phases:

» Database conversion and design
» Calibration
» Application migration

Database conversion and design

During this phase, a test database is set up and used for migration development
and functional testing of converted objects.

In addition, in this phase the final DB2 physical database design for the
production system is planned and designed. The physical layout of the DB2
database is critical to the success of the project. It must be implemented
according to best practices to ensure optimal performance. It must be structured
to support future maintenance and to provide maximum flexibility to meet future
requirements—all without compromising existing business processes and
program logic.

A good portion of the database object conversion is automated. The IBM
Migration Toolkit (MTK), an IBM product and free download, is the tool of choice
for converting database objects such as tables, data types, constraints, indexes,
views, triggers, stored procedures, user-defined functions, built-in functions, and
sequences. However, the tool does not migrate database security features such
as user IDs, authorizations or privileges (GRANTs and REVOKEsS). In addition,
the creation of table spaces and the placement of tables and indexes within table
spaces along with disk layout is a manual part of the physical design process.

While the MTK is the tool of choice to convert procedures, triggers, and
user-defined functions to DB2, the conversion of these application objects
usually requires a certain amount of manual intervention depending on the SQL
constructs used. The MTK reports those statements that cannot be converted
automatically.

Lastly, during this phase a small amount of test data is loaded in support of
functional testing of the converted objects.

Note: A migration typically does not include logical redesign, although some
amount of reengineering may be done to take advantage of DB2-specific
features.

Chapter 2. Conversion methodology 41

Calibration

The calibration subphase is designed to validate the planned strategy for the
conversion including quality assurance review, standards compliance, and
performance. During the calibration subphase, a few selected programs are
converted as samples to ensure that the code produced complies with
requirements and possesses characteristics that ensure the future
maintainability of the applications. Typically, 20 to 60 programs of a selected
group are converted.

There are several aspects in defining the system to be used in the calibration.
The primary requirement, however, is that the chosen programs should be
representative of how the whole application portfolio uses the source database
and application languages. They are also expected to provide baseline
performance and data usage that can be easily generalized. The generalized
results will then be used to predict the convertibility of each of the other
application subsystems as well as their likely post-conversion performance
characteristics.

During this phase there is a review of the data transfer requirements and design
of data transfer strategy. The data transfer strategy must ensure that all the
production data can be transferred into the production system within the cutover
window.

In addition, detailed resource and schedule planning is finalized. The test
strategy for user acceptance and parallel testing is also finalized.

Application migration

Insights gained during the calibration phase are incorporated into the migration
strategy. In this phase, conversion of the entire portfolio of objects and
applications is completed.

Depending on the project, the following types of SQL applications may be
converted:

v

Embedded SQL programs such as those written in C, C++, COBOL, or Java
ODBC and JDBC programs

SQL scripts

.NET programs

vvyy

Note: If the migration is performed by the DB2 Migration Center, then this
phase may be performed at an IBM location.

Since this phase is mostly executed using manual techniques, expertise with
both the source and DB2 platform is essential. Not all SQL may need to be
converted because the same SQL syntax often runs on both the source and DB2

42 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

databases. However, all SQL must be examined to determine whether
conversion is needed or not. Besides syntax, the semantics of the SQL needs to
be examined to ensure that the SQL statement behaves the same way and
returns the same results on DB2 as on the source database and performs as well
if not better.

The MTK has an SQL translator, an interactive component, which can be used to
convert a single SQL statement that has been extracted from the source code.
The translator converts the statement into an equivalent statement for DB2.
Before translating an SQL statement, the tables that the statement references
must first be converted by the MTK.

2.2.3 The test phase

The test phase consists of three subphases:

» Conversion refresh
» Data migration
» Testing

Conversion refresh

Since most customers are unable to freeze their application for the duration of a
migration, and since the calibration programs are typically converted early in the
process, a migration refresh is required just prior to customer testing and
production implementation. Based on change control logs, those programs,
applications, and data structures that changed during the conversion phase are
reconverted. This process relies heavily upon the inventory and analysis
activities that took place during the assessment phase as that effort
cross-referenced programs, procedures, functions, data structures, and
application code. Using the baseline as a guide, the migration team reconverts
those converted objects that were impacted by ongoing development.

Data migration

The process of data migration consists of four activities: unload, transform,
cleanse, and reload. This subphase is accomplished by a combination of
automated and manual methods.

In this phase, the MTK can be used to automate the migration of the data or to
generate scripts that can be used to migrate the data manually. The MTK can be
used to unload the data from the source database and load the data into DB2.
However, most importantly, the MTK automates the transformation of the source
data into a format that DB2 will accept during load without errors. For example,
DB2 requires that character data is delimited by double quotation marks and that
date and time values are in a specific format. Tools other than the MTK may be

Chapter 2. Conversion methodology 43

used to unload the data, however, the format of the data should be examined to
insure that it is in a format that can be loaded into DB2. If it is not, the data will
have to be manipulated by an intermediate process into a format that can be
loaded.

As mentioned previously, several test iterations of data migration are performed
to ensure that all data can be migrated within the cutover window. Data migration
is also needed to support performance testing.

Testing
The next step is the testing of the converted applications. This includes:

Integration testing
Parallel testing
Performance testing
System testing

vyvyyy

In support of this phase, test scenarios need to exist or be developed. In addition,
the production-like database environment is built, configured, tuned, and
populated with a full volume of data. To assist with configuring DB2 parameters
properly, the Configuration Advisor, a tool provided with DB2, should be used.

In this phase, integration, parallel, performance, and system testing are
performed. Parallel testing consists of capturing output from the source
environment for comparison with output and performance from the DB2
environment. The goal of this phase is to identify migration-caused defects and
performance differences and issues.

If performance issues are found, it may be necessary to revisit the physical
database design and implement some changes. The DB2 Design Advisor is a
useful tool to assist with this task. The Design Advisor can recommend indexing
and other physical database structures such as materialized query tables
(MQTs), multidimensional clustering tables (MDC), and database partitioning
features (used with DPF). Of course, any physical design changes may also
result in data movement changes and perhaps even changes to the application
code.

Other DB2 tools packaged with DB2 that can be used to tune performance,
particularly SQL statements, are the Activity Monitor, the Snapshot™ Monitor,
the Event Monitor, and the Explain facility (including Visual Explain).

2.2.4 Implementation and cutover phase

After the testing phase has completed, final testing is performed to validate
implementation of the new production environment and to gain user acceptance.

44 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Upon acceptance of the system, an additional “dry run” of the cutover procedure
is performed, usually over a “dress-rehearsal” weekend prior to the final cutover
weekend. Any issues discovered during the dry run are corrected. On the cutover
weekend, the database is refreshed with production data and the system goes
live.

In preparation of this phase, a backup of the source production system should be
taken in case there is an unexpected need to back out the new system. In
addition, all database maintenance procedures such as backups are put into
production.

In some cases, the final cutover phase does not allow for downtime of the
production system. In these cases, special planning and procedures are
developed to accommodate the phasing in of the new system without impacting
the production environment.

2.2.5 Migration project skills, roles, and responsibilities

During a migration project a variety of skills are required. In order for the
migration to be successful, adequate skill levels within the following areas are
recommended:

» System architect (part-time)

» System administration (part-time)

» Database administrator with source database and DB2 skills (full-time)

» Migration specialists with source database and DB2 application skills
(full-time)

» DB2 tuning expertise (part-time)

» Subject matter expertise (part-time)

» Project management (full time)

» System testing (part-time)

You should carefully assess the skills of in-house staff and determine whether
the above skills are available. If not, then the project should be either entirely or
partially outsourced to fill the gaps.

If the DB2 Migration Center has been contracted to perform the migration, your
team still plays an important role. Starting early in the project, your staff can
“shadow” the IBM team as they perform their tasks. The IBM team also makes
recommendations to your staff on how they can perform their tasks during the
migration project. In this way, your staff can benefit from the expertise of the IBM
team and gain a deep understanding of the migrated objects that you will

Chapter 2. Conversion methodology 45

ultimately have responsibility for. In addition, during the project your staff takes
primary responsibility for the following tasks:

»

Project management

This person manages all tasks that are assigned to your team and reports the
status of the project to your management.

Management of the physical machine environment
The IBM team will rely on your staff to maintain physical machine resources.
Testing

Except for functional testing, performed by the IBM team, your staff has the
primary responsibility for the testing phase. It is also your responsibility to
provide test plans, test scripts, and test data.

2.3 Additional migration resources

IBM provides the following additional migration resources:

>

IBM Migration Toolkit (MTK)

The IBM Migration Toolkit is a free conversion tool that can be downloaded
from:

http://www.ibm.com/software/data/db2/migration/mtk/

For additional information about the MTK, you can send an e-mail to the
following address:

mtk @ us.ibm.com

IBM DB2 education

The following course is recommended for experienced Oracle DBAs:
Fast Path to DB2 for experienced relational DBAs (CF281)

For information on this course and other IBM education, see:
http://www.ibm.com/services/learning/

DB2 manuals can be found at:
http://www-306.ibm.com/software/data/db2/udb/support/manualsv9.htm]
IBM Redbooks can be found at:

http://ibm.com/redbooks

IBM Press books on DB2 and other products can be found at:

http://www.redbooks.ibm.com/ibmpress/

46 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/migration/mtk/
http://www-3.ibm.com/services/learning/
http://www-3.ibm.com/services/learning/
http://www-306.ibm.com/software/data/db2/udb/support/manualsv9.html
http://ibm.com/redbooks
http://www.redbooks.ibm.com/ibmpress/
http://www-306.ibm.com/software/data/db2/udb/support/manualsv9.html

» The DB2 Express-C Edition is a free version of DB2 and can be downloaded
from:

http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX
01&S_CMP=HP

» The IBM developerWorks Web site offers white papers and other technical
information on DB2 development:

http://www.ibm.com/developerworks

» The IBM Porting zone Web site offers general porting information:
http://www.ibm.com/developerworks/db2/zones/porting/index.htm]

» The IBM DB2 MigrateNow Web site offers information on migrations to DB2:
http://www.ibm.com/software/data/db2/migration/dbmigteam.html

» The following Task IDs can be used to contact IBM about migrations to DB2:
— db2mig@us.ibm.com (for United States, Canada, and Latin America only)
— emeadbct@uk.ibm.com (for Europe, Middle East, and Africa only)
— dungj@hk1.ibm.com (for Asia Pacific only)

2.4 Conversion planning technical considerations

Although a migration typically does not include logical database redesign, in the
conversion phase some amount of reengineering can be considered to take
advantage of DB2-specific features.

In this section, we provide a brief discussion of some of the Oracle features
commonly found in Oracle environments that you may want to consider
reengineering during conversion planning or database design phases. We
introduce the DB2 features that provide similar functionality and the resources for
learning these DB2 features and functions.

2.4.1 Task scheduling

In an Oracle environment, tasks can be automated using either a native
operating system tool or a database tool. The common operating system tool
used in UNIX systems is crontab, and in Windows systems is Scheduled Tasks.
Oracle 10g introduces Database Scheduler, a collection of programs using the
DBMS_SCHEDULER package to provide scheduling functionality. In releases
prior to 10g, Oracle has the DBMS_JOBS package to provide similar
functionality.

Chapter 2. Conversion methodology 47

http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks
http://www-128.ibm.com/developerworks/db2/zones/porting/index.html
http://www-306.ibm.com/software/data/db2/migration/dbmigteam.htm
http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks

DB2 job scheduling capabilities are implemented using four main components:
» Client Tools - the tools used for administration of scheduled tasks.

» Tools Catalog Database - a repository for tasks and related information about
tasks.

» Scheduler - the mechanism that starts the jobs.

» DB2 Administration Server (DAS) - a central point of control for tasks in DB2
instances and databases that controls the Scheduler and the execution of
tasks.

The DB2 Task Center is the Client Tool used to schedule and execute
unattended jobs. The DB2 Journal is used to view historical information about
tasks, database actions and operations, and messages and notifications. These
tools can be directly accessed, or can be accessed from within the DB2 Control
Center. Task Center can run DB2 command scripts as well as OS command
scripts, enable or disable schedules, and send e-mail notification containing
information about the execution of tasks to designated contacts.

Just as for Oracle, operating system tools can also be used to schedule tasks in
DB2 databases.

There is not a direct path to migrate Oracle scheduled tasks to DB2. In order to
achieve the same functionality in a DB2 environment, you must do the following
before the DB2 database goes into production:

» Identify the existing scheduled tasks in your environment.

» Analyze what tasks will be necessary in the new DB2 environment and
discard unnecessary ones.

» Modify, or adapt, the tasks or scripts to work with DB2.
» Implement the tasks using DB2 Task Scheduler or operating system tool.
» Analyze output logs to verify if the conversion is producing desired results.

For more information on DB2 scheduled tasks, refer to chapter 7 “Using the DB2
administration tools” in Administration Guide: Implementation, SC10-4221.

2.4.2 Auditing

Oracle 10g provides audit functionality through the use of standard and
fine-grained auditing options. It allows for system privilege, object privilege, and
SQL statement auditing. Audit trails can be stored in either the operating
system’s audit system or in an internal database table. LogMiner can be used for
analyzing redo log data for suspicious queries.

48 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2’s audit facility is independent of the database server and operates even
when the database instance is stopped. It must be started or stopped explicitly
with the db2audit tool. SYSADMIN authority is required to use this tool. The audit
facility acts at the instance level, recording both instance and database activities.
The audit log file, db2audit.log, is stored in instance’s security subdirectory. This
audit log file has a proprietary format, and security administrators must extract
audit records to a flat file or ASCII delimited files in order to analysis the data.

DB2’s audit facility can monitor different categories of database events, and can
audit successes, failures or both operations for each event. The number of
records generated for a given database operation depends on the number of
categories of events recorded. DB2 can implement synchronous auditing, where
the event generating the audit record will wait until the record is written to disk, or
asynchronous auditing, where the auditing records are buffered and written to
disk when they reach a limit specified by the audit_buf_sz database configuration
parameter.

Oracle audit events cannot be automatically converted to DB2 audit events. It is
necessary to manually implement audit policies in the DB2 database after
database conversion.

Before implementing auditing in a DB2 database, it is good practice to set it up in
a development server to measure how much overhead auditing tasks will cause
and how much storage will be necessary to hold all audit information.

For more information on DB2 audit functionality, refer to chapter 9 “Auditing DB2
database activities” in Administration Guide: Implementation, SC10-4221-00.

2.4.3 National Language support

Oracle provides support for single-byte (SBCS), multi-byte (MBCS), and Unicode
character sets. At the server side, the character set is defined during the
database installation, while at the client side the character set is defined by using
the environment variable. If a client character set is different from a server
character set, Oracle NET automatically converts the data between the two
encoding schemes. Oracle can store Unicode characters either into a CHAR
column created with a UTF-8 database or into an NCHAR data type regardless
of the database character set.

DB2 provides support for single-byte, multi-byte, and Unicode character sets. On
the server side, the code page for a database is specified using CODESET and
TERRITORY clauses of the CREATE DATABASE command, as shown in
Example 2-1. If not specified, DB2 creates the database using the codepage of
the operating system where the database is being created.

Chapter 2. Conversion methodology 49

Example 2-1 Code set and territory specification during database creation

CREATE DATABASE TESTDB9 ON C:
USING CODESET UTF-8 TERRITORY US

At the client side, the code set and territory parameters can be specified using
the DB2CODEPAGE and DB2TERRITORY environment variables, as shown in
Example 2-2.

Example 2-2 Client code set and territory specification

db2set DB2CODEPAGE=1208
db2set DB2TERRITORY=1

A DB2 database can only store Unicode data if a Unicode character set has been
specified as the database code set, or if the table is created with the CCSID
clause. To use the CCSID clause, it is necessary to activate the database
configuration parameter ALT_COLLATE. Once set, this parameter cannot be
changed or reset. If you plan to use DB2 XML features, the database codeset
must be a Unicode character set, such as UTF-8.

Choosing the right code set for the database is critical for a successful database
conversion. You must choose a compatible DB2 code set with an existing Oracle
character set to avoid problems during data conversion. If the Unicode character
set is used in an existing Oracle database, or if there are columns of NCHAR
data types, or if XML support is required, the DB2 database code set must be
Unicode compatible.

For more information on DB2 National Language Support, refer to National
Language Support Guide and Reference, SC10-4380-00.

2.4.4 Authentication and authorization

Oracle can authenticate users by four different methods:

» Database authentication - The database performs user authentication and
authorization.

» External authentication - The operating system or a network service performs
authentication.

» Global authentication and authorization - The user is globally authenticated
by an enterprise directory using Secure Sockets Layer (SSL).

» Proxy authentication and authorization - The user is authenticated by a
middle tier server.

50 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The authentication method is specified during the creation of the user, and it is
possible to have different users with different types of authentication on the same
database. Such user information is stored in several Data Dictionary tables.
Administrative connections to the database can be made using either operating
system authentication or a password file.

DB2 authentication security is based on two security levels: Authentication and
Authorization.

» Authentication
Authentication is the verification of user name and password identity. DB2
does not directly authenticate users, it relies on a security facility outside the
database, often part of the operating system or a separate product, or may
not exist at all. DB2 does not keep any login information stored in catalog
tables. DB2 provides authentication both at the server side or at the client
side, and can use or not use encryption for authentication. Also, it is possible
to use Kerberos security protocol for authentication.

There is only one authentication type per instance, which will be used for all
databases under its control.

» Authorization
Authorization is used to determine what authenticated users can perform
inside the database, and what objects they can access. Authorization can be
broken down into two categories: authorities and privileges.

DB2 authorities

An authority in DB2 is defined as a group in the operation system and granting a
specific user this authority simply means that this user is assigned to this group.
DB2 provides administrative authorities to allow administrators to perform
high-level instance and database management tasks and operations. Authority
information is stored in the database configuration manager file. The levels of
authorities in DB2 are classified as follows:

» SYSADM - Administrative authority. System administrators are given full
privileges over the entire DB2 instance. SYSADM cannot be granted with a
SQL statement.

» SYSCTRL - System control authority. System controllers are given full
privileges for managing the system, but are not allowed access to data.
SYSCTRL cannot be granted with a SQL statement.

» SYSMAINT - System maintenance authority. System supports are given a
subset of privileges to manage the system. SYSMAINT cannot be granted
with a SQL statement.

» SYSMON - System monitor authority. System monitors are given authority
required to use the database system monitor. SYSMON cannot be granted
with a SQL statement.

Chapter 2. Conversion methodology 51

52

» SECADM - Security administrator. Security administrators are given authority
to perform database security administration. SECADM can be granted with a
SQL statement.

» DBADM - Administrative authority. Database administrators have control over
an individual database. DBADM can be granted with an SQL statement.

» LOAD - The LOAD authority is granted on the database level. Users with
LOAD authority can load data to a table, Quiesce the table space for the
table, perform Runstats and List Tablespaces commands. To load data to a
table, the INSERT privilege on the table is also required. Depending on the
load activity, the UPDATE and DELETE privilege on the table may also be
needed.

DB2 privileges

DB2 privilege concept is similar to Oracle privilege concept. Database privileges
are granted in the database through the SQL command GRANT. Privileges are
stored in the system catalog tables within the database There are three types of
privileges: ownership, individual, and implicit:

» Ownership or CONTROL privileges - In most cases the database user who
creates a database object is automatically granted the CONTROL privilege.
This privilege permits the user to grant other database users certain
privileges on this object. The GRANT privilege can be granted through the
GRANT statement.

» Individual privileges - A classic example of this type of privileges is the
SELECT, INSERT, UPDATE, and DELETE privileges.

» Implicit privilege - This is a sub privilege, which is automatically granted to a
user when this user is granted a high level privilege.

When converting Oracle database users to DB2, you need to create user IDs in
the operating system or in the external product for those users who are
authenticated using the database authentication method. If the existing users are
authenticated by any method other than database authentication, these user
names can be used in the DB2 database. Since DB2 only supports one type of
authentication per instance, it is necessary to properly choose one authentication
type that fits the access requirements to all databases controlled by the instance.

DB2 MTK does not automatically convert Oracle privileges to DB2. During the
conversion planning phase, it is necessary to identify all existing privileges in the
Oracle database, and then map these privileges to DB2. The privileges required
for data and application conversion should be implemented in the DB2 database
first. After all data and application conversions are completed, other users and
privileges can be implemented in DB2 to meet your data security requirements.

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information on DB2 Security, refer to chapter 8 “Controlling database
access” in Administration Guide: Implementation, SC10-4221.

2.4.5 Data partitioning

Oracle 10g has the following partitioning methods:
» Range partitioning - Data is partitioned based on ranges of column values.

» Hash partitioning - Data is partitioned evenly across a specified number of
partitions.

» List partitioning - Data is partitioned based on a list of column values.

» Composite Range-Hash partitioning - Data is partitioned using the Range
method and then, within each partition, it is partitioned using the Hash
method.

» Composite Range-List partitioning - Data is partitioned using the Range
method and then, within each partition, it is partitioned using the List method.

Indexes can also be partitioned, and can be of type Global, which allows the
index partitions to be different from the underlying table, or Local, where Oracle
creates a separate index for each partition in the table.

DB2 can partition the data in the following ways:

» Database partitioning
The concept of database partitioning is to spread data among several
database partitions stored on different servers. It is enabled using DB2
Database Partitioning Feature (DPF). It divides the data between database
partitions using hash distribution keys to balance the workload evenly
between all database partitions. The tables are created with a DISTRIBUTED
BY clause to identify database partitioning.

» Table partitioning
Introduced in DB2 9. Data is locally partitioned across multiple storage
objects according to values in one or more rows. The tables are created with
a PARTITIONED BY clause to identify table partitioning. DB2 table
partitioning is similar to Oracle Range partitioning.

» Multidimensional clustering (MDC)
DB2 groups rows with similar values on multiple keys, or dimensions, in the
same table extent. The tables are created with a ORGANIZED BY clause to
identify multidimensional clustering.

None of these partitioning methods are mutually exclusive; all of them can be
combined to provide a tailored solution for business needs, as illustrated in
Figure 2-1.

Chapter 2. Conversion methodology 53

Node 1 Node 2 Node 3

T1 Distributed across 3 database partitions 1

(CTs2 (TSt 3 (Ts2)i (181) (182 ¢
: :
: : Y
| Jan | : :
: :
Organize
|North ||South| |North ||South| |North ||South| |North ||South| |North ||South| |North ||South

| East || West | | East || West | | East || West | | East || West | | East || West | | East || West |

Figure 2-1 Three DB2 data organization schemes

Choosing the right partitioning method plays a major role during the database
planning stage. Several factors must be analyzed in order to define what
partitioning scheme is right for each situation, such as existing hardware,
application and data design, and database workload. Because Oracle and DB2
have completely different structures, there is not a general rule for Oracle
partitioning migration to DB2 partitioning. The data should be partitioned for
performance reasons, for administrative reasons, or even to expand the capacity
of data storage. For each of these situations, a different partitioning scheme
approach should be necessary.

While complete coverage of DB2 DPF is beyond the scope of this book, the
following Web sites provide resources to learn about DB2 data partitioning
features and the best approach to implement each of them:

» http://www.ibm.com/developerworks/db2/Tibrary/techarticle/dm-0608mcine
rney/

> http://www.ibm.com/developerworks/db2/Tibrary/techarticle/dm-0605ahuja
2/

Also, Chapter 6 “Designing partitioned databases” in Administration Guide:
Planning, SC10-4223.

2.4.6 Oracle External tables

Oracle External tables are mainly used for data movement between Oracle
databases. Oracle External tables have only metadata stored inside the

54 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0605ahuja2/

database dictionary tables, and the data itself resides outside the database in a
proprietary format operating system files. External tables can be accessed using
new ORACLE_DATAPUMP driver for loading and unloading operations. The
command CREATE TABLE AS SELECT with the ORGANIZATION EXTERNAL
clause is used to create and populate an external table, and after the table has
been created and populated, no DML commands will be allowed. In releases
prior to 10g, external tables were created using the ORACLE_LOADER driver,
allowing only loading operations. This driver is still supported in Oracle 10g. The
Oracle Data Pump unloading operation produces a binary, proprietary format file
only readable by Data Pump utilities, so it is not possible to use external tables to
move data extracted on an Oracle 10g database to previous releases or to
heterogeneous databases.

DB2 provides three utilities for data movement:

» EXPORT
Extracts data from a DB2 database or view to a file, using the delimited ASCI|
format (DEL), worksheet format (WSF), or PC information exchange format
(IXF).

» IMPORT
Reads data directly from a external file and stores it into a DB2 table. The
DB2 IMPORT utility can read non-delimited ASCII format (ASC), DEL, WSF,
or IXF format. Import performs SQL INSERTS to load data from external files
to a DB2 table and may fire triggers defined on tables being imported to.

» LOAD
LOAD is another utility used to read data directly from an external file and
store into a DB2 table. The LOAD utility is much faster than the IMPORT
utility because instead of performing SQL INSERTS to load the data, it writes
formatted pages directly into the database. The LOAD utility can read files of
format type ASC, DEL, IXF, or CURSOR (a cursor declared against a
SELECT or VALUES statement).

In order to implement Oracle external table functionality in the DB2 database, we
recommend the EXPORT utility for unloading operations, and the LOAD or
IMPORT utility for loading operations.

For more information on DB2 data movement utilities, refer to Data Movement
Utilities Guide and Reference, SC10-4227.

2.4.7 Oracle bigdfile table spaces

Oracle 10g introduces the bigfile table space. A bigfile table space is a table
space containing only one very large data file. Its addressing scheme is different
from regular table spaces, now called smallfile table spaces. Bigfile and smallfile
table spaces can coexist within a database.

Chapter 2. Conversion methodology 55

Converting a bigdfile table space to a DB2 table space is not a concern. The
information stored into a bigfile table space can be moved to DB2 table spaces in
the same way as smallfile table spaces.

2.4.8 Table space design

A database table space design is directly related to the type of database
workload, grouping database objects according to their data access pattern in
order to achieve higher performance or easier administration. For example, the
following are some commonly used techniques:

» Separate table spaces for data, indexes, and LOB objects.

» Table spaces should have different block sizes according to objects stored in
them.

» Read-only objects should be placed within the same table space.

» Table space containers should be spread among several disks or file systems
to improve performance.

DB2 provides two storage options: non-automatic storage and automatic
storage. In a non-automatic storage database, you must perform all database
storage allocations and decisions; in an automatic storage database DB2
automatically performs it for you.

When a database is created using automatic storage management, you
associate storage paths within the database using the clause ON in the CREATE
DATABASE command. The containers and space management options are
automatically chosen by the DB2 database manager. If you do not specify the
storage paths, DB2 will use the value of the dftdbpath database manager
configuration parameter. You can also associate database paths to specify
location for various control files for the database. If you do not specify it, DB2 will
use either the value of the ON clause on the CREATE DATABASE command or
the value of the dftdbpath database manager configuration parameter.

Example 2-3 shows examples of how to create an Automatic Storage-managed
database.

Example 2-3 Automatic Storage-managed database examples

CREATE DATABASE DB1
CREATE DATABASE DB2 AUTOMATIC STORAGE YES
CREATE DATABASE DB3 ON /db2/dbl/datal DBPATH ON /db2/dbl/control

Note: In DB2 9, if you omit the management clause on the CREATE
DATABASE command, the database will be managed by Automatic Storage.

56 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

A database can only be enabled for automatic storage management during its
creation. You cannot enable or disable automatic storage management for a
database. Automatic storage management supports single-partition and
multi-partition databases.

With automatic storage managed databases, it is not necessary to specify
containers for a table space during its creation; the containers will be created in
the database storage path. Example 2-4 shows a few examples of creating table
spaces.

Example 2-4 Automatic storage management table space creation

CREATE TABLESPACE TBS1

CREATE LONG TABLESPACE LONG_TBS

CREATE TEMPORARY TABLESPACE TBSTMP
CREATE USER TEMPORARY TABLESPACE USERTMP

Although, the first time, table spaces created with automatic storage
management can appear as a new type of table space, DB2 uses System
Managed Space (SMS) table spaces for user and temporary table spaces, and
Database Managed Space (DMS) table spaces for regular and large table
spaces.

SMS and DMS are the two table space management types in DB2. Both types of
table spaces have containers or data files associated with them, and they can
coexist within a database.

SMS table space

This type of table space stores its containers in the form of operating system
directories. Since this type of table space cannot be resized manually, enlarging
the underlying file system would then increase the size of the table space. SMS
table spaces acquire more space only when needed.

There are few advantages associated with creating SMS table spaces, such as
ease of creation and maintenance. The main disadvantage of an SMS table
space is that it cannot separate out table indexes and table data into their own
table spaces.

DMS table space

The containers associated with a DMS table space are either operating system
files or raw devices. A DMS table space can be resized manually with the ALTER
TABLESPACE command using the RESIZE option. The database administrator
decides the location of containers belonging to the table space and when to add
containers. A DMS table space may be defined as regular, large, or temporary.

Chapter 2. Conversion methodology 57

Table 2-1 shows the differences between DMS and SMS.

Table 2-1 Differences between SMS and DMS table spaces

Table space type SMS DMS
Can dynamically increase the number of containers in a table No Yes
space

Can store index data for a table stored in a separate table space | No Yes
Can store long data for a table stored in a separate table space | No Yes
One data partitioned table can span multiple table spaces Yes Yes
Space allocated only when needed Yes No
Table space can be placed on different disks Yes Yes
Extent size can be changed after creation No No

There are three categories of table space based on the data stored in them:

» Regular table space - can store regular, index, and long data. Nevertheless,
this type of table space is not optimized for long type data.

» Large table space - designed to store long character or LOB type data.

» Temporary table space - designed to store temporary tables. A user cannot
define a permanent table in a temporary table space.

Note: Only users with SYSADM or SYSCTRL authority can create table
spaces.

When planning for table spaces, you should consider the table space size, type,
and the placement on the physical drive. Migration time is a good time to
redesign the table spaces of your database if you have been considering it.
Oracle data files are similar to the DB2 DMS table space container. You should
also consider to take advantage of the DB2 automatic storage manager feature
to simplify database storage administration.

For more information on DB2 table space design, refer to chapter 5, “Physical
Database Design” in Administration Guide: Planning, SC10-4223.
2.4.9 Data encryption

Oracle 10g introduces DBMS_CRYPTO API for data encryption of sensitive
data, and keeps the DBMS_OBFUSCATION_TOOLKIT API for backward

58 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

compatibility with previous releases. It provides DES, 3DES and AES
cryptographic algorithms.

In addition to these APIs, Oracle offers, for an additional license fee, the Oracle
Advanced Security option. It provides network encryption, database encryption,
and strong authentication for Oracle databases.

The DB2 database manager configuration parameter AUTHENTICATION
controls not only the encryption of user IDs and passwords during connection
authentication, but also the encryption of communication data transferred
between server and client. In order to enable data communication encryption, the
database configuration manager AUTHENTICATION parameter can be set as
DATA_ENCRYPT, as shown in Example 2-5.

Example 2-5 Enabling data encryption for DB2 communication

db2 => UPDATE DATABASE MANAGER CONFIGURATION USING AUTHENTICATION DATA_ENCRYPT
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.

Note: After the authentication method is changed, it is necessary to restart
DB2 instance for the change to take effect.

DB2 also provides built-in functions to enable data encryption: ENCRYPT, which
encrypts the data using a password-base encryption method; DECRYPT_BIN
and DECRYPT_CHAR, which decrypt the encrypted data; and GETHINT, which
returns an encapsulated password hint.

DB2 Migration Tool Kit cannot directly extract data stored in an Oracle-encrypted
column. To convert an Oracle-encrypted column to DB2, data must be manually
decrypted using Oracle APIs, transferred from the Oracle to the DB2 database
using MTK or any other tool, then encrypted in the DB2 database.

For more information on DB2 audit functionality, refer to chapter 9, “Auditing DB2
database activities” in Administration Guide: Implementation, SC10-4221.

2.4.10 Disaster recovery solutions

The Oracle data protection and disaster recovery solution is named Data Guard.
It is included in Enterprise Edition and creates one or more standby databases
transnationally identical to the production (or primary) database to protect data
from errors, failures, disasters, and corruptions. These standby databases can
be located at a recovery site for disaster recovery purposes. The data is
transferred between production and standby databases by applying redo log
data generated in a production database into the standby databases. With Data

Chapter 2. Conversion methodology 59

Guard, it is possible to open the standby databases in read-only mode for
reporting operations by temporarily suspending archived log file application on a
secondary server. However, this can lead to a higher failover time because it
might be necessary to apply pending archived log files after a primary server
crash.

Although not designed for disaster recovery, it is possible to use replication
products, such as Oracle Streams and Advanced Replication to protect sensitive
data by storing a copy of them at a remote site.

The DB2 High Availability Disaster Recovery (HADR) feature provides disaster
and recovery capability. HADR is included in all DB2 editions and is used to
ensure database availability in the event of either planned or unplanned
downtime, providing ultra fast failover with simple deployment and management
procedures. HADR replicates data changes from a production (or primary)
database to a standby database directly from the primary database log buffer,
maintaining a fault tolerant replica. DB2 also provides the Automatic Client
Reroute feature that enables client applications to recover from a primary server
failure, automatically reconnecting to the standby server and continuing work
with minimal interruption.

Figure 2-2 shows the HADR concept.

o &
Primary Connection Tta
DB2 Engine DB2 Engine
(other components) PRIMARY SERVER (other componems)
@ TCP/IP Shredder
Redo Master

log reader log reader

Tables old
Indexes °gs

—

———

— Y
Tables
Indexes

Figure 2-2 HADR concept

60 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For a demonstration of DB2’s HADR implementation, refer to:
http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_HADR-Jan05.html

If reading data at the standby server is a higher priority, or if you want to use
replication instead of HADR to store sensitive information at a disaster recovery
site, IBM Replication Server provides a Q Replication feature. Using the Q
Replication bidirectional or peer-to-peer replication feature makes it possible to
replicate sensitive data from a production server to a standby server on a remote
site. It is possible also to combine Automatic Client Reroute functionality with Q
Replication to create a warm standby database.

There is no migration tool to convert Data Guard or replication configurations to a
DB2 platform. You must first convert the Oracle database to DB2 and then
implement a DB2 disaster recovery solution. DB2 HADR and IBM Replication
Server solutions can be adopted for this situation, providing similar or superior
disaster recovery protection to the new environment.

For more information about HADR concepts and implementation, refer to
chapter 7, “High Availability disaster recovery (HADR)” in Data Recovery and
High Availability Guide and Reference, SC10-4228.

For more information on Automatic Client Reroute, refer to chapter 1 “Before
creating a database” in Administration Guide: Implementation, SC10-4221.
For more information about IBM Information Server features, refer to:
http://www-306.1bm.com/software/data/integration/

For more information about IBM Replication Server Q Replication, refer to:

» WebSphere Information Integrator Q Replication: Fast Track Implementation
Scenarios, SG24-6487.

> http://www-128.1ibm.com/developerworks/db2/roadmaps/qrepl-roadmap-v8.2.
html

2.4.11 Oracle Database Resource Manager

Oracle Database Resource Manager permits database administrators to control
the distribution of resources among database users, ensuring that the necessary
resources will be available to business critical operations.

DB2 Query Patroller can be used for similar functionality. With Query Patroller
you can proactively and dynamically control the flow of queries against the DB2
database, regulating the workload and permitting that small and high-priority
queries have preference over heavy ones. Also, Query Patroller permits
collection of database usage and statistics information for trend analysis.

Chapter 2. Conversion methodology 61

http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_HADR-Jan05.html
http://www-306.ibm.com/software/data/integration/
http://www-128.ibm.com/developerworks/db2/roadmaps/qrepl-roadmap-v8.2.htm
http://www-128.ibm.com/developerworks/db2/roadmaps/qrepl-roadmap-v8.2.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://www-306.ibm.com/software/data/integration/

For a demonstration of how DB2 Query Patroller can help to control database
resource utilization, refer to

http://demos.dfw.ibm.com/on_demand/Demo/IBM Demo DB2 Query Patroller-Ja
n05.html

For more information on Query Patroller, refer to Query Patroller Administration
and User Guide, GC10-4241.

2.4.12 Replication considerations

There are several factors to be considered for conversion of an Oracle database
involved in a replication topology:

» Existing database environment - Will all databases involved in the
replication be converted? Will it be necessary to support heterogeneous
replication between Oracle and DB2 databases?

» Replication topology - What replication topology will be converted? Will the
replication be unidirectional, where the replicated data is read only at the
target table, or will it be multidirectional, where data can be updated in both
source and target tables?

» Storage requirements - How much additional space and hardware utilization
is necessary to support the new replication topology?

DB2 replication capabilities are provided through the IBM Information Server
platform. This platform is a collection of technologies that combines database
management systems, Web services, replication, federated systems, and
warehousing functions into a common platform. IBM Information Server solution
for replication is IBM Replication Server, which can replicate data to or from
non-IBM databases.

Heterogeneous access between different databases is called federation. The
IBM Information Server solution for federated systems is IBM WebSphere
Federation Server, with which you can integrate heterogeneous distributed
databases, providing a common interface for accessing, replicating, and
manipulating data.

If all databases involved in the replication topology are DB2 databases, you will
use the IBM Replication Server features only. However, if it is necessary to
access any heterogeneous database, such as Oracle, SQL Server, My SQL,
etc., you will need to integrate the WebSphere Federation Server and IBM
Replication Server features to design the topology.

62 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_Query_Patroller-Jan05.html
http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_Query_Patroller-Jan05.html

To convert an Oracle database that is part of a replication topology to DB2, and
configure replication between Oracle and DB2 databases, you should follow
these steps:

1. Stop Oracle replication before database conversion to DB2.
2. Convert the Oracle database to DB2.

3. Install and configure the IBM Information Server tools (IBM WebSphere
Federation Server and IBM Replication Server).

4. Install Oracle client tools into IBM Information Server server machine.

5. Configure replication between Oracle and DB2 through IBM Information
Server products.

While complete coverage of IBM Replication Server features is beyond the
scope of this book, the following Web sites provide a quick start to learn about
these features, and the best approach to implement them:

http://www-306.1bm.com/software/data/integration/
http://publib.boulder.ibm.com/infocenter/db21uw/v9/index.jsp?topic=/com
.ibm.websphere.ii.product.overview.doc/dochome/iiypohom wiihome.html
http://www.ibm.com/developerworks/db2/1ibrary/techarticle/dm-0505burner
/index.html

2.4.13 Data Warehouse considerations

A conversion of an Oracle Data Warehouse (DW) database to DB2 should be
treated in the same way as an OLTP conversion. As in an OLTP environment,
some topics must be considered before a DW migration:

» Will all Data Warehouse data be converted to DB2 in a single moment, or will
it be broken into smaller pieces of data and migrated separately?

» How much time will be necessary to convert the data? How will business be
affected during the conversion process?

» Are the existing hardware resources adequate for Data Warehouse needs?
Can the existing storage hardware support Oracle and DB2 data, or will it be
necessary to use additional storage hardware during the conversion?

» Will both Data Warehouse and base OLTP databases be migrated to DB2 at
the same time\? Will it be necessary to federate, or replicate, data between
heterogeneous databases?

» How will the extract, load and transform processes (ETL) be converted to
DB2? Are the existing ETL tools compatible with the new environment, or will
it be necessary to migrate these tools during the database conversion
project?

Chapter 2. Conversion methodology 63

http://www-306.ibm.com/software/data/integration/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0505burner/index.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html

64

» Is partitioning used? If yes, how should the existing partitioning scheme be
converted to the DB2 scheme?

Due to the fact that Data Warehouse databases usually store terabyte of data,
the physical storage requisites must be carefully designed in order to achieve
high performance levels and easier administration. DB2 Data Partitioning
Feature (DPF) is commonly used in DW databases. Federation of servers is also
commonly used, and can be performed in DB2 databases using the IBM
Information Server product WebSphere Federation Server.

Besides DPF and WebSphere Federation Server, DB2 provides a scalable,
reliable, and robust suite of Data Warehouse tools to help you build, load, and
manage your Data Warehouse environment. DB2 provides tools to easily design
and implement Cubes, OLAP, data mining analysis, reports, and ETL in a DW
environment.

For more information on DB2 Data Warehouse features, refer to:
http://www.ibm.com/software/data/db2/dwe/features.html

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/dwe/features.html

MTK

IBM Migration Toolkit (MTK) is a free tool designed to simplify and improve
migration to DB2 for Linux, UNIX, and Windows (DB2) from other RDBMS. With
MTK, database objects such as tables, views, data types, stored procedures,
triggers, etc. can be automatically converted into equivalent DB2 database
objects. MTK provides database administrators (DBAs) and application
programmers with the tools needed to automate previously inefficient and costly
migration tasks. With MTK, it is possible to reduce downtime, eliminate human
error, and cut back on person-hours and other resources and tasks that are
normally associated with database migration.

In this chapter we introduce some basic information regarding the IBM Migration
Toolkit in these topics:

» MTK overview
» MTK planning
» MTK setup

© Copyright IBM Corp. 2003, 2007. All rights reserved. 65

3.1 MTK overview

The IBM Migration Toolkit (MTK) (Figure 3-1) is available free of charge from IBM
at the following Web site:
http://www.ibm.com/software/data/db2/migration/mtk

66

MTK was developed by the IBM Silicon Valley Laboratory in San Jose, California
with assistance and contributions from the Watson Laboratory in Hawthorne, NY.
MTK is now being maintained and developed by the IBM team in Lenexa, KS.
Some driving factors in creating MTK were:

>

The need to develop a tool that is closely linked, and kept pace, with the
technical development of DB2 and the databases with which it interacts.

The need to address “real world” migration concerns. Because of IBM’s
significant experience in this area, the developers created a tool that meets
the requirements of IBM migration teams while addressing the significant
issues involved in customer migrations.

The need for a tool that would convert as much, and as accurately, as
possible.

The need for a tool that would be available, free of charge, to those interested
in doing a migration.

LI migration Toolkit

Yersion 1.4.3.0

Initializing project manager ...
T

[C)Cepyright, Intemational Business Machines, 1998, 2006 All Rights Resaned

Figure 3-1 The IBM Migration Toolkit

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/migration/mtk

3.1.1 MTK facts

In this section, we introduce MTK versions and features.

MTK versions

The latest version of MTK (as of the publication date of this document) is
V1.4.9.0. This is the recommended version for all conversions from Oracle,
Microsoft SQL Server, Sybase, and IDS sources at the time of writing. Since the
MTK development team releases fixes and updates to the product at several
times during the year, check the following Web site to download the latest
version of MTK:

http://www-306.1bm.com/software/data/db2/migration/mtk/

Important:

In addition to the recommended version of MTK, there is an MTK prototype.
This prototype, version 2.0.1.1 has been extended to support MySQL versions
4 and 5 as the source DBMS, and DB2 and IDS as the target DBMS. The
emphasis of this prototype is to provide MySQL support; support for other
source DBMS in this prototype is not recommended, as the support in MTK
1.4.x is more current for other sources. The 2.0.1.1 release contains a fair
degree of migration support for MySQL, but is not nearly as complete at the
time of the publication of this book. See the release notes for that version to
obtain detailed information about the SQL constructs supported.

As of the date of this publication, the following operating systems, conversion
sources, and conversion targets are supported by MTK V1.4.9.0:

» Supported operating systems

— Windows 2000 and Windows XP
— Linux RHEL 3

— AIX5L™52

— Sun Solaris 2.9/9

— HP HP-UXB.11.11

» Supported databases (as conversion sources)

— Oracle 8i, 9i, 10g

— Microsoft SQL Server, versions 7, 2000, and 2005
— Sybase ASE, Versions 11,12, 12.5, and 15

— Sybase SQL Anywhere version 9

— Informix Dynamic Server 7.3, and 9

» Supported versions of DB2 (as conversion targets)

— DB2 for Linux, UNIX and Windows V8.1 (Fix pack 3 and later), V8.2, and 9
— DB2 for Linux, UNIX and Windows i5/0S®, v5R2, V5R3, V5R4

Chapter 3. MTK 67

http://www-306.ibm.com/software/data/db2/migration/mtk/
http://www-306.ibm.com/software/data/db2/migration/mtk/

— DB2 for z/OS Version 8 and later

3.1.2 MTK features

MTK converts the following Oracle source database constructs into equivalent
DB2 database objects:

YVYVYVYVYVYVYVYVYYVYY

Data types
Tables
Columns
Views
Indexes
Constraints
Packages
Stored procedures
Functions
Triggers
Sequences

MTK enables the following tasks:

»

Obtaining source database metadata (DDL) by EXTRACTING information
from the source database system catalogs through JDBC or ODBC

Obtaining source database metadata (DDL) by IMPORTING DDL scripts
created by SQL*Plus or third-party tools

Automating the conversion of database object definitions, including stored
procedures, triggers, packages, tables, views, indexes, and sequences

Deploying SQL and Java compatibility functions that permit the converted
code to “behave” functionally similar to the source code

“On the fly” conversion of PL/SQL statements using the SQL Translator tool.
This tool is also effective as a DB2 SQL PL learning aid for PL/SQL
developers.

Viewing conversion information and messages
Deployment of the converted objects into a new or existing DB2 database

Generating and running data movement (unload/load) scripts or performing
the data movement online

Tracking the status of object conversions and data movement, including error
messages, error location, and DDL change reports using the detailed
migration log file and report

68 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

3.1.3 MTK GUI interface

The MTK GUI interface (Figure 3-2 on page 70) consists of five tabs, each of
which represents a specific task in the conversion process. The tabs are
organized from left to right as follows:

| 2

»
»
»
»

Specify Source

Convert

Refine

Generate Data Transfer Scripts
Deploy to Target

The menu bar contains Application, Project, Tools, and Help:

>

Application - When Application — User Preferences is selected from the
menu bar, such preferences as MTK environment, project, and editor can be
set.

Project - When Project is selected from the menu bar, a new project can be
created; an existing project can be opened, closed, modified, saved, dropped,
backed up or restored; or an SQL source file can be imported.

Tools - When Tools is selected from the menu bar, the SQL Translator can be
launched or the Migration reports, Changes Report, or the log file can be
examined.

Help - When Help is selected from the menu bar, Help Content or About...
can be viewed.

Chapter 3. MTK 69

@ IBM Migration ToolKit - Oracle_Conversion g@]
application Project Tools Help ;a :ﬁ

=& B & @

Specify Source | Caonvert | Refine | Generate Data Transfer Scripts | Deploy to Target

Import S3L file

If the information to convert is already in a file, click Import

Extract from source database

If the information to convert is in the source database, click Extract

Sort By Mame]

Sort By Extension]

For Help, press F1
Figure 3-2 MTK GUI interface

3.1.4 Migration tasks

The five tabs in the initial pane of the MTK user interface represent the five
phases of the MTK migration process. These are:

» Task 1: Specify source

The SPECIFY SOURCE task (Figure 3-3) focuses on Extracting or Importing
database metadata (DDL) into the tool. The database objects defined in this
DDL will then be used as the source code for conversion to DB2 equivalent
objects. When Extract... is selected, a connection to the source database
through ODBC or JDBC is required. Once the ODBC/JDBC connection is
established, MTK will ‘read’ the system catalogs of the source database and
extract the definitions for use in the conversion process. If Import... is

70 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

selected, an existing file, or files, which contain database object DDL must
exist. The Import task copies the existing DDL file or files from the file system
into the MTK project directory for use in the database structure conversion
process.

Specify Source
ﬁ Extract
Impaort | from database
from file
Source metadata
file

-

I
Convert

Figure 3-3 Specify source

Note: If the source DDL for the MTK project is obtained through the Import
option, the ability of MTK to perform data movement is limited.

» Task 2: Convert

During the CONVERT task (Figure 3-4 on page 72) several optional tasks

may be completed before the actual conversion of the source code. These
are:

— Selecting format options for the converted code. Examples of options are:
including the source code as comments in the converted code; including
DROP before create object statements, among others.

— Making changes to the default mapping between a source data type and
its target DB2 data type.

Once the optional tasks are completed, Convert may be selected to perform
the conversion of the DDL statements into the corresponding DB2 DDL.

Chapter 3. MTK 71

Each conversion generates two files:

— .db2 - this file contains all of the source code converted to DB2 target
code.

— .rpt - this file can be opened and viewed from this pane. It is best,
however, to examine it during the REFINE task, which succeeds the
Convert task.

Source metadata
file

Convert

]

Report
BITor messages

— LN
In XML

DB2 create
script

Figure 3-4 Overview of the Convert process

» Task 3: Refine
During the REFINE task (Figure 3-5 on page 73) the following are possible:

— The results of the conversion may be examined.
— Various types of messages generated by the tool may be viewed and, if
necessary, specific changes may be made to the converted DDL.

Note: If any changes are made to the converted DDL, the Convert step
must be re-run in order to apply the changes.

Other tools such as the SQL Translator, Log, and Reports can be used to
assist in the Refine task. Once the Refine process has been completed, it is
possible to move to the “Generate data transfer scripts” step to prepare the
data transfer scripts, or to the “Deploy to Target” step to execute the DB2
DDL statements.

72 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Refine

D D

User
changes

Report
arror messageas
Metadata
in XML
format DB2 create

o

Dt

Figure 3-5 Refine

Task 4: Generate data transfer scripts
In the GENERATE DATA TRANSFER task (Figure 3-6), scripts are generated

that will be used to:

— Unload data from the source environment

— Load or Import data into DB2

Before creating the scripts, some advanced options may be selected that will

affect how the IMPORT or LOAD utility operates. This will allow additional

refinement of the Load or Import specifications that may correspond with the
requirements of specific data and environments.

—]

Metadata
in XML
format

Generate data transfer scripts

—8—7

Data transfer
scripts

Figure 3-6 Overview of the Generate Data Transfer script task

Chapter 3. MTK

73

» Task 5: Deploy to Target

The Deploy to Target task (Figure 3-7) is used to install database objects and
Import/Load data into the target DB2 database. In this task, it is possible to:

— Deploy the converted objects into a previously existing database or create
a new database into which the objects may be deployed.

— Execute the DDL to create the database objects.

— Extract data from the source database.

— Load/Import the source data into the target DB2 tables or choose any
combination of the above three.

DB2 create
seript

Extract
Deploy to Target from database

ﬁ !

C

&

Data transfer
soripts . I
@ Data files
Migrated
DB2 database

Figure 3-7 Deploy to Target

An overview of all the tasks in the MTK conversion process is shown in
Figure 3-8.

74 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Import
from file

HO=

Specify Source

g1

L

Extract

from database

Source metadata

file

Refine Convert
o O
L]
User Report
changes ermor messages
in XML
format DB2 create
seript
Generate Data Transfer Scripts Deploy to Target
—
LT
Data transfer
scripts

Figure 3-8 MTK conversion tasks overview

3.1.5 The MTK SQL Translator

The MTK SQL Translator (Figure 3-9 on page 76) enables “on-the-fly” conversion
of individual statements, a series of statements, or stored procedures. The
translator requires that all of the dependent objects for the SQL that you wish to
convert are available to MTK. This may be accomplished in either of two ways:

» The current project already contains all of the converted objects on which the

desired SQL depends (tables, views, etc.).

» The objects on which the SQL statement depends will be created in the SQL
Translator window by placing them before the SQL that is to be converted.

Chapter 3. MTK

@ Migration ToolKit - SQL Translator

create table employee(id int, last_name varchar2(207);
creste table customer(sales_rep_id irt, name varchar2(2000;

Select A last_name, Aid, B.rame from employee & customer B where &.0d = B sales_rep_id (+);

Files to wuse in context of this translation: Mo file L

--* [Z00000]MTE Oracle Converter. Sersion: 12Dec2006_1140

CREATE TABLE employeel
id DECIMALCET 00,
lazt_name Y ARCHAR20)

i

CREATE TABLE customer(
zales_rep_id DECIWALCET 00,
narme Y ARCHARI20)

i

SELECT A last_name,
A,
E.name

FROM employes & LEFT QUTER JOIM
customer B OMN B .sales_rep_id = A,d!

--*[3001 O8] Translation Ratio: 100% (303 statements were translated successiully])

Figure 3-9 The MTK SQL Translator

3.2 MTK planning

MTK runs on a variety of operating system platforms including AlX, Linux, Sun
Solaris, HP, and Windows. Before installing MTK, verify the hardware and
software requirements provided in this section.

3.2.1 Operating system and version requirements

MTK runs on the following operating systems and versions:

»

»
»
»
»

Windows 2000 and Windows XP
Linux RHEL 3

AIX 5L 5.2

Sun Solaris 2.9/9

HP HP-UX B.11.11

76 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

3.2.2 MTK hardware requirements

The hardware requirements for installation of MTK on all platforms are:
» 50 MB of disk space for installation
» 5 MB per project plus space to unload data

» 1 GB of memory is recommended (more memory is required if large source
files will be converted).

3.2.3 MTK software requirements

Installation of MTK is supported on various platforms. The following information
outlines the software requirements for installation of MTK for these platforms:

Windows

In earlier versions of MTK for the Windows environment a Java Runtime
Environment (JRE™) was included as part of the installation package. Currently,
the install of the MTK product no longer includes a JRE. As a result, the following
is now a requirement:

Java Runtime Environment 1.4.2 or greater installed and accessible through the
PATH environment variable.

Note: To deploy SQL stored procedures to DB2 Version 8.1 or earlier,
Microsoft Visual C++® version 5 or later is required to compile the procedures.
DB2 Version 8.2 and later and DB2 9 do not require a compiler.

UNIX and Linux

» Java(™) Runtime Environment 1.4.2 or greater installed and accessible
through the $PATH environment variable.

» For Linux, increase the message queue number to at least 128:
sysctl -w kernel.msgmni=128

» To view the HTML reports that MTK generates, include the browser directory
in the $PATH variable. If the browser cannot be found, MTK will launch an
internal JAVA web browser, which can display HTML files, but does not
handle frames or format the tables well.

» When extracting DDL from a data source using ODBC or Java, configure the
client connection.

Chapter 3. MTK 77

3.2.4 MTK requirements for data extraction

The data extraction requirements vary depending on the source RDBMS from
which the data is to be extracted.

General data extraction requirements
The following are required for extracting data from a database in any RDBMS:

» When migrating to a DB2 database on UNIX and Linux platforms, use JDBC
to connect to the source database.

On UNIX and Linux platforms, MTK does not support connecting to the
source using ODBC.

» When migrating to a DB2 database on the Windows platform, you can use
ODBC or JDBC to connect to the source database.

Important: MTK ODBC extraction support will be discontinued on all
platforms in subsequent MTK releases.

Oracle data extraction requirements
To extract data from an Oracle database, the following are required:

» To connect to an Oracle database, either of the following JDBC drivers can
be used:

— ojdbci4.jar
— classes12.zip
Note: To install ojdbc14.jar, refer to the installation instructions at:

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htd
ocs/jdbc_10201.html

» Edit the MTKMain.bat (Windows) or the MTKMain.sh (UNIX and Linux) file to
add the path to either the ojdbc14.jar or the classes12.zip file. Example 3-1
shows the MTKMain.sh file before and after the necessary adjustments have
been made.

Example 3-1 Editing the MTKMain.sh file to include the path to the ojdbc14.jar file

This is the unedited MTKMain.sh file:
#1/bin/sh

java -classpath
".:antlr.jar:common.jar:mtk.jar:ifxjdbc.jar:ifxtools.jar:ifxlang.jar:if

78 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

x1supp.jar:jt400.jar:jipexll.jar:help.jar:jhall.jar:xmistore.jar:cwm.ja
r:orainfxtUDFs.jar:$CLASSPATH" com.ibm.mtk.MTKMain $1 $2 $3 $4

This is the edited MTKMain.sh file with the path to the ojdbcl4.jar
file included:

#1/bin/sh

java -classpath
".:antlr.jar:common.jar:mtk.jar:ifxjdbc.jar:ifxtools.jar:ifxlang.jar:if
x1supp.jar:jt400.jar:jipexll.jar:help.jar:jhall.jar:xmistore.jar:cwm.ja
r:orainfxtUDFs.jar:<PATH_TO_0JDBC14_JAR_FILE>/ojdbc14.jar:$CLASSPATH"
com.ibm.mtk.MTKMain $1 $2 $3 $4

» Include the following library in the $CLASSPATH:
${ORACLE_HOME}/jdbc/lib/classes12.zip

» Depending on your OS, include the following entries in the
$LD_LIBRARY_PATH (Linux and Solaris), the $LIBPATH (AIX), or
$SHLIB_PATH (HP-UX):

— ${ORACLE_HOME}Iib
— ${ORACLE_HOME}Iib32

Tip: When migrating from Oracle databases, run statistics on the
SYS.DEPENDENCY$, SYS.0OBJS$, and SYS.USER$ tables before
extracting. You can use the Oracle DBA Studio or the DBMS_STAT
package to run statistics.

Microsoft SQL Server data extraction requirements

To extract data from a Microsoft SQL Server database, the following are
required:

» MTK supports connections for the JDBC Type 2 and Type 4 drivers. Either of
the following Microsoft SQL Server drivers can be used:

— SQL Server 2000 Driver for JDBC
— Microsoft SQL Server 2005 JDBC Driver 1.0

Note: These drivers are available for download at:
http://msdn2.microsoft.com/en-us/data/aa937724.aspx

Refer to the accompanying instructions in the download to install the driver.

» Edit the MTKMain.bat (Windows) file to add the path to either the sqljdbc.jar
(MS SQL 2005) or, in the case of MS SQL 2000, the msbase.jar, msutil.jar,

Chapter 3. MTK 79

http://msdn2.microsoft.com/en-us/data/aa937724.aspx
http://msdn2.microsoft.com/en-us/data/aa937724.aspx

and the mssqlserver.jar files. Example 3-2 shows the MTKMain.bat file before
and after the necessary adjustments have been made.

Example 3-2 Editing the MTKMain.bat file to include the path to the sqljdbc.jar file
This is the unedited MTKMain.bat file:

@echo off

java -classpath

".santlr.jar;common. jar;mtk.jar;ifxjdbc.jar;ifxtools.jar;ifxlang.jar;if
x1supp.jar;jt400.jar;jipexll.jar;help.jar;jhall.jar;xmistore.jar;cwm.ja
r;orainfxtUDFs.jar;%CLASSPATH%" com.ibm.mtk.MTKMain %1 %2 %3 %4

This is the edited MTKMain.bat file with the path to the sqljdbc.jar
file included:

@echo off

java -classpath

".santlr.jar;common. jar;mtk.jar;ifxjdbc.jar;ifxtools.jar;ifxlang.jar;if
x1supp.jar;jt400.jar;jlpexll.jar;help.jar;jhall.jar;xmistore.jar;cwm.ja
r;orainfxtUDFs.jar;<PATH_TO0_sqljdbc_JAR_FILE>\sqljdbc.jar;%CLASSPATHS"
com.ibm.mtk.MTKMain %1 %2 %3 %4

Sybase and Sybase SQL Anywhere data extraction
requirements

To extract data from a database in Sybase or Sybase SQL Anywhere, the
following are required:

» JConnect 5_2 or later must be installed and accessible through the system
$PATH and SCLASSPATH.

» Edit the MTKMain.bat (Windows) or MTKMain.sh (UNIX and Linux) file(s) to
add the path to either the jconn2.jar or the jconn3.jar files. Example 3-3
shows the MTKMain.bat file before, and after, the necessary adjustments
have been made.

Example 3-3 Editing the MTKMain.bat file to include the required path
This is the unedited MTKMain.bat file:

@echo off

java -classpath
".santlr.jar;common.jar;mtk.jar;ifxjdbc.jar;ifxtools.jar;ifxlang.jar;if
xIsupp.jar;jt400.jar;jlpexll.jar;help.jar;jhall.jar;xmistore.jar;cwm.ja
r;orainfxtUDFs.jar;%CLASSPATH%" com.ibm.mtk.MTKMain %1 %2 %3 %4

80 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

This is the edited MTKMain.bat file with the path to the sqljdbc.jar
file included:

@echo off

java -classpath
".santlr.jar;common.jar;mtk.jar;ifxjdbc.jar;ifxtools.jar;ifxlang.jar;if
x1supp.jar;jt400.jar;jipexll.jar;help.jar;jhall.jar;xmistore.jar;cwm.ja
r;orainfxtUDFs.jar;<PATH_TO_jconn2_or_jconn3_JAR_FILE>\jconnX.jar;%CLAS
SPATH%" com.ibm.mtk.MTKMain %1 %2 %3 %4

Important: The client code does not support the Sybase LC_ALL system
variable. If the variable has been defined, remove it before running the Sybase
client.

3.2.5 Where to install MTK

MTK can be installed on the source database server, target database server, or
at a client on which connectivity to both source and target database server has
been established. Deciding where to install MTK depends on the data to be
migrated.

MTK places the extracted data on the server where the MTK is installed. Hence,
there is a performance advantage to installing MTK where the target database
resides, since it is faster to load data locally than across a network. Also, DB2
requires that LOB data files reside on the local machine. MTK, therefore, cannot
load data into LOB columns unless MTK is running on the target database
server.

For example, if the Oracle database is located on an AlX system and the DB2
target will be deployed onto a Linux system, and there is no data to be migrated
to LOB columns, MTK should be installed on the local AlX system.

3.3 MTK installation

MTK installation is simple and requires minimum preparation. This section
provides MTK installation procedures and the preparation tasks for Windows and
UNIX and Linux platforms.

Chapter 3. MTK 81

3.3.1 Windows installation
To install MTK on Windows:

1.

Ensure that you have the necessary hardware and software requirements, as
outlined in the sections “MTK hardware requirements” and “MTK software
requirements”.

2. Download MTK from the MTK Download page into any directory.

3. Unzip and extract the package contents.

Run the InstallShield wizard and follow the instructions.

— The installation will default to the C:\MTK directory.

Add the path for the JRE to the MTKMain.bat file, as follows:
a. Go to the directory where MTK is installed.

b. Open the MTKMain.bat file.

c. Add PATH=\bin;%PATH.

To launch the MTK, select:

Start —» Programs — IBM Migration Toolkit 1.4.0 — Toolkit

3.3.2 UNIX and Linux Installation
To install MTK on UNIX and Linux platforms:

1.

Ensure that you have the necessary hardware and software requirements, as
outlined in the sections “MTK hardware requirements” and “MTK software
requirements”.

Log in with the user ID under which MTK will be installed.

Important: Do not install MTK as root. Install MTK with a user ID that has
authority in the db2admin group.

3. Download or copy MTK into a newly created directory.

4. Use a standard tar utility to untar and extract Mtk.tar.gz files. Execute the

following command to unpack this file into the current MTK directory or
directories specified:

tar -xzf mtk.tar.gz

Verify Java access and that Java is, at least, at level 1.4.2 or greater. Execute
the following from the shell to verify the installed version:

java -version

82 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

6. Verify that the DB2 $INSTHOME environment variable is set to your DB2
instance directory and that it is properly exported when you start a new
environment. For example, in the Korn shell type this command:

echo $INSTHOME
The result should be equivalent to:
/home/db2inst1
7. Launch the MTK from the directory in which it was installed by typing:
MTKMain.sh
or
./MTKMain

Note: MTK uses the Korn shell for deployment. If your environment has the
Korn shell installed in an unusual place, make a symbolic link to it from
/usr/bin/ksh, which is where MTK expects it to be located as follows:

In -s “which ksh™ /usr/bin/ksh

Important: Do not attempt to install and run MTK in a shared environment (for
example, /usr/local/mtk). If multiple users will run MTK on the same system,
they should install and run their own copies, using projects and files local to
their home directory. Sharing projects and logs can result in conflicts and
overwritten files.

3.3.3 Verifying the environment for creating MTK Java UDFs

During the Deploy to Target stage of a conversion, MTK creates Java and SQL
user-defined functions (UDFs). In order to ensure a successful conversion, it is
highly recommended that the ability to create and execute a Java UDF—outside
of MTK—be tested in the target environment. Before attempting to build and
execute a Java UDF, refer to the following IBM Redbooks publications for
instructions on setting up the application development environment and building
Java routines:

» Getting Started with Database Application Development, SC10-4252
» Developing Java Applications, SC10-4233

The process of building and executing DB2 Java UDFs, outside of MTK, is
demonstrated in the following steps. Example 3-4 contains the source code for
the process.

1. Compile the Java modules TestUdf.java (Example 3-4) and TestUdfCli.java
(Example 3-5) by executing the following commands:

> javac TestUdf.java

Chapter 3. MTK 83

> javac TestUdfCli.java

Example 3-4 Source code for TestUdf.java

// Source code for TestUdf.java
import COM.ibm.db2.app.*;
import COM.ibm.db2.jdbc.app.*;

1111117

// Java user-defined functions are in this class
1111117

class TestUdf extends UDF

{

// Find-the-vowel vowel example.
// Return position of first vowel, or signal SQL error.
public void findvwl (String a, int result) throws Exception
{
for (int i = 0; i < a.length (); i++)
{
char x = a.charAt (i);
char y = Character.toUpperCase (x);
if (y=="'A"[[y=="E|[]y="1"]||
y == |0| || y == |U| || y == |Y|)
{

set (2, i + 1);// SQL indexing begins at 1
return;

}
}

// return failure message
setSQLstate ("38700");
setSQLmessage ("findvwl: No Vowel");

}

} // end of source for TestUdf.java

Example 3-5 Source code for TestUdfCli.java

// Source code for TestUdfCli.java

import COM.ibm.db2.jdbc.app.*;
import java.sql.*;

public class TestUdfCli
static boolean testDL = false;

84 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

public static void main (String argv[]) {
Connection con = null;
// URL is jdbc:db2:dbname
// ** EDIT dbname to YOUR Database Name if you are NOT connecting
// the SAMPLE database.
String url = "jdbc:db2:sample";

try {
System.out.printin ("Java User-defined Function Sample");

// Load DB2 JDBC application driver
Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();

// Connect to database
if (argv.length == 0) {
// connect with default id/password
con = DriverManager.getConnection(url);
}
else if (argv.length == 2) {
String userid = argv[0];
String passwd = argv[1];
// connect with user-provided username and password
con = DriverManager.getConnection(url, userid, passwd);
}
else {
System.out.printin("\nUsage: java TestUdfCli [username
password]\n");
System.exit(0);
}

System.out.printin ("Connected to the database");

// Execute DECLARE FUNCTION calls to register Java UDFs
System.out.printin ("Declaring the Java UDFs");
declareUDFs (con, false);// use NOT FENCED mode

}
catch (Throwable x)

{
try { con.close (); } catch (Throwable y) {}
System.err.printin ("Aborted due to exception.");
x.printStackTrace ();

}

Chapter 3. MTK 85

// Run DECLARE FUNCTION to register JAVA UDFs
static void
declareUDFs (Connection con,
boolean fenced) throws Exception
{
declareUDF (con, "findvwl", "varchar(500)", "int",
fenced, false, "TestUdf!findvwl");

// Build and run just one CREATE FUNCTION statement.
static void
declareUDF (Connection con,

String name,

String argumentTypes,

String returnType,

boolean fenced,

boolean scratchpad,

String externalName) throws Exception

Statement s = con.createStatement ();
String sqlClean = "drop function " + name;
try { s.executeUpdate (sqlClean); } catch (SQLException x) { }
String sql = "create function " + name +
" (" + argumentTypes + ") " +
" returns " + returnType +
(fenced ? " fenced" : " not fenced") +
(scratchpad ? " scratchpad" : "") +
" variant no sql no external action " +
language java parameter style db2general " +
final call disallow parallel dbhinfo " +
external name '" + externalName + "'";
s.executeUpdate (sql);
System.out.println ("Registered Java UDF " + name);
System.out.printin(sql);
s.close ();

}

} //End of source code for TestUdfCli.java

86 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

2. Execute the following command:
> java TestUdfCTi
This will connect to the SAMPLE database and register the UDF. If the

connection string designates a database other than SAMPLE, then the UDF will
be registered to that database.

3. Move the TestUdf.class that is created by a successful compile to the
SQLLIB/function directory.

4. Execute the following to connect to the database:
> db2 connect to Sample
(or your database)

5. When the UDF is executed with the following command, the results following
it should be seen:

> db2 "values findvwl('qwerty')”

1 record(s) selected.

Chapter 3. MTK 87

88 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Porting with MTK

In this chapter we discuss and demonstrate the conversion of database objects
and the extraction and loading of data into a DB2 database using the IBM
Migration Toolkit (MTK).

The following items are discussed:

Preparation for porting

Running MTK

Extracting or importing metadata into MTK
The Convert task

The Refine task

The Generate Data Transfer Scripts task
Deploy to Target considerations

Next steps

Converting the remaining objects
Deployment of stored procedures, functions, packages, and triggers
MTK conversion conclusion

VVYVYVYYVYVYVYVYYVYY

© Copyright IBM Corp. 2003, 2007. All rights reserved. 89

4.1 Preparation for porting

Before beginning a conversion using MTK, the DB2 target environment must be
prepared. This section outlines some documentation that is useful in determining
prerequisites and requirements that should be in place for the operating system
and the database—before installing MTK.

4.2 Overview of available documentation

Regardless of the platform on which DB2 9 will be installed, it is imperative that
hardware and software requirements be considered, and satisfied, before
beginning the installation. The following list is an overview of topics that should
be investigated and prepared before the installation of DB2:

Database installation

Instance and database creation
Table space planning

Security consideration

Creating DB2 database users

vyvyVvyyvyy

For detailed information about these and other relevant topics, consult the
following documents:

» Getting started with DB2 installation and administration on Linux and
Windows, GC10-4247.

» Quick Beginnings for DB2 Servers; GC10-4246
» Quick Beginnings for DB2 Clients; GC10-4242

Important: For the most recent information on software requirements, refer
to:
http://www.ibm.com/software/data/db2/udb/sysreqs.html

Multiple partition installation

The DB2 9 manual Quick Beginnings for DB2 Servers, GC10-4246 contains the
procedures for setting up multi-partitioned databases. The following IBM
Redbooks also provide detailed information on installing and configuring DB2
multi-partitioned databases:

» Scaling DB2 UDB on Windows Server 2003, SG24-7019
» Up and Running with DB2 for Linux, SG24-6899

90 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/udb/sysreqs.htm

4.3 Running MTK

MTK is an efficient and time-saving tool for porting database objects and loading
data from Oracle to DB2. In the following sections we demonstrate the
step-by-step use of MTK in such a conversion.

4.3.1 Migration details

This section describes the lab environment and database structure used for the
MTK conversion example.

Environment

Prior to elaborating on the details of the sample conversion from Oracle 10g to
DB2 9 using MTK V1.4.9, here is some information about the source and target
environments in our laboratory:

» Oracle source operating system:
AIX 5L for POWER™, Version 5.3

» MTK source O/S:
AIX 5L for POWER, Version 5.3

» MTK version:
1.4.9.0

» DB2 target O/S:
Linux - Red Hat Enterprise Linux AS release 4 (Nahant Update 4); Kernel
2.6.9-42ELsmp

» Oracle Version:
10.2.0.1.0 64 bit

» DB2:
Version 9 Fixpack 1; 32 bit

MTK is installed on the Linux platform because that is where the DB2 target
database will reside. Based on our experience it is most effective to install the
tool on the operating system where the target system resides. The primary reason
for this is due to concerns about loading data. If the data to be loaded already
resides on the local file system, the concerns of loading data across a network
(bandwidth, network traffic, etc.) go away.

Oracle source database

The Oracle source database consists of the following types and numbers of
objects:

» Eleven tables
» Two views

Chapter 4. Porting with MTK 91

vyVVyVYyVYVYYVYYvYYyY

Five indexes

Six foreign keys

Four functions

Five stored procedures
Two packages

One package body
Seven triggers

Two sequences

Appendix F, “Example Oracle database” on page 683 lists the definition of these
objects. You can also download the code from the IBM Redbook Web site
documented there.

4.3.2 Creating and opening an MTK project

When starting MTK, the Project management panel opens asking you to enter
required and optional information for a new project, or to open a previously
created object. When creating a new project the following information can be
entered:

>

>

Project Name - Required. If a project name is not entered, it will default to
Unknown. When a project is created with the Project Name designated here,
a subdirectory with the same name is created on the operating system under
the install directory of MTK. For this reason, the Project Name has to conform
to the operating system naming standards that MTK is installed on.

Source database - Required. Choices include Sybase Enterprise, Microsoft
SQL Server, Oracle, Informix Dynamic Server, and Sybase SQL Anywhere.

IBM target database - Required. Choices are DB2 9 for Linux, UNIX, and
Windows; DB2 UDB V8.2 for Linux, UNIX, and Windows; DB2 UDB V8.1 for
Linux, UNIX, and Windows; DB2 UDB i5/0S V5R4; DB2 UDB i5/0S V5R3;
DB2 UDB iSeries® v5R2; DB2 V8 for z-series; and Informix Dynamic Server
10.

Project description - Optional.

Figure 4-1 shows the Project management screen after the information for the
sample Oracle migration project has been entered.

92 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

|§| Migration ToolKit - Create new project

Fhomefdh2inst L mtkfmtkfiorajects D

Figure 4-1 MTK Project management screen

4.4 Extracting or importing metadata into MTK
Once the project is created, the Specify Source window opens. During this task
the following is accomplished:
» The method of obtaining the metadata (DDL) is designated.
» The DDL is obtained.
Figure 4-2 on page 94 shows the Specify Source tab. Take note of the Import
and Export buttons on the left side of the panel.

» Import
If a metadata file already exists—for example, a script from SQL*Plus, or a

Chapter 4. Porting with MTK 93

third-party tool—no data movement by MTK is required. In this case Import

should be selected. Selecting this option permits single or multiple DDL files
from your file system to be selected and imported into MTK as the conversion
source.

Note: When importing objects for conversion, be aware that some objects
will not convert unless all of the objects on which it depends are also
available within the project. For example, when importing the source for an
individual procedure, you must take care that all of the underlying
definitions for tables, views, and so on, that are referenced within that
procedure are also included.

Also, make sure that the definitions for all dependent objects precede the
objects that rely on them. For example, definitions for tables that are
referenced in stored procedures must precede the definition of the stored
procedure itself.

[®] 1BM Migration ToolKit - ora_to_dbZ2x

Figure 4-2 The Specify Source tab

94 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

» Extract
For our sample conversion, we choose Extract. Choosing this option
signifies:
— That a client connection to the Oracle source system will be made.
— The Oracle metadata (DDL) will be extracted using this connection.

The extraction is accomplished by “reading” the system catalogs and then
creating a file that will be imported into the tool.

Note1: The Oracle source system to which MTK connects can either be on a
local or a remote server. For a valid connection, it is required that the Oracle
Client be installed and configured in the CLASSPATH on the local machine.
On Windows systems ODBC drivers may be used.

Note2: MTK will store the files from the extracted DDL, converted DDL, in a
subdirectory of the MTK installation directory. The structure is:
MTK Installation directory
Project directory

YOUR_PROJECT_NAME directory
DDL files

After Extract is chosen, the Connect to Database screen opens. The following
information must be entered:

» Service Name - The service name for the local/remote Oracle database
» User ID - The user ID for the schema that owns the Oracle source
» Password - The password for the schema that owns the Oracle source

Figure 4-3 shows the Connect to Database screen completed for the service
name ora10g, the user ID ora_usr, and the corresponding password for the
ora_usr schema.

Chapter 4. Porting with MTK 95

@ Connect to Database

Figure 4-3 Detail of the Connect to Database screen

4.4.1 Choosing objects to extract

After a successful connection to the database, the Extract screen is displayed.
This screen shows schemas and objects that are available to be extracted from
that schema. Once a schema is chosen, the available objects expand to show six
categories of objects (Figure 4-4). The categories are displayed even if the
current database does not contain any objects of that category. The categories
are:

Sequences

Tables

Views
Procedures/functions
Triggers

Packages

vvyvyVvyyvyy

96 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

[1t 943 86.51:152 1/oralog
EH[oraloc
SH 1y xDB
HH i sH
oy sysman
=H] ORAUSR
_-;I-_H:Eequences
_-'l-_H:ITabIes
FEH iews
_"I-_I-DProcedures,fFunctions
#H Trrigaers
#H JPackages
iy scoTT
By
) ORDPLUGING
FH) HR
By carLos
#dy ouTin
#H oy DBsNMP
B oe
EH]y

Connect to Database

Refresh availahble 0bjects|

File name:|

_|Create one file per stored procedure

_|Create one file per trigger

Include other needed ohjectsy
_Jin main file {fully
_Jin context file {minimal)

" Do not include

_|Extract grant statements

Extract | Cancel | Help |

Figure 4-4 The Extract screen showing the objects that are available from the ORA_USR

schema.

Once a category is selected, choosing the plus sign (+) expands the category to
show the individual objects that exist for that category. It is now possible to make
selections of various objects to be extracted from each category. For example, it
is possible to choose any of the following combinations for extraction:

» Individual objects from a single category (a single table, view, sequence, etc.)

» Individual objects from multiple categories (a table, a view, a sequence, etc.)

» All objects from single categories (all tables, all views, all sequences, etc.)

» All objects from multiple categories (all tables and all views, all sequences

and all triggers, etc.)

» All objects from all categories (the entire database schema)

Figure 4-5 shows the Extract screen after multiple categories (tables, views, and

sequences) have been selected.

Chapter 4. Porting with MTK

97

[®] Extract

[l oraUSR
-equences
-ables
-iews
-DProcedures,"Functions
DTri ers
=|:|Pacgkgages
By scoTT
EH b,
] ORDPLUGINS
H{b HR
B carLos
B ouTLn
By DeshmMP
HHO & o
& M

Figure 4-5 The Extract screen with tables, views, and sequences selected
Figure 4-6 on page 99 shows the Extract screen with the ORA_USR schema

selected. In this example the categories have been expanded to show individual
objects that have been selected.

98 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

=y ORA_LSR

=k Fequences
EMPLOYEE_SEQUENCE Caonnect to Database
[]OFFICE_SEQUEMCE
=H T akles
—E ACCOUNTS Fefresh available 0bjects|

[|EH CUSTOMER. S5
| |EER CUSTOMER_US
—E DEPARTMENTS File name:hables_\ﬂews_seqs
[+ 1EH DESTINATION
[|EEH EMPLOYEES

_|Create one file per stored procedure

—E EMP_PHOTO L _|Create one file per trigger

—[]BR EMFP_PHOTO2Z MERclude other needed okjectse

[+]BH EMP_RESUME e I

[V]E8 LoG_TABLE in main file (fu

(1B MANAGER_ALDIT _Jin context file (minimal)

—[|E8 OFFICES .

L[58 TEMP_TABLE " Do not include
EHvlviews

tEMPLOYEE OFFICES __|Extract grant statements

[]OFFICE_SUMM.ARY
-'I-|-|:|Pr0cedures,fFuncti0ns

- Jrriggers

Extract | Cancel | Help

Figure 4-6 The Extract screen with tables, views, and sequences selected

Note: When extracting objects for conversion, be aware that some objects
will not convert correctly (or at all) unless all depending objects are also
extracted. For example, when selecting an individual procedure for
conversion, all of the underlying definitions for tables that are referenced by
that procedure must also be extracted. This process will be done
automatically if, under the Include other needed objects? section of the
Extract screen, either in main file (full) or in context file (minimum) is
selected (refer to Figure 4-6 highlighted in the red box). When either of
these options is chosen, MTK will automatically include all the relevant
definitions to correctly convert the selected objects. Also, MTK will extract
the objects in correct dependent order.

4.4.2 Import or extract strategies

As previously stated, it is possible to choose one single object or the entire
database for extraction. Although it may seem initially attractive to choose the
entire database, we recommend that the extraction strategy be dictated by the
size of the source database.

Chapter 4. Porting with MTK 99

100

Some aspects of database sizing in regard to MTK should be briefly mentioned
here. The accurate sizing of a database, from a migration point of view, should
entail a thorough analysis on several different levels. This investigation should
include information such as: the number of lines of code; the complexity of the
code; the conformance or non-conformance of the code to ANSI standards; the
number of objects; and the types of objects—just to name a few.

One of the best uses of MTK is as an aid in doing this type of analysis. MTK can
be used to find, in detail, much of the information that is required to successfully
analyze the database.

With that said, a general and simplistic approach to sizing the database may be
used in the initial stages of analysis. In this early stage, for example, there might
be little, or no, information about complexity or conformance to ANSI standards.
In order to gather that information we would have to develop some guidelines for
beginning the analysis. The guidelines at this stage are usually along these lines:

» Large database

More than 200 stored procedures and functions (stand-alone or in Oracle
Packages), and triggers.

» Small database

Less than 200 stored procedures and functions (stand-alone or in Oracle
Packages), and triggers.

Large databases

For large databases, the extraction strategy should focus on creating separate
files for each individual category. For example, a separate extraction file should
be created for all tables, sequences, views, triggers, procedures, packages, and
functions. This strategy facilitates “tracking down,” analyzing, and perhaps
“fixing” possible issues that may arise in the conversion of a particular object
category. This is usually easier than trying to understand several complex issues
that may arise across a spectrum of interrelated categories.

Small databases

For smaller databases, it is recommended that the extraction files be grouped
according to dependencies and dependents. For example, one file may consist of
all tables, views, and sequences; and another file of procedures, functions,
packages, and triggers. In this strategy, the first file will allow the objects on
which the second file depends to be created and analyzed before converting the
second file. In this way, we are also able to contain the messages and the
interrelated issues that may occur.

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Sample conversion

Considering the size of our sample database, we adhere to the recommendation
for small databases. For our extraction, the first file contains all tables, views,
and sequences; a second file contains all procedures, functions, packages, and
triggers.

For the first file, all objects in the categories Tables, Views, and Sequences are
selected. For File name, we chose and entered tables_views_seqs (Figure 4-6
on page 99).

Note: MTK will add the suffix .src to the File name entered on the Extract
screen. In our example, for example, MTK generates tables_views_seqgs.src
for the file name tables_views_seqgs that was entered.

Once this is completed, Extract is clicked, and the metadata extraction begins.

After the first file is created, we repeat the process, this time selecting all
procedures, functions, packages, and triggers. For this file we choose and enter
the name procs_pkgs_trigs (Figure 4-7).

_—J-|_7_|Pr0cedures,fFunct|0ns
(v |ACCOUNTRULL
[/ |AYERAGERAND Connect to Database
—COUNTPROJECTS
[MAXPROJECTS
—DNEWEM PLOYEE Refresh available objects |
[]4531GI
[[EMPLOYEEDYMAMIC QUERY
ELECTROW File name:hables\.fiews_trgs
[FHOWFULLACCOUNTS :
ﬂ-IZITriggers _|Create one file per stored procedure
—CREATEEMPLOYEEID _|Create one file per trigger
_EMPLOYEBOFHCB'NSERT Include other needed objects?
[INSERTEMPLOYEE
MANACERSEHAMGE _Jin main file (full)
—[JOFFICE_SUMM ARY_DELETE Jin context file (minimal)
—UPDATEDEPARTMENTS :
[/]UPDATEEMPLOYEES (Do not include
= JPackages |
I:CCOUNTPACKAGE _|Extract grant statements
[v]REFPKGC
] scotT
B x
R L1 e

Extract | Cancel | Help |

Figure 4-7 Selecting the Procedures, Packages, and Trigger objects for extraction

Chapter 4. Porting with MTK 101

4.4.3 Viewing extracted files

Once the extraction has completed, the Extract screen closes and Specify
Source tab remains, as shown in Figure 4-8. Note that on the right side of the
panel the files that were created during the extraction of tables_views_seqs.src
and procs_pkgs_trgs.src are now visible.

(@] 1BM Migration Toolkit - ora_to_db2x

tables_views_trgs.src

Figure 4-8 The Specify Source tab after all the metadata files have been extracted.

The extracted files can be examined by highlighting the file name and then
clicking View (located on the lower right side of the panel). In our example, when
tabs_views_seqs.src is selected and then viewed, we see the screen displayed
in Figure 4-9 on page 103.

102 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

(@] tables_views_seqsx.src - Kate

File Edit Project Document View Bookmarks Tools Settings Help

B« QRGOS » &by Xe 6

CREATE SEQUENCE EMPLOYEE_SEQUENCE had
MINVALUE 1 =
MAXVALUE 999995999999995959999999999
INCREMENT BY 1 L
CACHE 20 NOCYCLE NOORDER

ey

/

CREATE SEQUENCE OFFICE_SEQUENCE
MINVALUE 1

MAXVALUE 999995999999995959999999999
INCREMENT BY 1

CACHE 20 NOCYCLE NOORDER

/

|ﬁ Selector ||—_] Projects |@File5

CREATE TABLE "ACCOUNTS"™ (
"ACCT_ID" NUMBER(3) NOT NULL,
"DEPT_CODE" CHAR(3) NOT NULL,
"ACCT_DESC" VARCHARZ(2000),
"MAX_EMPLOYEES" NUMBER(3),
"CURRENT_EMPLOYEES" NUMBER(3),
"NUM_PROJECTS" NUMBER(1))
TABLESPACE USER_DATA_TES; I

|Lir1e: 1Col 1 |— INS |NORM hables_views_seqsx.src
[@Find in Files |@ Terminal |

<]

Figure 4-9 Viewing extracted files in the Text Editor

You can edit and save this file when it is viewed from this panel. This is
sometimes useful for making changes to source code before it is to be converted.

The file was imported. The edited file is a copy in the project directory, and the
original file will neither be changed nor damaged, and it can be reimported in
case of user errors during editing.

You can specify a preset or external editor by selecting Applications — User
Preferences on the MTK menu bar, as shown in Figure 4-10.

E| IBM Migration ToolKit - ora_to db2x

Figure 4-10 Selecting User Preferences on the MTK menu bar

Chapter 4. Porting with MTK 103

4.5 The Convert task

Once the extraction files have been created we proceed to the next task,
Convert. On the Convert tab there are a few requirements that need to be

completed:

1. Select the files in the left-hand pane to be converted.

2. Enter a prefix for the generated files (that is, a name for the file that will be
generated from the conversion).

3. Select Convert to begin the conversion.

For our example we have retained the name of the source file
(tables_views_seqgs) as the prefix for generated files; as a result, the full name of
the conversion file will be tables_views_seqs.db2 as shown in Figure 4-11 on

page 104.

IE IBM Migration ToolKit - ora_to_dh2:

DO-MOM-RE o
AMERICAN]

from.firstobjet [f

Figure 4-11 The Convert tab after the tables, views, and sequences have been converted

104 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

In addition to the required fields, there are several options that may be chosen

that will affect the content of the generated conversion file:

» Global Type Mapping
» Advanced Options
» Set Context

Global Type Mapping

If Global Type Mapping is selected, a screen opens (Figure 4-12) that allows
some of the default MTK data type mappings to be changed. Only fields that have
the “pad and pencil” icon are available to be edited. For example, the Date field
in Oracle is typically mapped to Timestamp in DB2; in this screen it is possible to
replace TIMESTAMP with DATE or TIME as the default mapping. It is important
to remember that whatever data type mappings are altered will be applied to a//
objects in the entire project. It is not possible, from this screen, to set a different
data type for each individual object.

|§| Global Type Mapping

¥ou can change the default mapping between a source datatgpoe and its target
datatype (identified by the edit icon - =)

Mudified| Source type | Target type I
NCHAR[1.. 127 = GRAPHIC()
MNCHAR[12E.. max](l) WARCRAPHIC)

MY ARCHARZ () WARCRAPHIC()
CHAR[L..254](0) = CHAR{D

CHAR[255 .. max]() WARCHARD
WARCHARZ () WARCHARD

ROWID INTEGER.

UROWID INTEGEFR.

DATE % TIMESTAMP

BFILE BLOBZ 147483647
LOMNG R BLOB(2147482647)
BLOB BLOBZ 147483647
LOMG CLOB(Z 147482 647)
CLOE CLOB(Z 147482 647)
MNCLOB DECLOB{IO7E741824)
R WARCHAR() FOR BIT DATA
MNUMEER. 3 FLOAT
NUMEER[1..4]{p, 0} 5 SMALLINT
NUMEER[S .. 9](p, 03 & INTECER
NUMEER[10.. 18](p, 0} & BICINT
MNUMEER[19.. max]imn, 0) DECIMAL(D, 5)
MUMBERE[1.. max, min..max]{p,s) DECIMAL{D, 53
BOOLEAN INTEGEF.
DECIMAL(D, =) DECIMAL(D, 5)

EESTORE EREn o s W SR |

Close Help

Figure 4-12 The Global Type Mapping screen

Chapter 4. Porting with MTK

105

Advanced options

If Advanced Options is selected, a screen opens (Figure 4-13) that shows
several features that will affect the content of the generated conversion file. The
features are grouped into three categories:

» General converter options
» Converter options for tables, views, indexes
» Converter options for procedures, functions, triggers

[®] Advanced Options

Figure 4-13 The Advanced Options screen

Most of the options pertain to whether the converted code will contain the Oracle
source code, as comments, in the generated file. On this screen, the following
options are checked by default:

» Copy inter-statement source comments to the translated code.
Copy source (as comments) to the translated code.

Pad strings with spaces during comparisons.

Copy full source for procedures before their translation.

Copy source separately for statements in procedures.

vvyyy

106 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Note: Leaving the options as-is generates a conversion file that contains a// of
the Oracle source code (as comments) along with the converted DB2 code.
When first using the tool, it is recommended to leave the defaults as-is. This
will allow examination and comparison between the Oracle source and the
DB2 target within the same file. Also, in many cases, the comparison serves
as an excellent teaching tool for those who may not be familiar with the syntax
of the DB2 SQL Procedure Language.

For our example, we retain all the defaults, but we also add the Translate
tablespaces to DB2 option. Choosing this option causes the converter to
include table space names that retain the names from the Oracle source code.
The create table space statements are also added at the beginning of the script
file. This is important for our sample porting project because we intend to deploy
the converted objects into a DB2 database that will contain tables, indexes, and
blob/clob data in table spaces that have been created using these names. In the
case where the table space mapping from Oracle to DB2 is different, the table
space reference can easily be modified.

Once the options have been entered, we do the following required steps:

1. Choose the file to be converted. For our example, we choose
tables_views_seqgs.src.

2. Choose and enter a Prefix for generated files. For our example, we allow
it to default to the name of the currently selected file.

3. Click Convert.

The conversion process now begins. During the conversion, the message
Please wait..Converting files..is displayed along with the elapsed time.
Eventually the message will change to Please wait..Initializing Refine as
the conversion completes.

Set Context

The context of a conversion indicates the source files that MTK uses when it
executes a conversion. If Set Context is chosen, source DDL files that contain
other objects MTK needs for conversion are made available to MTK. Details of
this option are discussed in 4.10, “Converting the remaining objects” on

page 138.

4.6 The Refine task

Once the Conversion task has completed, the next task is executed using the
Refine tab (Figure 4-14 on page 109). The Refine tab is subdivided, on the lower

Chapter 4. Porting with MTK 107

108

left side of the pane, into four separate subtabs titled Oracle, DB2, Report, and
Messages.

» Oracle

This tab displays all of the objects from Oracle source script.

» DB2

This tab displays all of the corresponding objects that have converted in DB2.

» Report

The Report view displays the message, sorted by database object. When you
click the Report tab, the right panel displays the messages, grouped by
message number, in decreasing order of importance. You can expand the
source file in a tree view to display objects that contain messages. Often the
same message will occur in many places. You can filter the messages that
appear in the tree by clicking Hide message in the tree for each message
you do not want to see. Click the button again to have the message reappear.

» Messages

The Messages view displays the messages, sorted by message category and
number. When you click the Messages tab, the right panel displays the
messages, grouped by message number in decreasing order of importance.
You can expand a message category in a tree view to display the list of
messages that occurred in the file.

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

[®] 1BM Migration Toolkit - ora_to_db2:

os.rpt

'-@ Translator Warning

[#k[) Translatar Information

Figure 4-14 The Refine tab

4.6.1 Message categories and migration impact

As previously stated, the Messages view displays the messages sorted by
message category. The message categories are:

v

Input Script Error
Translator Information
Translator Warning
Translator Error

vvyy

Input Script Error

This message category occurs when the input script or set of objects to be
converted is incomplete. Most frequently, messages in this category occur when
an object is missing the definition for an object on which it depends, for example
a stored procedure, which refers to a table for which the definition is missing.
Sometimes an object definition does exist, but its use may require qualification
with a database or owner name. Other errors in this category include PL/SQL
syntax errors.

Chapter 4. Porting with MTK 109

Migration impact - low

Since this type of message is easily understood and corrected (usually by
including the missing definition in the source file), the migration impact is low and
has little bearing on the final product or on the level-of-effort to achieve that
product.

This type of message occurs most frequently when files are taken into the tool
through IMPORT. As can be expected, it is more likely that due to human error,
an incomplete DDL may be gathered as the conversion source.

Translator information

This category occurs when a correct DB2 translation exists, but when more
information is necessary to describe some unusual or exceptional property of the
translation. For example, messages in this category are used to highlight the fact
that the name of a PL/SQL object or identifier has been changed to satisfy the
DB2 restrictions on identifier formation (such a change might be relevant to client
programs that refer to the object by name).

Migration impact - low/medium

This type of message should be examined to understand the scope of the
message. If the message indicates that an object name has been changed to
conform to a DB2 specification, this may have little or no impact on the migration
effort. If, however, the changes generated by the converter require alterations to
the client code, the effort may be more extensive.

Translator Warning

This category occurs when the translation of the PL/SQL code to which the
message refers might be incomplete or incorrect in certain unusual or
exceptional cases. The message typically describes the circumstances in which
the translation will not be correct.

Migration impact - medium

This type of message needs to be examined to determine if the circumstances
described are relevant to your application. If so, manual intervention may be
required to successfully convert and deploy the object.

Translator Error

This category is used for PL/SQL statements for which no translation is possible.
Most frequently, this message category is used when no equivalent DB2
functionality exists. It is also used in cases where a correct translation requires
application-specific information. It also occurs for certain complex or rarely used
constructs.

110 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Migration impact - high
This type of error usually indicates that some degree of manual intervention will
most likely be required. It is important that the analyst review the code to
understand for which objects, and to what degree, the manual intervention will be
necessary.

4.6.2 The Messages sub-tab

The Messages sub-tab, Figure 4-15 on page 112, is divided into left- and
right-hand panes. From these panes it is possible to perform the following
actions:

»

| 2

View Translator Messages by message number

View the corresponding location in the Oracle source code to which a
message pertains

View the corresponding location in the DB2 converted code to which a
message pertains

Obtain additional information regarding a particular message
Search the source or converted code for a word or phrase
Go to a specified line number in the source or converted code

Chapter 4. Porting with MTK

111

[®] 1IBM Migration ToolKit - ora_to_dbZx

. tables_views_seqsx.rpt
.-E Translator Warning
- E M=g Mumber:2(. Object name has been chang
- E Object name has been changed to M_DEPT_
Lz
'-D Object name has been changed to EMP_RESI
D Object name has been changed to EMP_PHC
.-D Object name has been changed to ACCOLUN
'-D M=g Mumber:5% : Ignored input - not translatec)
.-D M=g Mumber: 105 | CREATE TABLESPACE genery CREATE IDE)(IND_ACCT_ID

R 7) Translator Information OMN ACCOUNTS {"ACCT_ID") TABLESPACE USER_IND_TBS

CREATE INDEX IND_DEPT _NAME
ON DEPARTMENTS ("DEPT _MAME") TABLESPACE USER_IND_TBS

ALTER. TABLE EMPLOYEES ADD (COMNSTRAINT FK_EMP_MGR_ID FOREIGM KEY { "EMF
ALTER. TABLE EMPLOYEES ADD (COMNSTRAINT FK_EMP_OFFICE_ID FOREIGM KEY ("0
—- This COMSTRAINT is DISAELED in the source database

ALTER. TABLE EMPLOYEES ADD COMSTRAINT M_BAND CHECK (band IN ('1', '2', '3"

AL TER TABLE EMPLOYEES ADD (LAIMT M _DEPT_CODE_ACCT _ID FOREIGM K4
CREATE INDEX IND_EMP_MNAME
OMN EMPLOYEES ("LAST _MAME") TABLESPACE USER_IND _TES

ALTER TABLE EMP_PHOTO ADD { COMSTRAINT FE_EMP_PHOTO_ID FOREIGN KEY ("
ALTER TABLE EMP_RESUME ADD { COMSTRAINT FR_EMP_RESUME_ID FOREIGH KEY (
CREATE INDEX IND_LOG_CODE

Figure 4-15 The Messages sub-tab

View Translator Messages by message number
Figure 4-15 shows the Messages tab for our example. In this example, the
messages are grouped into two categories:

» Translator Warning
» Translator Information

For each category we can drill down to a specific instance of a particular
message. To accomplish this, follow these steps:

1. Expand the category.
2. Expand the message number.
3. Expand the message description.

112 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

View the source or converted code

Once the message description is expanded, highlighting a specific instance of a
particular message will open the right-hand pane to the corresponding line in the
Oracle source code to which the message refers. In our example (Figure 4-15 on
page 112), when highlighting the object pertaining to message number 20 in the
left-hand pane, the right-hand pane opens to the relevant line in the Oracle
source code (line #155) to which the message pertains.

It is possible to toggle from the Oracle source code to the converted DB2 code by
choosing the tabs:

» Source file: <your source file name.src> tab to examine the Oracle source
code

» Target file: <your conversion_file name.db2> tab to examine the DB2
converted code

The following example (Figure 4-16) shows the view of the converted DB2 file
when the Target file: tables views seqs.db?2 tab is selected.

Chapter 4. Porting with MTK 113

Bl tables_wiews_seqsy.rpt
i .-E Translator Warning
- E M=g Mumber:2(. Object name has been chang
- E Object name has been changed to M_DEPT_
(5T
'-D Object name has been changed to EMP_RESI
'-D Object name has been changed to EMP_PHC
.-D Object name has been changed to ACCOLUN
'-D M=g Mumber:5% : Ignored input - not translatec)
.-D M=g Mumber: 105 | CREATE TABLESPACE genery
.-D Translator Information

ing

--| ALTER TABLE EMPLOYEES ADD { COMSTRAINT FK_EMP_OFFICE_ID FOREIGM KEY I

AL TER. TABLE EMPLOYEES
ADD COMSTRAINT FE_EMP_OFFICE_ID FOREIGH KEY(OFFICE_ID) REFEREMCES OFFIC

-—| == This COMSTRAINT is DISABLED in the source database
--| ALTER. TABELE EMPLOYEES ADD CONSTRAINT M_BAND CHECK (band IN (1!, ‘2

AL TER. TABLE EMPLOYEES
ADD COMSTRAINT M_BAND CHECK (BAND IN {'1','2",'3",'4",'5)1

--| ALTER TABLE EMPLOYEES ADD { COMSTRAINT M_DEPT _CODE_ACCT _ID FOREIGI

AL TER. TABLE EMPLOYEES
ADD COMSTRAINT M_DEPT_CODE_ACCT_1 FOREIGM KEY(DEPT _CODE ACCT _ID) RS

Figure 4-16 Viewing the converted DB2 code that pertains to message 20

Additional message information

If Message Help in the upper right-hand corner of the Message sub-tab is
clicked, a screen containing additional context-sensitive information about the
message number in question will open. In our example, the Message Help
screen shows additional information regarding message 20. See Figure 4-17.

114 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

[®] 1BM Migration Toolkit - Help

aEEE
4
[alal $IMTK00020
Release notes
Overview
Z= IBM Migration Toolkit Help Translation Warning: Object name has been changed to

iI-B Migration projects
FEFC= The five step process
*}(= Viewing reports and log
Testing SGL translations
Setting application prefe
Keyhoard shortcuts
Frequenthy asked questii|
|C= Converter reference
_-;I-_I-B Intracluction to the com

<havy name s,

Description

Object names that are too long for the target server are
rruncated. Mames thart are raserved words in the target server
are enclosed in double guotes, Mames that conflict with
othar names in the target server (because the name is already
inuselare renamed,

Parent topic: Dracle messages

Terms of use | Feedback
0y Copyright IBM Corporation 1399, 2006, All Rights Reserved.

FEH= Infarmix Dynarmic Servel
= Oracle comverter
= S0L Server and Sybase
i} Converter messages

_-;I-_I-o Infarmix corverter
@ oracie converter

@ 50L Server and Sybase |

o |

Figure 4-17 Message Help screen displayed for message 20

4.6.3 Translator Messages

The following section contains information regarding the messages that were
generated for each category during our example migration. In our example, we
received messages in the following categories:

» Translator Warning
» Translator Information

Translator Warning messages
The following Translator Warning messages occurred:
Msg number 20: object name has been changed to <new name>
Msg number 59: Input ignored, not translated.
Msg number 105: CREATE TABLESPACE generated with minimal default
parameters

» Message number 20

There are four occurrences of message 20 in this category. The message
descriptions state:

Object name has been changed to M_DEPT_CODE_ACCT_1
Object name has been changed to EMP_RESUME_UK11051
Object name has been changed to EMP_PHOTO_PK110581
Object name has been changed to ACCOUNTS_DEPT_COD1

Chapter 4. Porting with MTK 115

Message Help indicates:

Object names that are too long for DB2 are truncated. Names that are
reserved words in the target server are enclosed in double quotes. Names
that conflict with other names in the target server (because the name is
already in use) are renamed.

After examining the source code, it is found that the names for the
corresponding objects in Oracle, all of which are constraints, were:

M_DEPT_CODE_ACCT_ID
EMP_RESUME_UK11058551798461
EMP_PHOTO_PK11058611148823
ACCOUNTS_DEPT_CODE_ACCT_ID

For these objects, MTK truncated the constraint names fo conform to the DB2
limit of 18 characters for constraints.

» Message number 59

There are five occurrences of message 34 in this category. The message
description states:

Msg number 59: Input ignored - not translated
Message Help indicates:

This input is ignored, since it is not supported in the target server. This
omission should not cause the target server code to produce different
results from the corresponding Oracle code.

The Oracle source indicates that the following statements contain references
for creation in particular table spaces:

ALTER TABLE ACCOUNTS ADD CONSTRAINT
CREATE INDEX IND_DEPT_NAME

ALTER TABLE EMPLOYEES ADD CONSTRAINT
CREATE INDEX IND_LOG_CODE

CREATE INDEX IND_OFFICE_BLD

Specifying table spaces for index and constraint creation, outside of the
create table statement is not allowed in DB2. As indicated by the converter
message, however:

This input is ignored, since it is not supported in the target server. This
omission should not cause the target server to produce different results
from the corresponding Oracle code

» Message number 105

There is one occurrence of message 105 in this category. The message
description states:

Msg number 105: CREATE TABLESPACE generated with a minimal default
parameters.

116 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Message Help indicates:

The “TABLESPACE” option of the translator is turned on. For each TABLESPACE
clause found, a “CREATE TABLESPACE” statement is generated at the beginning
of the output file. This warning indicates that minimal default parameters
have been used and, therefore, you must change or enhance these, depending
on the physical properties that are required.

The converted DB2 source code shows the handling of the CREATE
TABLESPACE command:

CREATE REGULAR TABLESPACE USER_DATA_TBS
MANAGED BY SYSTEM
USING ('USER_DATA TBS')!

Translator Information messages
In the Translator Information category the following messages occurred:

Message number 0
Message number 34
Message number 108

» Message number O:

There is one occurrence of this message in this category. The message
description states:

Msg 0: MTK Oracle Converter. Version: <mtk version>

Message Help indicates:

Specifies the version of the Oracle converter.

This is a General Message displaying the MTK Oracle converter version.
» Message number 34

There is one occurrence of message 34 in this category. The message
description states:

No translation available, but statement has been taken into account
Message Help indicates:

There is no DB2 translation available, but the converter will use the
information in the statement in translating the statements that follow.

The Oracle source indicates that the message refers to the connection
statement:

CONNECT ORA_USR;

The conversion indicates that although the connection statement is not
expressly converted, the implications of the connection statement will be
handled by DB2.

Chapter 4. Porting with MTK 117

» Message number 108:

There is one occurrence of this message in this category. The message
description states:

Translation Ratio: % (statements were translated successfully)
Message Help indicates:

This provides an assessment of the provided translation by giving the ratio
of Oracle statements translated without producing any error message out of
the total number of statements. This number is provides a general
indication regarding the success of the automated translation and does not
intend to give an exact and accurate measure.

Statement here designates Oracle SQL and PL/SQL statements. For instance,
in a CREATE PROCEDURE, the whole SQL statement is counted as 1 (one) and
each PL/SQL statement inside the body of the procedure is also counted as
one.

This is a General Message displaying a ratio of Oracle statements translated
without producing an error message. In the example the ratio is 100%.

Sub-tabs on the Refine tab

When examining messages on the Refine tab it is possible to switch to any of
four sub-tabs (located in the lower left of the Refine screen (Figure 4-18 on
page 118). In our example the sub-tabs are:

» Messages
» Report

» DB2

» Oracle

I.lc;racle %J Report | messages I

For Help, press F1 k

Figure 4-18 Sub-tabs on the Refine tab

The sub-tabs enable the information to be viewed and grouped in several
different ways. For example, when viewing the information in the Messages
sub-tab, the information is grouped by message type; changing to the Report
sub-tab enables examination of the same information grouped by object type.
Selecting the Oracle sub-tab permits the source code for a particular object to be
viewed or edited. Choosing the DB2 sub-tab allows the converted DB2 source to
be viewed. A particular object can be viewed through all these perspectives by
selecting it on any sub-tab and then changing to another sub-tab.

118 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

4.6.4 Refining the metadata conversion

In addition to viewing the results of the conversion, the Refine step affords the
opportunity to make changes in the source code. It is possible, for example, to
change table, column, stored procedure, or function names or make changes to
any DDL. To apply any changes made during the refine process, however, you
must return to the Convert step to apply these changes. After reconverting, the
converter merges the refinement changes with the original extracted source to
produce updated target DB2 code. The original source code is not changed. This
convert-refine process may be repeated until the results are satisfactory.

If issues still remain after the refine-convert process, consider the following: First,
see if any further changes can be made to the source metadata. If this approach
does not achieve the desired results, it is also possible to alter the converted DB2
code.

Before making any DB2 changes, prepare a backup copy of the .db2 file you
intend to change, and rename the backup. We recommend that you make your
changes to DB2 after leaving the Refine step. Do not return to the Convert step
after making any manual DB2 SQL changes. Conversion of the source metadata
replaces the existing DB2 file, destroying any manual changes.

Once the DB2 source has been successfully generated, it is possible to proceed
to either the Generate Data Transfer Scripts tab to prepare the scripts for data
transfer, or to the Deploy to DB2 tab to deploy the DB2 metadata to the target
server.

Important: If you choose to go directly from the Refine tab to the Deploy tab,
skipping the Generate Data Transfer Scripts, then moving data—online or
offline—will not be an option.

Making changes to the DB2 source

In our example, we made a change to the definition of the Employees table by
altering the DB2 target code. This alteration involves changing the EMP_ID
column to an IDENTITY column. Here is our reasoning:

In the Oracle source the EMP_ID column is defined as INTEGER NOT NULL; the
values for this column are automatically generated by a sequence
(Employee_Sequence) that is activated by a trigger, CreateEmployeelD. We
intend to replace this functionality by creating the EMP_ID column as an
IDENTITY column; this will allow the table to automatically generate values for
the EMP_ID without the need for a sequence or a trigger.

Chapter 4. Porting with MTK 119

Identity columns
Here is some information on IDENTITY columns from the Application
Development Guide: Building and Running Applications V8, SC09-4825:

» Rather than using cumbersome insert and update triggers, DB2 enables you
to include generated columns in your tables using the GENERATED
ALWAYS AS clause. Generated columns provide automatically updated
values derived from an SQL expression.

» DB2 application developers often need to create a primary key for every row
in a table. If you create a table that uses an identity column for the primary
key, DB2 automatically inserts a unique value. When you use identity
columns, your applications can benefit from increased performance due to a
reduction in lock contention.

Identity column considerations

Since the Employees table will be loaded with data that includes EMP_ID values
that were already generated by an Oracle sequence, we need to take care to:

» Preserve the original values of EMP_ID currently in the Employees table.
» Preserve the increment of the original sequence.

» Generate new values that will not conflict with the current values in the
column.

Identity Column syntax

Here is a brief explanation of the syntax for creating an IDENTITY column.
Syntax:

GENERATED BY DEFAULT START WITH numeric-constant, INCREMENT BY
numeric-constant

Where:

» GENERATED BY DEFAULT
Indicates that DB2 will generate a value for the column when a row is inserted
into the table, or updated, specifying DEFAULT for the column, unless an
explicit value is specified. BY DEFAULT is the recommended value when
using data propagation or doing unload or reload.

» START WITH numeric-constant
Specifies the first value for the identity column.

» INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column.

The Oracle definition of the EMP_ID column in the Employees table is as follows:
CREATE TABLE EMPLOYEES (EMP_ID INTEGER NOT NULL, ..

120 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Here is the column definition we will create for the DB2 target:
CREATE TABLE EMPLOYEES (EMP_ID INTEGER NOT NULL GENERATED BY DEFAULT AS
IDENTITY (START WITH ???, INCREMENT BY ??77), ..

To complete the column definition we need only:

» Supply a starting value that will be greater than the current maximum EMP_ID
value that is currently in the table. The best and easiest way of doing this is to:

— Execute Select MAX(EMP_ID) from Employees

— Retrieve the result and set the START WITH VALUE equal to that value
plus one. In our example the result of that process is 10011.

» Duplicate the increment value (increment by 1) from the Oracle
Employee_Sequence.
The completed definition for the EMP_ID column in the Employees table is:

CREATE TABLE EMPLOYEES (EMP_ID INTEGER NOT NULL GENERATED BY DEFAULT AS
IDENTITY (START WITH 10011, INCREMENT BY 1), ..

Editing the DB2 target code
To edit the DB2 code, do the following:

1. Open the Convert tab

2. Select tabs_views_seqs.db2 in the right-hand pane

3. Click View Output File.

4. When the Text Editor opens (Figure 4-19 on page 122), enter the changes as
shown in Example 4-1.

Example 4-1 Editing the DB2 code to create an Identity column

CREATE TABLE EMPLOYEES(

EMP_ID INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (START WITH 10011,

INCREMENT BY 1,
FIRST NAME VARCHAR(20),
LAST_NAME VARCHAR(20),
DEPARTMENT VARCHAR(30),
CURRENT PROJECTS SMALLINT,
EMP_MGR_ID INTEGER,
DEPT_CODE CHAR(3) NOT NULL,
ACCT_ID SMALLINT NOT NULL,
OFFICE_ID INTEGER,
BAND CHAR(1)

)

IN USER_DATA TBS!

5. Save the changes.

Chapter 4. Porting with MTK 121

The edited definition will be used when the table is created in DB2 during the
Deployment phase of the conversion.

Eile Edit Project Document View Bookmarks Tools Settings Help

B4 rdPBos e HDBIKIes

1 =1 "ACCT_ID™ NUMBER(3) NOT NULL, E
|| | "OFFICE_ID" NUMBER(5), |
=1 "BAND" CHAR(1))

| -—| TABLESPACE USER_DATA_TBS;

DROP TABLE EMPLOYEES!

| CREATE TABLE EMPLOYEES(R
{ EMP_ID INTEGER NOT NULL,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(20),
DEPARTMENT VARCHAR(30),
CURRENT_PROJECTS SMALLINT,
EMP_MGR_ID INTEGER,
DEPT_CODE CHAR(3) NOT NULL,
ACCT_ID SMALLINT NOT NULL,
OFFICE_ID INTEGER,

BAND CHAR(1)

|E} Selector ||_| Projects

1)
| IN USER_DATA_TBS!

L'”e ik H
[@Find in Files |@& Terminal |
Figure 4-19 Viewing the EMPLOYEES table in the Text Editor

4.7 The Generate Data Transfer Scripts task
The next task in our conversion is the Generate Data Transfer Scripts tab. From
this tab it is possible to:
» Generate scripts to unload data from the Oracle database
» Generate scripts to Import or Load data into DB2
This tab is divided into three panes. When initially opened, the left pane shows all
the tables in the Oracle schema that are being converted; the right pane shows
the file that contains all of the converted DB2 code; the middle pane contains

options that may be specified when IMPORT or LOAD is selected (Figure 4-20
on page 123).

122 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

[®] 1BM Migration ToolKit - ora_to_db2x

acle
.-B OracleCatalog
= ora_UsR
B8 ACCOUNTS
|- BB DEPARTMENTS
- B DESTINATION
- BB EMPLOYEES
[—-BE EMP_PHOTO
EMP_PHOTOZ
EEH EMF_RESUME
LOGC_TAELE
ANAGER_AUDIT
FFICES
LB TEMP_TABLE

Datahove_tables_g
DataMove_tables_s
DataMove_tables_g
DataMove_tables_g
DataMove_tables_g
DataMove_tables_g
DataMove_tables_g

horme onzinst Ltk ik fprojects, | |

e

Figure 4-20 The Generate Data Transfer Scripts task

Choosing Data Import or Load

The choice of whether to IMPORT or LOAD data into DB2 is usually influenced
by the amount of data.

For small amounts of data, IMPORT is usually sufficient. This method inserts
data into a database table from an external file—one row at a time. During the
import of data, the table remains accessible to other applications. All applicable
constraints and triggers remain in effect, and are activated in the usual way as
rows are inserted.

For large amounts of data, LOAD is usually preferable. The LOAD utility
constructs page images containing many rows and inserts them into the
database one page at a time. It requires exclusive access to the table space
being loaded. During the loading of data, the table space that contains the table
is not accessible to other applications. Applicable constraints and triggers are
deactivated for the duration of the load. Applicable check constraints and foreign
key constraints are enforced at the end of the load process. The enforcement of
business rules that are implemented by triggers are not guaranteed after the
LOAD completes.

Chapter 4. Porting with MTK 123

During LOAD and IMPORT, MTK disables the referential integrity. MTK deletes
the foreign keys before load and import, and recreates them after the process is
complete.

IMPORT or LOAD options
The following options are available for IMPORT or LOAD:

» MODE
— INSERT: IMPORT inserts new rows without affecting the existing content.

— REPLACE: IMPORT deletes all existing data and replaces it with the
imported data.

» File formats
— DEL: delimited ASCII format

DEL specifies that the data is represented in delimited text files. These
files contain streams of data values, ordered by row, and then by column.
Column delimiters separate the values (a comma is the default), and new
line characters separate the rows. Character strings are enclosed in string
delimiters (a double-quote is the default). NULL values are represented by
nothing between the column delimiters for a particular column.

If DEL is selected, some advanced options are automatically set by the
MTK:

* Character delimiter first: The character delimiter is given the highest
priority, so that a special character between two character delimiters
will be read as just another character.

¢ Column delimiter: Set to a comma (,).

e Character string delimiter: Set to a double quote (").

Note: During extraction, MTK doubles any string delimiter found
within a string. This allows the use of any string delimiter without a
problem. There is no need to search the database for a character
never used in the data.

» ASC: non-delimited ASCII format

This format specifies that the data is represented in non-delimited text files,
which are characterized by columns of data in fixed positions. No delimiters
are needed. Nulls are identified by a table of null value indicators at the end of
a row.

If ASC is chosen, MTK sets the record length advanced option. Instead of
new line characters marking the end of each record, the length of the data is
used to set the number of characters read for each row.

124 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Note: For complete information about IMPORT or LOAD options, refer to
DB2 version 9 Data Movement Utilities Guide and Reference,
SC10-4227.

Advanced IMPORT or LOAD options

Whether IMPORT or LOAD is chosen, clicking Advanced Options opens a
panel that displays additional options for data movement. Figure 4-21 on

page 125 shows the panel opened to the options available for LOAD. Take note
of the messages file parameter. It is recommended that this parameter be
completed, since the generated file may prove useful if it is necessary to “debug”
the execution of an IMPORT or LOAD. When this parameter is specified, MTK
writes the output of IMPORT and LOAD to the message file specified here.

[®] Advanced option:

fhome/db2instl/message.txt

Figure 4-21 Advanced Options screen for LOAD

4.7.1 Creating unload and load scripts
For our example we LOAD the data into DB2; all the defaults will be taken:

» MODE: insert
» File format: ASC non-delimited ASCII format
» Directory for data extraction: MTK default

Chapter 4. Porting with MTK 125

On the Advanced Options screen the following is chosen:

» Advanced Options: the messages file parameter indicates that messages will
be written to /home/db2inst1/messages.txt.

Figure 4-22 shows a screen clip after Create Scripts is selected, and scripts
have been generated.

Tables_views_seqs.db2
DataMove_tables_views_seqs_data.s
DataMove_tables_views_seqs.qry
DataMove_tables_views_seqs.bat
DataMove_tables_views_seqs_db2.sh
DataMove_tables_views_seqs_db2.ba
DataMove_tables_views_seqs.sh
DataMove_tables_views_pipe.sh

fhorme febzinst1 ik fmik/projects, ||

—
e

Figure 4-22 The Generate Data Transfer Scripts screen after script generated

4.7.2 Files generated by the Generate Data Transfer Script task

After Create Scripts is clicked on the Generate Data Transfer Scripts task, the
following files are created:

» DataMove_your file name_data.bat
» DataMove_your file name_data.sh

The files ending in _data.bat, or _data.sh contain statements to extract data
from the source database.

» DataMove_your_file_name.qry

The file ending in .qry contains examples of statements generated for
selecting and converting the data from the source database.

126 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

» DataMove_your_file name_db2.bat
» DataMove_your_file name_db2.sh

The files ending in _db2.bat, or _db2.sh contain statements to execute the
load data into DB2.

» DataMove_your_file_name.bat
» DataMove_your_file_name.sh
The files ending in .bat, or .sh contain DB2 load scripts.
» DataMove_your_file_name_pipe.sh
This file may be used to load data through a pipe.
» your file name.db2
This file contains the script for the converted DB2 source code that will be
executed during the deployment.
For our example, the following scripts were created:

DataMove_tabs_views_seqs_data.bat
DataMove_ tabs_views_seqs _data.sh
DataMove_ tabs_views_seqs.qry
DataMove_ tabs_views_seqgs _db2.bat
DataMove_ tabs_views_seqgs _db2.sh
DataMove_ tabs_views_seqgs.bat
DataMove_ tabs_views_seqgs.sh
tabs_views_seqs.db2

DataMove_ tabs_views_pipe.sh

vyVVyVYyYVYVYVYYVYYY

Note: In cases where there may not be enough resources available on one
machine, it is possible to convert and refine the metadata in one location, such
as your desktop workstation, and later go to the server system to migrate the
large amount of data. For these reasons, it is also possible to manually extract
the data from the source, and load/import the data into DB2 using the scripts
created in this task. Read the MTK documentation for more information on this
topic.

4.8 Deploy to Target
From the Deploy to Target tab, it is possible for MTK to perform the following
actions:

» Create (or recreate) a local DB2 database
» Deploy the converted objects into a local or remote DB2 database
» Extract and store data from the source database

Chapter 4. Porting with MTK 127

Figure 4-23 shows the Deploy to Target panel.

|§| IBM Migration ToolKit - ora_to_dbZ

Darakiove_tables_wiews_

tables_views_seqsy. dh? he DE2Z script file contains conwersian error messages:
10 messages in category Translator Warning [S0xxxxx]
fake sure wou have reviewed the messages and understand
he differences between the original code and its conwersion.

Datahove_takbles _wiews_
Datahove_tables wiews_
Datahove_tables_wiews_
Runstats_tables wiews_si ’—|?
Datahove_tables_wiews_
Datahove_takbles_wiews_

Datakove_tables_views dhZ _emp

Datahove_tables_wigw:
Fu

Figure 4-23 The MTK Deploy to Target task screen

Before executing a deployment, it is recommended that the subsequent sections
“Considerations” and “Deployment strategy” be read and understood.

4.8.1 Considerations

Before you start the DB2 deployment, consider the following:

» Database creation: Manual or MTK?
» Object deployment strategy
» Database access

MTK database creation

When deploying objects to a database that is remote to the system on which
MTK is running, be aware that creating a new database during deployment is not
an option. In this case, the database must first be created on the remote system
and then registered in the local catalog. Refer to the CATALOG DATABASE
command in the DB2 Command Reference, SC10-4226 for more information.

128 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

When deploying to a database that will be created by MTK on the server where
the toolkit is running (local), be aware of the following criteria:

»

When MTK creates the database, a buffer pool with a page of size 32 KB and
three table spaces of the same size are created.

These provide enough space for the deployment of tables with any row
length. Before launching the database into production, do some performance
tuning and adjust the size of the bufferpool as necessary.

When choosing MTK to create your database, only System Managed
Tablespaces (SMS) can be created. If your database design requires that
tables, indexes, or BLOB data be deployed into their own table spaces, then
you must use Database Managed Tablespaces (DMS). In this case, the
database should be created (either locally or remotely) before the objects are
deployed into it.

Deploying objects - extracting and deploying data
There are a few considerations for deploying objects and data depending on your
environment and requirements:

>

When deploying to a local system, (Re)create must be selected unless you
want to add the objects and data to an already existing database.

Converted objects and data can be deployed to DB2 at the same time or
separately. For example, you might want to deploy the DDL and load some
sample data to test your procedures during the day. Then, at night, when
network usage is low and the database has been tested, the remainder of the
data can be loaded.

The database can be deployed to a local or a remote system. No
prerequisites exist for deploying the database locally. If you choose to deploy
to a remote system, you can:

— Specify that the IBM Migration Toolkit access the remote database
directly. See “Considerations for remote database access” on page 130.

— Copy the IBM Migration Toolkit and the project directory to the system
running DB2 and then deploy the database locally.

If you are familiar with DB2 on operating systems other than Windows, the
batch files generated by MTK can be modified to accommodate deployments
on those systems. Ensure that the correct version of Java is installed on the
target system, copy the mtk.jar file and the batch files, and run the batch files.

If there are many large objects (BLOBS, CLOBS), special consideration
should be taken. When LOBs are extracted, each individual LOB data type is
put into its own file. Tables with many LOBs can create thousands of external
files and supporting subdirectories for them. That means a file system can run
out of directory space long before running out of actual mount point space.

Chapter 4. Porting with MTK 129

So, space planning for temporary data files during data movement of tables
with these large objects should be carefully considered.

The Import and Load utilities use the memory area controlled by database
parameter util heap sz. Medium to large table processing could benefit from
an increase in memory space if it is available on your server.

Considerations for remote database access

If you need to access the database remotely during migration, consider the
following:

>

Make sure that the data types of the data extracted from the source database
are consistent with the target DB2 database that is deployed in this step. Do
not attempt to load the data into a database created by other means.

Ensure that you have not modified the conversion since the last time the data
was extracted. Data should be extracted and deployed only after all desired
changes have been made to the final conversion.

Make certain that any data that is being deployed is first extracted to the file
system where the IBM Migration Toolkit is installed before it is loaded into
DB2. If the table contains millions of rows, ensure the filesystem can
accommodate the size of the largest object in the source database. On UNIX
file systems, you can modify the file size limit with the ulimit command.

If you choose to deploy to a system that is remote to the system on which the
toolkit is running, then you cannot choose to create a new database during
deployment. The database must first be created on the remote system and
registered in the local catalog. See CATALOG DATABASE in the DB2
Command Reference, SC10-4226 for more information.

Data cannot be loaded into LOB columns during remote deployment. The
LOBPATH parameter in the LOAD or IMPORT command must refer to a
directory on the DB2 server. You can load data into LOB columns by moving
the generated scripts to the target machine and running them on the desired
DB2 server (see Chapter 6, “Data conversion” on page 265).

During deployment, the connection to DB2 uses a Java native driver, not
ODBC. If you encounter problems when connecting remotely (such as a “no
suitable SQL driver” error), ensure the following directory and files are in the
Java CLASSPATH:

— %DB2PATH%/java/db2java.zip;
— %DB2PATH%/java/runtime.zip;
— %DB2PATH%/java/sqlj.zip;

— %DB2PATH%/bin

130 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

4.8.2 Deployment strategy

The deployment information for the objects that were just converted is as follows:

>

>

The target database has been created and resides on a local Linux server.

The database is designed with SMS table spaces. The tables will be stored in
a specified table space. The indexes and BLOB data will be stored in the table
space where the associated table is placed.

The Oracle data will be extracted onto the LINUX machine where DB2 and
MTK are installed.

All of the currently converted objects will be created on the target DB2
database.

The Oracle data will be extracted from the Oracle source and stored on the
target DB2 file system

The Oracle data, stored on the DB2 file system, will be loaded into DB2.

To execute the plan outlined above, the appropriate information must be entered
on the Deployment screen:

>

DB2 database name
db2_emp

Use local database
Selected

Use your system current user ID and password
Unselected

User ID
db2inst1

Password
Enter your password

Launch tabs_views_seq.db2 in the database
Checked

Extract and store data on this system
Checked

Load data to target database using generated scripts
Checked

Figure 4-24 on page 132 shows the Deploy to Target screen after all the
pertinent information has been entered.

Chapter 4. Porting with MTK 131

|§| IBM Migration ToolKit - ora_to_db2x

y_tables_views_seqs.log
y_tables_views_seqs_UDF.
_tables_views_seqs.html

he DBZ script file contains conversion error messages:

10 messages in category Translator Warning [60xxxxx%]
Make sure you have reviewed the messages and understand
he differences between the original code and its canwersion.

DataMove_tables _wiews_
DataMawe_tables wiews_ .
Dt ove.tables. views. _tables_v?ews_sequ.html
RunStats_tables_wiews_si _tables_views_seqs_2.htm|
DataMD\r;a_table_s_\riew_s_ _tables_views_seqgs_3.html
DataMowve_tables_wiews_ |
DataMowe_tables_wiews_
Datam owve_tables _wiews_
Funstats_tables_wiews_si

chbzinstl

Figure 4-24 The Deploy to Target screen with relevant information entered

Once the deployment options are completed, clicking Deploy will begin the task.

Recommendations for Deploy to Target Advanced Options
When executing a deployment it is possible to specify advanced options that will
influence actions that are taken during the deployment. When selecting
Advanced Options on the Deploy to Target panel, another panel opens that lets
you specify the following:

Territory

Code Set

Collating Sequence

Deploy MTK UDFs

Execute Runstats on the DB2 catalog

Execute Runstats on the DB2 data after load/import

vVvyvyvyYyy

Of these options, Territory, Code Set, and Collating Sequence will directly affect
database creation. As a result, when creating databases using MTK, it may be

132 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

important to alter these parameters to create the appropriate repository for your
data. When creating a UNICODE database, for example, it would be necessary
to specify TERRITORY US and Code Set UTF-8. For our example, since the
database will be created outside of MTK, these options are irrelevant.

The Deploy MTK UDFs option need only be specified once, when the initial
objects are created in the target server. Subsequent executions of this option are
usually unnecessary unless the DDL for these objects has changed. For this
reason, we recommend that this option be unchecked during subsequent object
or data deployment.

The Execute Runstats options are recommended when LOADing or IMPORTIing
data; they are unnecessary when the deployment only involves objects.

Figure 4-25 shows the Advanced Options panel of the Deploy to Target task.

: Advanced Option:
Territory ¥
Code Set ¥

Collating sequence
(O UEer clefant collAtihE se s e ce
SllEE S el At SR G UEEE

o =R mi= R R =t =

[+ Deploy MTK LUDFs
[+ Execute Runstats on the DB2 catalog

[+ Execute Runstats on the DB2 data after load/impaort

% Cancel Help
Figure 4-25 The Advance Options panel of the Deploy to Target task

Deployment of Java and SQL User-Defined Functions

During deployment, MTK will automatically install Java and SQL User-Defined
Functions (UDFs). During installment, a schema named ORA is created to
contain these functions.

Note: The Java and SQL UDFs are provided to simulate Oracle functions that
do not have exact DB2 equivalents. This implementation strives to guarantee
that the results of executing the code in the source environment will yield the

same results as when executed in the target environment.

The UDFs are programmed in SQL where possible but, when necessary, they
are implemented in Java.

Chapter 4. Porting with MTK 133

The installation of these functions in a database involves one to two files for
every Oracle MTK target:

» A script file (mtkora.udf): containing a template for SQL UDF’s source code
» A jarfile (oraUDFs.jar): containing the source code for Java UDFs

These files are found in the directory where MTK was installed. Should it be
necessary to drop the functions created by the mtkora.udf script, this directory
will also contain a script (mtkoradrop.udf) to drop them.
During deployment, the following takes place with these .jar and script files:
1. In the mtkora.udf file:
The Java CREATE FUNCTION statements are altered to specify the
database under which the jar will be installed. See Example 4-2.

Example 4-2 Examples of changes made to the mtkora.udf file

CREATE FUNCTION ORA.TO_DATE(dateStr VARCHAR(60))
RETURNS TIMESTAMP

EXTERNAL NAME 'ora.udfjar:com.ibm.mtk.udf.oracle.OraDB2UDFsv2.to_date'
LANGUAGE java

PARAMETER STYLE JAVA

DETERMINISTIC

FENCED

NO EXTERNAL ACTION

NO SCRATCHPAD

NO FINAL CALL

NO SQL

NO DBINFO

After alteration:

CREATE FUNCTION ORA.TO DATE(dateStr VARCHAR(60))
RETURNS TIMESTAMP

EXTERNAL NAME 'ora.db2_emp:com.ibm.mtk.udf.oracle.OraDB2UDFsv2.to_date'
LANGUAGE java

PARAMETER STYLE JAVA

DETERMINISTIC

FENCED

NO EXTERNAL ACTION

NO SCRATCHPAD

NO FINAL CALL

NO SQL

NO DBINFO

134 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Note that the line ‘ora.udfjar:.com... was changed to specify the name of the
database under which the UDFs will be installed: ora.db2_emp:com.

MTK saves the altered version of this file in the PROJECTS directory under a
subdirectory corresponding to your project name, for example:

PROJECTS/<MY_MTK_PROJECT NAME>/mtkora.udf

2. During deployment, if Deploy MTK UDFs is selected, MTK installs the
oraUDFs.jar file in the database. This is achieved with the following command
executed by an MTK script:

CALL
SQLJ.INSTALL _JAR('file:/home/db2instl/mtk/oraUDFs.jar', 'ora.db2_emp")

Once the jar file is installed on UNIX, it can be found in the following directory:
$DB2INSTHOME/sq11ib/function/jar/0RA/
The DEPLOY_YourProjectName_Udf.log file contains all the information
regarding the success or failure of UDF deployment in your environment. It is
recommended that this be examined to determine whether the UDFs have been

successfully deployed. In our example, a successful deployment returned the
following message:

Creation of MTK UDFs...
CALL SQLJ.INSTALL JAR('file:/home/db2instl/mtk/oraUDFs.jar', 'ora.db2_emp')
DB200001 The CALL command completed successfully.

If any other message is returned, your DB2 Java environment may be installed
incorrectly. In these cases refer to either IBM Migration Toolkit Users Guide and
Reference, which is included with the product download, or Developing Java
Applications, SC10-4233 for Java setup assistance.

4.8.3 Deployment results

When the deployment process has completed, the Verification report opens. This
report will give a clear indication of the status of your conversion project. It
shows:

» The number of objects in the source file
» The number of objects successfully deployed into DB2
» The number of objects missing from DB2

— Objects missing from DB2 appear in red. This usually indicates some
problem during the deployment stage.

— Warning messages are presented in purple.
— Successfully deployed item are shown in black.
» The number of foreign keys found in DB2

Chapter 4. Porting with MTK 135

» Information about Unique, Primary, and Check constraints

» The name of an object in the source database, and the name as it appears in
the DB2 database

» The DB2 schema into which the object or data was deployed
» The type of object

» Whether a specific object was successfully deployed into DB2
» Whether data was successfully extracted from the source

» Whether data was successfully loaded into DB2

Figure 4-26 shows a portion of the Verification report for our conversion example.

|§| MomedbZins il imikimilkprojecisiora o dbZ/Reporisferify ables views seqs himl

Yerification report from tables_views_seqs

To see why objects or rows are missing, revievw target database log here,

32 objects checked

32 objects found in target database

O objects missing from target database

7 foreign keys found in target database

Unigque, Primary and Check Constraints

32 ohjects checked

DEZ Data | D‘ﬂ
Source NAME DBZ2 NAME SCHEMA TYPE In DB2 extracted; |
EMPLOYEE_SEQUENCE EMPLOYEE_SEQUENCE DEZ2INSTL |SEQUENCE ftrue
OFFICE_SEQUENCE QFFICE_SEQUENCE DEZ2INSTL [SEQUENCE ftrue |
ACCOUNTS ACCOUNTS DEZ2INST] | TABLE true Grows |9r0
ACCOUNTS_DEPT_CODE_ACCT_ID |ACCOUNTS_DEPT_COD1 DEZINSTL | PRIMARYKEY [true |
FK_ACC_DEPT_CODE FK_ACC_DEPT_CODE DEZ2INST1 FOREIGNKEY true
IND_ACCT_ID IND_ACCT_ID DEZINSTL jINDEX true

Figure 4-26 The Verification report

Additional information about the conversion may be found by viewing:

» The Deploy_your_file_name.log from the left panel of the Deploy to Target
panel.

» Choosing Other reports for this conversion from the Verification report
panel.

136 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

>

Selecting Tools — Migration reports on the MTK menu bar. You can
navigate to the reports from current or previous migrations using the contents
listing in the left frame of the browser window.

The name and information for each report are as follows:

>

Conversion summary report

The conversion summary report presents details on a particular conversion.
You will most likely have many conversions during your migration of each
database. You can view each of the conversion reports and compare the
objects that were successfully converted, as well as various errors reported
each time.

Translation error message reports

The Translation error message report details specific error messages found
during each translation. These reports present the information in two ways: 1)
error messages grouped by object type and 2) error messages grouped by
message type. These reports can be useful when determining how to
prioritize your work, for example, if errors with the same message number
exist for many objects, it might be wise to solve the problem associated with
that error before continuing. Or, when viewing the messages by category, you
might choose delay solving issues related to the translator information
category until errors related to more significant categories have been
resolved.

Estimate of table size report

This report presents an estimate of table sizes. This is useful in determining
correct table space size during database creation or adjustments that might
need to be made to a table space that will ensure a correct deployment.

Large statement warnings report

During conversion some SQL statements are too long to be converted. The
large statement warnings report lists each of the statements that cannot be
converted for this reason.

Verification report and deployment log

The verification report and deployment log generate messages relating to the
overall status of the deployment. These messages may regard either
information or problems that might have occurred during deployment.

If in-context files have been specified, which contain objects that have not yet
been deployed into DB2, both the report and log will show that the in-context
files failed to deploy. By design, objects contained within in-context files are
not deployed.

Chapter 4. Porting with MTK 137

4.9 Next steps

The first part of our migration example, that is, converting all of the objects upon
which the other objects (stored procedures, functions, packages, and triggers)
depend, is now completed. Based on information produced in the Verification
report, it is determined that all tables, views, and sequence objects from the
original Oracle database were converted correctly, and more importantly,
deployed into DB2. Additionally, the report verifies that data was extracted from
Oracle, and that the same number of rows were loaded into DB2. At this juncture,
the process of converting the stored procedures, functions, packages, and
triggers may begin.

Strategy

The strategy for the remainder of the project is:

v

Convert the remaining objects.

Examine and evaluate the messages from the translator.

Deploy the remaining objects into DB2.

Manually convert objects that are not automatically converted by MTK.

vyvvyy

4.10 Converting the remaining objects

To convert the remaining objects, return to the Convert tab. It is significant to
remember that the converter needs to “know” the definitions for the previously
converted tables, sequences, and views to correctly convert the remaining
objects. To accomplish this, these files will be designated as context files for the
next part of the conversion. To specify objects as context files, complete the
following:

» Click Set Context on the Convert tab.

» The Set Context screen opens, displaying two panels. The left panel is
labeled Source Files. Under Source Files all of the .src files that have been
extracted from the source are shown. The right pane is labeled “Selected
context files.” When first opened, there will be no files indicated under this
heading.

» To designate context files, choose one (or several) files in the right-hand
panel and then click >. This will bring the selected file(s) into the Selected
context files panel. Figure 4-27 on page 139 shows the Set Context screen
after tabs_views_seqs.src has been selected as a context file.

138 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

i |§| Set Context

Figure 4-27 The Set Context screen after a file has been selected as Context

Once the context selections have been made, clicking OK returns the Convert
tab.

On the Convert tab, the tabs_views_segs.src file has the indication (context)
beside it. This specifies that the file is now a context file; it will be used as a
dependent file for the conversion, but it will not be reconverted.

To begin conversion, complete the required steps:

1. Select the files in the left-hand panel that will be converted. We choose the
procs_pkgs_trgs.src file.

2. Enter a prefix for the generated files (that is, enter a name for the file that will
be generated from the conversion). We accept the default.

3. Click Convert to begin the conversion.

Figure 4-28 shows the Convert tab, before conversion, with the context file
designated and all required steps completed.

Chapter 4. Porting with MTK 139

[®] 1BM Migration Toolkit - ora to dbZ

tables_wiews_sedqs. src{cantext)

o 5,51 ables_wiews_seqs.rpt

lgure -

4.10.1 Translator Messages

In this section, we discuss the messages for the conversion of stored
procedures, functions, packages, and triggers. Although messages from the
previous conversion file will still be available for viewing, our discussion will not
include them. When examining the messages, items that need to be converted
manually will be noted as such. These items will then be discussed at a later
point in this chapter.

140 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-29 on page 141 shows the Refine tab after the conversion of the
procs_pkgs_trigs.src file. Messages in the following categories were received
after this portion of the conversion:

» Input script error

» Translator error

» Translator Warning
» Translator information

[®] 1Bm Migration Toolkit - ora o dbZ

procs_pkgs_trgs.rpt
*Input Script Error

[j M=g Mumber: 16 :
#L[7) Msg Number: 42
‘ Translator Error
&-D M=g Mumber:21 :
[j Msg Mumber:50
[j M=g Mumber: 75 :
[j M=sg Mumber: 80
‘ Translator Warning
[j Msg Mumber:20
&-D Msg Mumber:59
[j Msg Mumber&l
[j M=g Mumber: 71 :
[j M=g Mumber: 94
&-D Msg Mumber: 105 |
#H[) Msg Number; 135 ;
[j Translator Information

MD REFPRG;

REATE OR REPLACE PACKAGE
"REFFEG" A5
TYPERCT I5 REF CURSOR;

MO REFPRG;

- This PROCEDURE is INVALID in the source database
REATE OR REPLACE PROCEDURE SELECTROW
{

pEmp_ID 1IN EMPLOYEES EMP_ID#%TYPE,
pRow OUT REFPKG.RCTL

Figure 4-29 The Refine tab after the conversion of procs_pkgs_trigs.src

Input script error messages
There are two input script error messages

» Message 11

Chapter 4. Porting with MTK 141

This message occurs once, and it refers to the stored procedure Selectrow.
Msg 11: Reference to unknown cursor: pRow
Message Help indicates:

The translator is not aware of the definition of this object.

Ensure that the definition exists in the file being translated or in one of
the files used as context for this translation. Also, ensure that the
schema name is specified as indicated.

When the statement is investigated, we recognize that pRow is an Oracle
Reference Cursor. Oracle Reference Cursors have to be converted manually
to the corresponding DB2 functionality. This is marked as manually
converted, and will be discussed later in this chapter.

» Message 42
This message occurs once; it refers to the stored procedure Selectrow.
Msg 42: unrecognized data type: REFPKG.RCT1
Message Help indicates:

This data type is not recognized by the translator. The reason might

be that:

— ltis not a valid Oracle data type.

— ltis a user-defined type, not yet handled by the translator (for example,
collections and object types).

If the data type is encountered as a parameter to a procedure, a

suggested translation is provided, but it is commented out because

it will probably require manual editing.

Upon investigation it is recognized that the data type REFPKG.RCT1 is an
Oracle Reference Cursor. This is marked to be manually converted, and will
be discussed later in this chapter.

Translator error messages
We have three translator error messages:

» Message 21
Fourteen instances of Message 21 occurred in the translator error category:

Msg 21: Call to Procedure DBMS_SQL.PARSE is not supported

Msg 21: Call to Procedure DBMS_SQL.DEFINE_COLUMN is not supported
Msg 21: Call to Procedure DBMS_SQL.COLUMN_VALUE is not supported
Msg 21: Call to Procedure DBMS_SQL.CLOSE_CURSOR is not supported
Msg 21: Call to Procedure DBMS_SQL.BIND_VARIABLE is not supported
Msg 21: Call to Procedure DBMS_SQL.OPEN_CURSOR is not supported
Msg 21: Call to Procedure DBMS_SQL.FETCH_ROWS 1is not supported
Msg 21: Call to Procedure DBMS_SQL.EXECUTE is not supported

142 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The fourteen instances of this message all refer to the same object, the
stored procedure EmployeeDynamicQuery.

Message Help indicates:

This Oracle function or procedure call is not translated to the target
server.

When the procedure is analyzed, the syntax is recognized as Dynamic SQL,
which is implemented through the Oracle DBMS_SQL package. Dynamic
SQL can be easily converted into DB2 functionality, but the conversion will
have to be done manually. We mark this procedure for manual conversion
and continue.

Message 50
Two occurrences of Message 50 are found in this category:

Msg 50: This statement is not supported in the target server
dynamic compound statement

The two occurrences of this message are both in regard to a cursor created in
the trigger UpdateDepartments.

Message Help indicates:

This statement is not supported in the target server dynamic
compound statement. Dynamic compound statements are used as
bodies for top-level anonymous blocks, user-defined functions,
and triggers. Procedures use the target server compound
statements as bodies that are Tess restrictive. Some statements
that are not allowed inside target server dynamic compound
statement are:

Nested blocks

Statements containing CASE expressions

- GOTO

Procedure calls

— Cursors

— COMMIT

— Exception handlers

If the compound statement is found in an Oracle function,
depending on the use of the function, changing it to a procedure
might be a better approach.

Since this type of cursor statement is not allowed inside a DB2 trigger, the
cursor logic will need to be manually converted. The object is marked for
manual conversion and the conversion continues.

Message 75
One instance of Message 75 occurs in the translator error category:

Chapter 4. Porting with MTK 143

Msg 75: This statement is not supported in the target server
Before Trigger
The message occurs in relation to the trigger InsertEmployee.

Message Help indicates:

This statement is not supported in a target server Before
Trigger.

The following statements are not supported in this context:
e INSERT

e DELETE

e UPDATE

After examining the trigger, it is seen that it includes DML statements
(INSERT, UPDATE, DELETE). DML statements are restricted in Before
triggers in DB2. The conversion, although not complicated, will also have to
be done manually.

» Message 80
This message occurs once in the translator error category:
Msg 80: This package item is not translated.
This message occurs in relation to the Package object REFPKG.
Message Help indicates:

Only the following items are supported inside a package: function
specifications, functions, procedure specifications, procedures, and
constants. Variable declarations, cursor declarations and type
definitions are not translated.

After examining the source code it is determined that, although this package
item will not be converted, it will not be necessary in our conversion. This
occurs for two reasons:

— MTK converts Oracle schema in the recommended manner, that is, by
converting the Oracle Package name to a DB2 Schema name.

— The package item, a reference cursor, will be handled when the procedure
SelectRow is converted manually.

Translator Warning messages
The following Translator Warning messages were generated:

» Message 20
15 instances of Message 20 occurred in the Translator Warning category:
Message 20: Object name has been changed to <new name>.

This message pertains to the objects shown in Table 4-1.

144 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 4-1 Message 20 objects

Source object name

Conversion name

Object type

ACCT_ID

ACCT_ID1

Correlation name

BAND

BAND1

Correlation name

c_RegisteredEmployees

c_RegisteredEmplo1

Cursor name

DEPT_CODE

DEPT_CODEH1

Correlation name

EMP_MGR_ID

EMP_MGR_ID1

Correlation name

EmployeesOfficesInsert

EmployeesOfficesI1

Trigger (insert)

ManagersChange ManagersChange_FO1 Trigger (insert)
ManagersChange_FO2 Trigger (delete)
ManagersChange_FO3 Trigger (update)

office_summary_delete office_summary_de1 Trigger

UpdateDepartments UpdateDepartments1 Trigger (insert)
UpdateDepartments2 Trigger (delete)
UpdateDepartments3 Trigger (update)

UpdateEmployees UpdateEmployees_F1 Trigger (insert)
UpdateEmployees_F2 Trigger (update)

Message Help indicates:

Object names that are too long for the target server are
truncated. Names that are reserved words in the target server are
enclosed in double quotes. Names that conflict with other names
in the target server (because the name is already in use) are
renamed.

Upon examination of the source code, we observed that names were altered
for three types of objects:

— Triggers

Reason:

Trigger names were changed in two cases. First, because the trigger
name exceeded the maximum number of characters (18) allowed, as in
the case of EmployeesOfficesInsert and office_summary_delete. In this
case, the names were truncated to conform to DB2 standards. Secondly,
because additional triggers needed to be created. This occurs when an
Oracle trigger specifies more than one operation (INSERT, UPDATE,

Chapter 4. Porting with MTK 145

DELETE) for the source trigger. In these circumstances, DB2 requires
(and MTK creates) an individual trigger for each operation.

— Cursors

Reason:
DB2 specifies that cursor names cannot exceed 18 characters.

— Correlation names

Reason:
Renaming these variables is related to a message that is best explained
by the Message Help from message 71:

The target server does not accept references to OLD from an
inserting trigger or references to NEW from a deleting
trigger. In the WHEN clause of the trigger these references
are translated to NULL. In the body of the trigger they are
translated to a variable generated for this purpose.

» Message 61

Two instances of Message 61 were generated in the Translator Warning
category:

Msg 61: Parameter defaults are not supported in the target server
procedure definitions. Calls to the procedure are adjusted
accordingly.

The two instances occur in the procedure EmployeeDynamicQuery.
Message Help indicates:

In procedure and function declarations, the optional DEFAULT
value of a parameter is not translated, but the translator will
use the value as necessary through the remainder of the
translation.

After examining the source code we understand that the Oracle procedure
employs default parameters that may be used when the procedure is invoked.
Although this behavior is not supported in DB2, MTK accounts for it when the
procedure is called from other stored procedures.

Additional information adds the following explanation:

...Default values for parameters are not translated in the
parameter list, but the converter remembers them and adds them to
each procedure call when the corresponding argument is missing.

» Message 71
Eight instances of Message 71 occur in the Translator Warning category:
Msg 71: Reference to OLD or NEW column translated to <NULL or Variable>

146 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The eight instances occur in the ManagersChange trigger.
Message Help indicates:

The target server does not accept references to OLD from an
inserting trigger or references to NEW from a deleting trigger.
In the WHEN clause of the trigger, these references are
translated to NULL. In the body of the trigger, they are
translated to a variable generated for this purpose.

Message 94
There are two occurrences of Message 94 in this category:

Msg 94: The function <function_name> is translated to the target
server as a Procedure.

This message refers to the functions MaxProjects, CountProjects, and
AverageBand.

Message Help indicates:

This Oracle user-defined function is translated to the target
server as a procedure. This happens with functions with
parameters in OUT mode. Since this feature is not available in
the target server, the translator uses a target server procedure
instead. The calls to the Oracle function will be translated into
procedure calls.

Message 135

There is one occurrence of Message 135 in the Translator Warning category.
This arises in the trigger ManagersChange.

Msg 135: BEFORE trigger was translated to AFTER trigger.
Message Help indicates:

BEFORE triggers are usually translated to NO CASCADE BEFORE
triggers in DB2. Unfortunately this kind of trigger does not
allow DML statements (INSERT, UPDATE and DELETE) and the FOR EACH
STATEMENT clause.

If the source trigger does use one of the features, the
translator will try to translate the BEFORE trigger to an AFTER
trigger, which does not have those restrictions.

This special translation is not possible if the body of the
trigger refers to the table as the object of the trigger, or if a
column of the NEW table is assigned.

Chapter 4. Porting with MTK 147

Translator Information
The Translator Information messages received in our conversion example are:

» Message 0
There is one occurrence of this message in this category:
Msg 0: MTK Oracle Converter. Version: <mtk version>
Message Help indicates:
Specifies the version of the Oracle converter.
The version number of the converter is specified.
» Message 34

Four instances of Message 34 occurred in the Translator Information
category:

Msg 34: No DB2 translation available, but statement has been
taken into account

The four instances occurred in relation to the following statements:
— CONNECT ORA_USR
— In the Create Package AccountPackage statement for:

¢ Create Procedure AddEmployee
¢ Create Procedure RemoveEmployee
¢ Create Procedure AccountList

Message Help indicates:

There is no DB2 translation available, but the information in the
statement will be used by the converter in translating the
statements that follow.

After examining the source we understand that:

— Regarding CONNECT ORA_USR, the message indicates that although
the connection statement is not expressly converted, the implications of
the connection statement will be handled by DB2. ORA_USR will be used
as the default schema for unqualified database object names.

— Regarding the Create Procedure statements, we recognize that Oracle
packages will be converted to objects within a specified schema. This
schema name will be the same as the original Oracle Package name.

» Message 108
There is one occurrence of this message in this category:

Msg 108: Translation Ratio: <percentage>% (<absolute ratio>
statements were translated successfully)

148 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Message Help indicates:

This provides an assessment of the provided translation by giving
the ratio of Oracle statements translated without producing any
error message out of the total number of statements. This number
is provides a general indication regarding the success of the
automated translation and does not intend to give an exact and
accurate measure.

Statement here designates Oracle SQL and PL/SQL statements. For
instance, in a CREATE PROCEDURE, the whole SQL statement is
counted as 1 and each PL/SQL statement inside the body of the
procedure are also counted as one.

The translation ratio is reported as 84.67%—116 of 137 statements were
translated successfully.

4.10.2 Status

We recommend that the collected information be evaluated at this juncture in the
conversion. First, it must be established that for each Translator Message
category all of the messages and implications of the messages are understood
and accounted for. This evaluation will assist in obtaining a reasonable
expectation as to the number and type of objects that will convert automatically.
Likewise, it will assist in ascertaining the number and type of, and reason why;,
objects will need to be converted manually.

Given the information already gathered about the objects from our conversion, it
is expected that most of the objects will deploy successfully. It is also expected,
however, that after the completion of deployment several objects will not deploy
successfully. We anticipate that the following objects will be in that category, and
that manual intervention will be required before they can be successfully
deployed:

» Stored procedures

— SelectRow
— EmployeeDynamicQuery

» Triggers

— InsertEmployee
— UpdateDepartments

4.11 Deployment of the remaining objects

The Generate Data Transfer Scripts task will be bypassed because scripts for
extracting and loading data into DB2 were already created in an earlier part of

Chapter 4. Porting with MTK 149

our conversion (refer to 4.7.1, “Creating unload and load scripts” on page 125”).
The focus of the next set of tasks will center on deploying stored procedures,
functions, packages, and triggers into the DB2 database.

During this phase, the procs_pkgs_trgs.db2 file will be deployed. To begin this,
the procs_pkgs_trgs.db2 file is selected on the Generate Data Transfer screen
and the following required information is completed:

» DB2 database name:
db2_emp

» Use a local database:
Selected

» UserlID
db2inst1

» Password
Enter db2inst1 password

» Launch procs_pkgs_trgs.db2 in the database
Selected

150 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

[®] M HMigration Toolkit - ora to dh2

procs

he DB2 script file contains conversion errar messages
23 messages in category Translator Error [70xx]
32 messages in category Translator Warning [&0xxex]
2 messages in category Input Script Error [2 0%

ake sure wou hawve reviewed the messages and understand

he differences hetween the ariginal code and its comversion.

Figure 4-30 The deployment screen viewed before deploying procedures, packages, and triggers

4.11.1 Verification report

After deployment has completed, MTK returns to the Verification Report. It is
important to remember that the information shown by the Verification Report is
cumulative, that is, the total number of items includes objects from al// parts of a
conversion. In our example this includes objects from the conversion of tables,
views, and sequences as well as procedures, packages, and triggers.

The information at the top of the Verification Report indicates that of the 57 total
objects in the conversion, 50 were successfully deployed (see Figure 4-31).

Chapter 4. Porting with MTK 151

[®] momenthzinstlimtimikiprojecisiora 1o dh2iReportsiverity procs pkgs trgshimi

To see why objects or rows are missing, review target database log here.

57 objects checked

50 objects found in target database

7 objects missing from target database

& foreign keys found in target database

Unigue, Primary and Check Constraints

57 objects checked

Source NAME DBZ NAME DEBEZ SCHEMA TYFE
EMPLOYEE_SEQUENCE |EMPLOYEE_SEQUENCE DB2INSTL SEQUENCE
CFFICE_SEQUENCE OFFICE_SEQUENCE DB2INSTL SEQUENCE
ACCOUNTS ACCOUNTS DB2INSTL TABELE
ACCOUNTS_DEPT_CODE_ACCT_ID |ACCOUNTS_DEFT_CODI1 DB2INSTL FRIMARYKEY
FK_ACC_DEPT_CODE |FK_ACC_DEPT_CODE DB2INSTL FOREIGNKEY
IND_ACCT_ID IND_ACCT_ID DB2INSTL INDEX
DEPARTMENTS | DEPARTMENTS DB2INSTL TABLE

Figure 4-31 The Verification Report showing the tally of deployed objects

The report also indicates that 7 objects are missing from DB2, that is, were not
successfully deployed. If the hyperlink 7 objects missing from DB2 is clicked,
another report opens that shows that the seven missing objects are:

» Procedures:

— EmployeeDynamicQuery
— SelectRow

» Triggers:

— CreateEmployeelD
— InsertEmployee
— UpdateDepartments:

Three triggers were created, one each for INSERT, UPDATE, and
DELETE.

It was expected that most of the items on this list would fail deployment for
reasons that were previously described. The only unforeseen event is the failure
of the creation of the trigger CreateEmployeelD, see Figure 4-32.

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

™ nwex bt
57 objects checked

S0 objects found in target database

7 objects missing from target database

6 foreign keys found in target database

Unigue, Primary and Check Constraints

7 objects missing from DB2

Source NAME DE2 NAME DEB2 SCHEMA TYPE
EMPLOYEEDYNAMICOUERY | EMPLOYEEDYNAMICOUERY PROCEDURE /FUNCTION
SELECTROW SELECTROW } e
CREATEEMPLOYEEID CreateEmployeelD _ TRIGGER
INSERTEMPLOYEE InsertEmployee _ TRIGGER
UPDATEDEPARTMENTS | UpdateDepartments3 _ TRIGGER
UPDATEDEPARTMENTS | UpdateDepartmentsl . TRIGGER
UPDATEDEPARTMENTS | UpdateDepartmentsZ _ TRIGGER

The object was not created in the DB2 database. For more details, review the DB2 log.

other reports for this conversion

Figure 4-32 The Verification Report showing objects missing from DB2

Because the generation of the Employee IDs (the EMP_ID) column in the
Employees table is now being implemented through an IDENTITY column, the
failure of the deployment of CreateEmployeelD is actually irrelevant; see
“Identity columns” on page 120. The creation of an IDENTITY column replaces
the necessity for the creation of the CreateEmployeelD trigger.

4.12 Manual conversion for ORA_EMP database objects

At this point, the conversion of all objects that can be successfully converted and
deployed automatically into DB2 by the MTK is completed. Indeed, the majority
of the object and data conversions have been accomplished. Yet, there are still
some “loose ends” such as objects that we noted for manual conversion that
must be dealt with.

The triggers and procedures from the sample ORA_EMP database that will be
converted manually are:
» Triggers:

— InsertEmployee

Chapter 4. Porting with MTK 153

— UpdateDepartments
» Procedures:

— SelectRow
— EmployeeDynamicQuery

The objects in the preceding list of triggers and procedures use Oracle features
that require a different implementation in DB2, or are not supported by DB2.
Some of these objects can be converted by using equivalent DB2 features,
others by changing the source code logic. In this section feature differences, as
well as potential ways of converting and deploying triggers and procedures that
implement these features from Oracle to DB2, are shown.

Both Oracle and DB2 have triggers. There are, however, some differences in the
implementation of triggers in these databases. Because of these differences
manual conversion is required. In this section, conversion and deployment of
triggers are shown using two trigger examples from our database:

» InsertEmployees
» UpdateDepartments

Example 1: InsertEmployee

When the deployment log created by MTK (Deploy_procs_pkgs_trgs.log) is
opened, the following error message, generated by DB2 during the object
deployment, is seen:

DB21034E The command was processed as an SQL statement because it
was not a valid Command Line Processor command. During SQL
processing it returned:

SQLO797N The trigger "DB2INST1.INSERTEMPLOYEE" is defined with an
unsupported triggered SQL statement. LINE NUMBER=38. SQLSTATE=42987

In this example, the unsupported triggered SQL statement refers to an UPDATE
that DB2 does not permit in a BEFORE trigger. The correct conversion of the
InsertEmployee trigger requires that the BEFORE trigger be converted to an
AFTER trigger.

Example 4-3 shows the Oracle source code for trigger InsertEmployee.

Example 4-3 Trigger InsertEmployee Oracle source code

CREATE TRIGGER InsertEmployee

BEFORE INSERT ON employees

FOR EACH ROW
DECLARE

v_num_projects accounts.num_projects%TYPE;
BEGIN

SELECT num_projects

154 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

INTO v_num_projects
FROM accounts
WHERE dept _code = :new.dept_code
AND acct_id = :new.acct_id;

UPDATE accounts
SET current_employees = current_employees + 1
WHERE dept_code = :new.dept_code
AND acct_id = :new.acct_id;

END InsertEmployees;

Example 4-4 shows the converted DB2 code of trigger InsertEmployee.

Example 4-4 Trigger InsertEmployee DB2 conversion code

CREATE TRIGGER InsertEmployee
AFTER INSERT ON employees
REFERENCING NEW AS new
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
DECLARE v_num_projects SMALLINT;
SET (v_num_projects) = (SELECT "NUM_PROJECTS"
FROM ACCOUNTS
WHERE "DEPT_CODE" = NEW."DEPT_CODE"
AND "ACCT_ID" = NEW."ACCT_ID");
UPDATE ACCOUNTS
SET "CURRENT_EMPLOYEES" = "CURRENT_EMPLOYEES" + 1
WHERE "DEPT_CODE" = NEW."DEPT_CODE"
AND "ACCT_ID" = NEW."ACCT_ID";
END

Important: Note that in some cases you cannot change a BEFORE trigger to
an AFTER trigger. For example, if an application inserts a row in table A that
needs a parent row in table B and the parent row in B has to be
created/generated by the trigger, then a BEFORE trigger is needed. In this
case the solution will need to be implemented through application logic.

Example 2: UpdateDepartments

This trigger employs an explicit CURSOR declaration, which is not permitted in a
DB2 trigger. This example demonstrates how to change the explicit cursor
(c_projects) to an implicit cursor using a FOR loop. This is accomplished by
putting the cursor's SELECT statement directly into the FOR loop statement; this
is shown in Example 4-6.

Example 4-5 shows the Oracle source code of trigger UpdateDepartments.

Chapter 4. Porting with MTK 155

Example 4-5 Trigger UpdateDepartments Oracle source code

CREATE TRIGGER UpdateDepartments
AFTER INSERT OR DELETE OR UPDATE ON employees
DECLARE
CURSOR c_projects IS
SELECT dept_code
,COUNT(*) AS total_employees
,SUM(current_projects) AS total_projects
FROM empTloyees
GROUP BY dept_code;
BEGIN
FOR v_project_rec in c_projects LOOP
UPDATE departments
SET total_projects = v_project_rec.total_projects
,total_employees = v_project_rec.total_employees
WHERE dept code = v_project rec.dept_code;
END LOOP;
END UpdateDepartments;

The DB2 conversion of trigger UpdateDepartments is shown in Example 4-6.

Example 4-6 DB2 conversion of trigger UpdateDepartments

CREATE TRIGGER UpdateDepartmentsl
AFTER INSERT ON EMPLOYEES
REFERENCING NEW_TABLE AS new

FOR EACH STATEMENT

MODE DB2SQL

BEGIN ATOMIC

X: -- [1]
for ROW as -- [2]
SELECT dept_code -- [3]

,COUNT(*) AS total_employees
,SUM(current_projects) AS total_projects
FROM employees group by dept code

DO
UPDATE departments -- [4]
SET total_projects = row.total_projects
,total_employees = row.total_employees
WHERE dept_code = row.dept_code;
END FOR X;
END
Notes

> [1]: “X” is the specified label for the FOR statement.

156 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

>

»

»

[2]: The for-loop-name (ROW) is used to qualify the column names returned
by the specified SELECT statement.

[3]: In a trigger, function, method, or dynamic compound statement, the
SELECT statement must consist of only a FULL SELECT with optional
common table expressions.

[4]: This section specifies a statement (or statements) that will be invoked for
each row of the table.

Note: For complete information regarding FOR loop syntax and usage
consult the DB2 manual SQL Reference Volume 2, SC10-4250.

Manual deployment of triggers

The triggers InsertEmployee, and UpdateDepartments are deployed into DB2
from a command window. Here is the process:

1.

After creating the trigger, save the script file on your file system.

In order to execute multiple commands, your script file must end with a
terminating character other than the default semi-colon (;). Some typical
termination character choices are !, or 6. MTK uses !.

Open a DB2 Command Window in the directory where the converted
procedure source resides:

— To open a DB2 Command Window on Windows:

Click Start and select Programs — IBM DB2 — Command Window.
— To open a DB2 Command Window on UNIX:

Open any operating system Command Window.
Connect to the database:

db2 connect to your database_name

or

db2 connect to your_database_name USER your_userid USING
your_password

Execute the following from the Command Window. The termination character
must be specified:

db2 —td! —vf your script file name

We recommend to pipe the output to another file so that any messages
generated during the creation may be viewed at a later time. This may be
done as follows:

db2 —td! —vf your _script file name > your output file name

Chapter 4. Porting with MTK 157

Here are the steps as they would be executed for the trigger InsertEmployee.
Although not shown here, the steps will be the same (except for file names) for
the remaining triggers UpdateDepartments1/2/3.

1. The source code is saved as InsertEmployee.db2; see Example 4-7.

Example 4-7 InsertEmployee.db2

CREATE TRIGGER InsertEmployee
AFTER INSERT ON employees
REFERENCING NEW AS new
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
DECLARE v_num_projects SMALLINT;
SET (v_num_projects) = (SELECT "NUM_PROJECTS"
FROM ACCOUNTS
WHERE "DEPT_CODE" = NEW."DEPT_CODE"
AND "ACCT_ID" = NEW."ACCT_ID");
UPDATE ACCOUNTS
SET "CURRENT_EMPLOYEES" = "CURRENT_EMPLOYEES" + 1
WHERE "DEPT_CODE" = NEW."DEPT_CODE"
AND "ACCT_ID" = NEW."ACCT_ID";
END ! --** the exclamation point (!) is the termination character

2. Open a DB2 Command Window.
3. Connect to the database:
db2 connect to db2_emp
or
db2 connect to your database USER your userid USING your password

4. Once the following command is executed, the results are piped to the
message.out file:

db2 —td! —vf InsertEmployee.db2 > message.out

o

DB2 responds with the message:
DB20000I The SQL command completed successfully.

The message.out file should be viewed for messages, especially if any other
message than The SQL command completed successfully is returned.

4.12.1 Stored procedures

In our example Oracle database there are five stored procedures (not including
stored procedures that reside in packages). MTK has converted three of these
stored procedures automatically and encountered conversion issues that
prohibited the automatic conversion of the procedures of the remaining two,

158 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

EmployeeDynamicQuery and SelectRow. When the Migration Reports and the
log file were examined, it was determined that these two procedures use Oracle
features that require manual intervention to convert them to the format that can

be accepted by DB2.

Example 1: EmployeeDynamicQuery

This example shows how to convert Oracle Dynamic SQL, implemented through

the DBMS_SQL package to equivalent DB2 code. In the example the Oracle
source is shown first, and the corresponding DB2 conversion follows. The
converted source code is accompanied by some explanatory notes.

Example 4-8 shows the Oracle source code for the procedure
EmployeeDynamicQuery.

Example 4-8 EmployeeDynamicQuery Oracle source code

CREATE PROCEDURE EmployeeDynamicQuery (
p_departmentl IN employees.department%TYPE DEFAULT NULL,
p_department2 IN employees.department%TYPE DEFAULT NULL) AS
v_CursorID INTEGER;
v_SelectStmt VARCHAR2(500);
v_FirstName employees.first_name%TYPE;
v_LastName employees.Tast_name%TYPE;
v_Department employees.department%TYPE;
v_Dummy INTEGER;
BEGIN
v_CursorID := DBMS_SQL.OPEN_CURSOR;
v_SelectStmt := 'SELECT first_name, Tast_name, department
FROM employees
WHERE department IN (:d1, :d2)
ORDER BY department, Tast_name';
-- Parse the query.
DBMS_SQL.PARSE(v_CursorID, v_SelectStmt, DBMS_SQL.NATIVE);
-- Bind the input variables.
DBMS_SQL.BIND_VARIABLE(v_CursorID, ':dl', p_departmentl);
DBMS_SQL.BIND_VARIABLE(v_CursorID, ':d2', p_department2);
DBMS_SQL.DEFINE_COLUMN(v_CursorID, 1, v_FirstName, 20);
DBMS_SQL.DEFINE_COLUMN(v_CursorID, 2, v_LastName, 20);
DBMS_SQL.DEFINE_COLUMN(v_CursorID, 3, v_Department, 30);
v_Dummy := DBMS_SQL.EXECUTE(v_CursorID);
LOOP
IF DBMS_SQL.FETCH_ROWS(v_CursorID) = 0 THEN
EXIT;
END IF;
DBMS_SQL.COLUMN_VALUE (v_CursorID, 1, v_FirstName);
DBMS_SQL.COLUMN_VALUE(v_CursorID, 2, v_LastName);
DBMS_SQL.COLUMN_VALUE(v_CursorID, 3, v_Department);
INSERT INTO temp_table (char_col)

Chapter 4. Porting with MTK

159

VALUES (v_FirstName || ' ' || v_LastName || ' is a ' |

v_Department || ' department.');
END LOOP;
DBMS_SQL.CLOSE_CURSOR(v_CursorID);
COMMIT;
EXCEPTION

WHEN OTHERS THEN
DBMS_SQL.CLOSE_CURSOR(v_CursorID);
RAISE;
END EmployeeDynamicQuery;

Example 4-9 shows the procedure EmployeeDynamicQuery after it has been
converted into a format acceptable to DB2. Some of the statements have been
numbered in order to provide a more complete explanation of the solution.

Example 4-9 Converted DB2 code of Procedure EmployeeDynamicQuery

CREATE PROCEDURE EmployeeDynamicQuery (IN p_departmentl VARCHAR(30),
IN p_department2 VARCHAR(30)) --[1]
LANGUAGE SQL
BEGIN
DECLARE v_FirstName VARCHAR(20) ;
DECLARE v_LastName VARCHAR(20);
DECLARE v_Department VARCHAR(30);

DECLARE at_end SMALLINT DEFAULT 0; --[2]
DECLARE v_SelectStmt VARCHAR(500); --[3]
DECLARE v_Cursor_stmt STATEMENT; --[4]
DECLARE v_Cursor cursor for v_Cursor_stmt;
DECLARE EXIT HANDLER FOR SQLEXCEPTION, SQLWARNING, NOT FOUND --[5]
BEGIN
set at_end =1; --[6]
RESIGNAL;
END;

SET v_SelectStmt = 'SELECT first_name, last_name, department
FROM employees
WHERE department IN (?, ?)

ORDER BY department, last name'; --[7]

PREPARE v_Cursor_stmt FROM v_SelectStmt; --[8]
OPEN v_Cursor USING p_departmentl, p_department2; --[9]
WHILE (at_end = 0) DO --[10]
FETCH v_cursor into v_FirstName,v_TlastName, v_Department; --[11]

INSERT INTO TEMP_TABLE ("CHAR COL")

VALUES (COALESCE(v_FirstName, '') ||' ' ||
COALESCE(v_LastName, '') || ' is in the ' |
COALESCE(v_Department, '') || ' department.');

END WHILE;
COMMIT;
END

160 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Notes

» [1]: The Oracle %TYPE variables are converted to the base data types from
the corresponding DB2 tables.

» [2]: The variable at_end is declared to hold a value that will be set when the
EXIT Handler is executed at [5].

» [3]: The v_SelectStmt variable is declared as varchar(500) so that it will be
large enough to hold the SQL statement for the declared cursor at [7].

» [4]: A statement object is declared to hold the prepared form of v_SelectStmt
at [8].
» [5]: An Exit Handler is declared. This will execute when NO DATA FOUND
during the Fetch statement at [11].

» [6]: When it executes, the Exit Handler sets the value of at_end to 1. This
value will be checked to determine if the WHILE loop at [10] should
continue.

» [7]: Before opening the cursor at [9] the v_CursorStmt object is prepared.

Example 2: SelectRow

The conversion of SelectRow presents the issue of converting Oracle cursor
variables. When the cursor variable is an OUT parameter, it can usually be
converted to DB2 using a Dynamic Result Set. In general, although manual, this
is a very simple conversion.

Example 4-10 shows the Oracle source code of procedure SelectRow.

Example 4-10 SelectRow Oracle source

CREATE PROCEDURE SELECTROW
(pEmp_ID IN EMPLOYEES.EMP_ID%TYPE,
pRow OUT REFPKG.RCT1)

IS
BEGIN
OPEN pRow FOR
SELECT FIRST_NAME, LAST_NAME, DEPARTMENT, BAND
FROM EMPLOYEES
WHERE Emp_ID = pEmp_ID;
END;

Example 4-11 shows the DB2 conversion of the procedure SelectRow. Following
the example is an explanatory note.

Example 4-11 SelectRow DB2 conversion

CREATE PROCEDURE SELECTROW (IN pEmp_ID INTEGER)

Chapter 4. Porting with MTK 161

LANGUAGE SQL

DYNAMIC RESULT SETS 1 -- [1]
BEGIN
DECLARE v_Cursor cursor WITH RETURN -- [2]
TO CALLER for -- 3]
SELECT first_anme,
last_name,
department,
band

FROM employees
WHERE emp_id = pEmpID;

OPEN v_Cursor ; --[4]
END

Notes

» [1] DYNAMIC RESULT SETS: This clause specifies the maximum number of
result to be returned.

» [2] WITH RETURN: This clause indicates that the cursor is intended for use
as a result set from a stored procedure.

» [3] TO CALLER: Specifies that the cursor can return a result set to the caller.
For example, if the caller is another stored procedure, the result set is
returned to that stored procedure. If the caller is a client application, the result
set is returned to the client application.

» [4] The cursor v_Cursor is opened, and stays open, to return the Result set.

4.12.2 Manual deployment of stored procedures

The stored procedures EmployeeDynamicQuery and SelectRow are deployed
into DB2 from a Command Window. Here is the process:

» After creating the procedure, save the script file on your file system:

In order to execute multiple commands, as in a stored procedure, your script
file must end with a terminating character other than the default semi-colon
(;). Some typical termination character choices are !, or @.

» Open a DB2 Command Window in the directory where the converted
procedure source resides:

— To open the DB2 Command Window on Windows:
Click Start and select Programs — IBM DB2 —> Command Window.

— To open the DB2 Command Window on UNIX, open any operating system
Command Window.

162 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

» Connect to the database using the command:
db2 connect to your database_name
or

db2 connect to your database _name USER your userid USING
your_password

» Execute the following from the Command Window (termination character
must be specified):

db2 -td! —vf your_script_file_name

» We recommend to pipe the output to another file so that any messages
generated during the creation may be viewed at a later time. This may be
done as follows:

db2 —td! —vf your script file name > your output file name
Here are the steps implemented for the procedure SelectRow. Although not

shown here, the steps are the same (except for the file names) for the procedure
EmployeeDynamicQuery:

» The script shown in Example 4-12 is created and saved as SelectRow.db2.

Example 4-12 DB2 stored procedure SelectRow

CREATE PROCEDURE SELECTROW (IN pEmp_ID INTEGER)
LANGUAGE SQL
DYNAMIC RESULT SETS 1
BEGIN
DECLARE v_sq1Stmt VARCHAR (200);
DECLARE v_stmt STATEMENT;
DECLARE v_Cursor CURSOR WITH RETURN for v_stmt;
SET v_sqlStmt = 'SELECT FIRST_NAME, LAST_NAME, DEPARTMENT, BAND
FROM EMPLOYEES
WHERE Emp_ID = ?';
PREPARE v_stmt FROM v_sqlStmt;
OPEN v_Cursor USING pEmp_ID;
END ! ** the exclamation point (!) is the termination character.

» Open a DB2 Command Window.
» Connect to the database:
db2 connect to db2_emp
Execute the following command to pipe the output to the message.out file:
db2 —td! —vf Selectrow.db2 > message.out
» DB2 responds with the message:
DB20000I The SQL command completed successfully.

Chapter 4. Porting with MTK 163

The message.out file should be viewed for messages, especially if any
message other than The SQL command completed successfully is returned.

All the objects in our example Oracle database ORA_EMP have now been
successfully converted and deployed into our DB2 database.

164 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Conversion reference

In the previous chapter, we demonstrate how the IBM Migration Toolkit (MTK) is
able to automate the conversion of most Oracle database objects and proprietary
SQL to DB2. However, if your database uses many Oracle proprietary features,
there may be some SQL that the MTK cannot automate. In this chapter, we show
examples of how to perform conversions manually, with a focus on converting
Oracle objects and features that are not automated by the MTK.

We start by exploring tools and methods for building DB2 triggers, functions, and
procedures. Through examples, we look at techniques for converting frequently
used PL/SQL features to DB2 SQL PL code. We also discuss how to build
external procedures and functions using C/C++ and Java.

Although we start this chapter by demonstrating basic syntax for creating
procedures, triggers, and functions in both Oracle and DB2, the intent is to
demonstrate how to convert these objects manually when needed - not to be a
complete reference for developing DB2 SQL PL (other books are available for
that purpose). The reader is expected to have some prior application
development experience in both Oracle PL/SQL and DB2 SQL PL in order to
fully understand the examples used in this chapter.

© Copyright IBM Corp. 2003, 2007. All rights reserved. 165

5.1 Tools

There are two tools commonly used for manually creating or converting stored
procedures, triggers, and functions:

» The Developer Workbench (DWB)
» The DB2 Command Window.

This section provides a brief explanation of each tool.

5.1.1 Developer Workbench

166 Oracle to

The Developer Workbench (DWB) is available as a free download in DB2 9. It is
a visual tool that aids in the rapid development of DB2 business objects. This
newly designed tool is based on the Eclipse framework and replaces the
Development Center from previous versions of DB2.

The following tasks can be executed with DWB:

» Create, view, and edit database objects (such as tables and schemas).
» Explore and edit data in tables and rows.

» Visually build SQL and XQuery statements.

» Develop and deploy stored procedures, user defined functions (UDFs),
routines, and scripts.

» Debug SQL and Java stored procedures.

» Develop SQLJ applications.

» Develop queries and routines for XML data.

» Perform data movement (such as load and extract).

» Collaborate and share projects with team members.

» Migrate projects from the DB2 version 8 DB2 Development Center.
Thorough examination of the capabilities of DWB is beyond the scope of this IBM

Redbooks publication. Detailed information about this tool and its capabilities can
be found in the tutorials:

» DB2 Developer Workbench, Part 1: DW Concepts and Basic Tasks.

» DB2 Developer Workbench, Part 2: Developer Workbench and stored
procedures

» DB2 Developer Workbench, Part 3: Developer Workbench and XML

DB2 Conversion Guide for Linux, UNIX, and Windows

These tutorials may be downloaded from DeveloperWorks at the following Web
site:

http://www.ibm.com/developerworks/views/db2/1ibraryview.jsp?search_b
y=DB2+developer+workbench+(DWB)

Figure 5-1 shows the Developer Workbench interface.

@ Data - ADDNEWEMPLOYEE - DB2 Developer Workbench
File Edit Mavigate Search Project Run Window Help

[- Q- ¥ e m
5. Data Project Explorer 53 = O || £0 ADDNEWEMPLOYEE &2 = 0| 5= outiine
2E ¥ 1CREATE PROCEDURE AddNewEmplovee (p FirstName VARCHAR(20),
= ﬂj db2_emp (db2_emp1:jdbc:db2:fflc 2 p_LastName VARCHAR(20),
£3 SQL Sripts 3 p_Department VRRCHRE(30))
£ XML Queries 4 LANGUAGE SQL
—I-[23 Stored Procedures 5
£4 ADDNEWEMPLOYEE 6 BEGIN
23 XML Schema Documents 7
(23 User-Defined Functions 8 INSERT INTC EMPLOYEES (EMP ID,FIRST NAME,LAST NAME, DEPARTMENT,C
g VALUES (NEXTVAL FOR EMPLOYEE SEQUENCE,p FirstName,p LastName,p
1z CCMMIT;
14END
£ u 12 (1l)
m Database Explorer &2 = [|| Overview | Parameters | Options | Deploy | Source
= <'===D o i =& ¥ ||Properties | Tasks | Problems | O Data Qutput &2 Bookmarks | Navigator
+-.5 CSSAMPLE DB2 Alas] [[status Action [Object Name [db2_emp. ASAMMAS 1 ADDNEWEMPLOYEE(IN p_Firsthan
+|-.03. DB2_EMP [DB2 Alias]
+ E- dbz_emp I[D[DBZUDE! Vo] — ¥ Success Deploy ADDNEWEMPLOYEE Messages | Parameters] Results] Profiling Data]
= @ db2_emp ASAMMAS 1. ADDNEWEMPLOYEE - Deploy started.
* [‘:—; Remate SE;‘::;] 2 S AMMAS 1. ADDNEWEMPLOYEE - Create stored proced
+ EE ASAMMAS1 ASAMMAS 1, ADDNEWEMPLOYEE - Deploy successful,
+-B5 NULLID
+-B5 ora
+-85 squ

+-.5. DB2_EMP2 [DB2 Alias]

el
(1l (»]

[<Logical Folder > Schemas - Connection "db2_emp1™

Figure 5-1 The Developer Workbench

5.1.2 The DB2 Command Window

The DB2 Command Window behaves like a command window from your
operating system. From the DB2 Command Window. you can execute operating

Chapter 5. Conversion reference 167

http://www-128.ibm.com/developerworks/views/db2/libraryview.jsp?search_by=DB2+developer+workbench+(DWB)

system commands, DB2 commands, or SQL statements, and then view the
output.

In this book, the DB2 Command Window is used for the deployment of manually
converted procedures and triggers.

Figure 5-2 shows the DB2 Command Window on AlX.

Figure 5-2 The DB2 Command Window on AIX

Figure 5-3 shows the DB2 Command Window on Windows.

B3 DB2 CLP - DB2v9 -|o| x|

GC:“SQLLIB?~BIN>db2 connect to db2_emp ﬂ
Database Connection Information

Database server = DB2/NT ?7.1.8

8QL authorization ID = ASAMMAS1

Local database alias = DB2_EMP

C:~SQLLIBI~BIN>_

4| | »
Figure 5-3 The DB2 Command Window on Windows

NER

168 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

A complete discussion about the DB2 Command Window can be found in the
following IBM Redbooks publications:

»
»

The Exploitation of DB2 on the Windows Environment, SG24-6893
DB2 Evaluation Guide for Linux and Windows, SG24-6934

5.1.3 Control Center

The Control Center is used to manage and administer systems, DB2 Database
instances, DB2 Database for OS/390 and z/OS subsystems, databases, and
database objects such as tables and views. From the Control Center, you can
access other centers and tools which may assist in optimizing queries; creating
and scheduling jobs and scripts; performing data warehousing tasks; creating
database objects; and working with DB2 and IMS™ commands.

To open the Control Center:

>

In Windows, click Start —~ Programs — IBM DB2 — General
Administration Tools — Control Center.

In Linux, open the IBM DB2 folder on the desktop and click Control Center.
In UNIX, enter the db2cc command from a console window.

Tasks from the Control Center
Some of the key tasks that can be performed using the Control Center are:

>

Add DB2 systems, federated systems, DB2 for z/OS and OS/390 systems,
IMSysplexes, instances, databases, and database objects to the object tree.

Manage database objects. You can create, alter, and drop databases, table
spaces, tables, views, indexes, triggers, and schemas. You can also manage
users.

Manage data. You can load, import, export, and reorganize data. You can
also gather statistics.

Perform preventive maintenance by backing up and restoring databases or
table spaces.

Configure and tune instances and databases.

Manage database connections, such as DB2 Connect servers and
subsystems.

Manage IMS systems.

Manage DB2 for z/OS and OS/390 subsystems.

Manage applications.

Analyze queries using Visual Explain to look at access plans.

Chapter 5. Conversion reference 169

» Launch other tools such as the Command Editor and the Health Center.

In many cases, advisors, launchpads, and wizards are available to help you
perform these tasks quickly and easily.

The Control Center interface
The Control Center interface (Figure 5-4) is available in three different views:

» Basic
This view provides core DB2 functionality, which includes the essential
objects, such as databases, tables, and stored procedures.

» Advanced
This view displays all objects and actions available in the Control Center.
Select this view if you are working in an enterprise environment and want to
connect to DB2 for z/OS or IMS.

» Custom
This view gives you the ability to tailor the object tree and the object actions to
your specific needs.

B |§| Control Center
L

be Control Center
§ 3 Al Systems
7 Al Databases
Bk [DBz EMP

ER ACCOUNTS DB2INST1 USER_DATA_...
ER DEPARTMENTS DB2INST1 USER_DATA ...
B DESTINATION DB2INST1 USER_DATA_...
ER EMPLOYEES DB2INST1 USER_DATA_..

— T Wiews

—] Aliases

= "] Micknarnes

F 7 Cache Okjects

— "3 Triggers

[— "] Schemas

— 7 Indexes

— (77 Tahle Spaces

— T Ewvent Monitors

— ™3 Buffer Pools

3 Application Objects
"EI User and Croup Objects |

e -

™ Tables

Actions: Select an object from the list abow

ogp Create Mew Table

Figure 5-4 The DB2 Control Center Interface

170 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.1.4 Recommended reading materials

Reading DB2 SQL PL: Essential Guide for DB2 UDB on Linux, UNIX, Windows,
i5/0S, and z/0OS, ISBN 0131477005, is recommended for learning DB2 SQL PL.
This book provides full coverage of SQL procedures, functions, and triggers.
Paul Yip, a co-author of the book, provided technical consultation and some of
the material for this chapter.

The following DB2 9 manuals are also good sources of information:

SQL Reference Volume 1, SC10-4249

SQL Reference Volume 2, SC10-4250

Getting Started with Database Application Development, SC10-4252
Quick Beginnings for DB2 Servers, GC10-4246

Quick Beginnings for DB2 Clients, GC10-4242

vyvyVvyyvyy

5.2 Comparing SQL PL and inline SQL PL

DB2 SQL procedures are created using a high level language known as DB2
SQL Procedural Language (often called SQL PL), which has many direct
equivalents and mappings to Oracle’s PL/SQL language. Therefore, converting
Oracle stored procedures to DB2 stored procedures is usually straightforward.
For triggers, functions, and dynamic compound statements, DB2 uses a subset
language called inline SQL PL. Before looking at code samples here, it is
important to clarify the difference between SQL PL and inline SQL PL.

SQL procedures are processed natively but compiled into a package. SQL
functions and triggers are inlined into the query/SQL statement. This
implementation difference results in some SQL PL elements that are supported
in SQL procedures, but not in triggers and UDFs. SQL PL support in triggers and
UDFs is a subset of that in stored procedures and includes support for the
following SQL PL elements:

DECLARE <variable>
FOR

GET DIAGNOSTICS
IF

ITERATE

LEAVE

SIGNAL

WHILE

SET

v

vVVYyVYyVYVYVYYVYY

The following subsections discuss the basics of creating DB2 stored procedures,
triggers, and user-defined functions. We also compare variable declaration,

Chapter 5. Conversion reference 171

conditional statements, and flow of control statements between Oracle PL/SQL
and DB2 SQL PL. This chapter (from 5.2, “Comparing SQL PL and inline SQL
PL’ onward) is organized to serve as a convenient quick reference for you when
converting specific features of Oracle PL/SQL to DB2 SQL PL.

For the full documentation of SQL PL features, refer to IBM DB2 SQL Reference,
Volume 1, SC09-4844; Volume 2, SC09-4845; or DB2 SQL Procedural
Language for Linux, UNIX, and Windows.

Delimiter

In DB2, statements in trigger, function, and procedure are separated by a
semi-colon (;) which also is the default statement terminator when running a
group of SQL statements in DB2 CLP. Therefore, in trigger, procedure, or
function, a semi-colon (;) cannot be used as the terminator. You can choose
other characters such as @ or ! as the termination character. All the DB2
examples in this chapter use ! as the termination character. To execute the file
which contains the function, trigger, or procedure to create the object in DB2, use
the following command:

db2 -td<termination_character> -f file-name

Where termination_character = @ or ! etc. For example, if the termination
character is ! and file-name is testproc.db2, the command will be:

db2 -td! -f testproc.db2

5.2.1 Create procedure

172

Oracle uses the following syntax to create a stored procedure:

CREATE OR REPLACE PROCEDURE process_withdrawal(Account_Id VARCHAR2
,Cheque_No VARCHARZ
,Amount NUMBER

, RetValue OUT NUMBER)

IS

DB2 uses slightly different syntax:

CREATE PROCEDURE process_withdrawal (IN Account_Id VARCHAR(10)
,IN Cheque_No VARCHAR(10)
,IN Amount DECIMAL(10,2),
,0UT RetValue INTEGER)

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Notes:

» DB2 does not support the REPLACE clause in the create procedure
statement, so you may want to drop the procedure before creating one.
When developing procedures using the Developer Workbench, the tool
may be configured so that procedures are automatically dropped if you
choose to rebuild a procedure.

» DB2 does not allow a character data type to be specified without length. As
a result, the declaration for a % TYPE column (to which a parameter
corresponds) must be checked for proper declaration. If converting with the
MTK, this is done for you automatically.

» Output parameters of mode OUT or INOUT must be identified as such
because mode IN is the default

5.2.2 Create trigger

This section presents a high-level overview of the differences in trigger
definitions between Oracle and DB2. For a detailed description of triggers, refer
to the following IBM Redbooks publications:

» Developing SQL and External Routines, SC10-4373
» SQL Reference Volume 2, SC10-4250

Example 5-1 shows a simple Oracle trigger, which has set a value to a table
column before inserting a row.

Example 5-1 Simple Oracle trigger

CREATE OR REPLACE TRIGGER connect_audit_trg
BEFORE INSERT ON connect_audit
FOR EACH ROW

BEGIN
:new.timestamp := SYSDATE;

END;

Example 5-2 shows how to define the corresponding trigger in DB2.

Example 5-2 Simple DB2 trigger

CREATE TRIGGER connect_audit_trg
NO CASCADE BEFORE INSERT ON connect_audit
REFERENCING NEW AS n
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
SET n.timestamp = CURRENT TIMESTAMP;
END!

Chapter 5. Conversion reference 173

Notes:

» DB2 does not support the REPLACE clause in the create trigger
statement, so you may want to drop the trigger before creating one.

» The NO CASCADE statement is an option for BEFORE triggers. It
specifies that the triggered action of the trigger will not cause other triggers
to be activated.

» With the REFERENCING NEW AS n clause, you can associate a
qualifier n to the new values provided by the initiated insert statement.

» DB2 supports BEFORE and AFTER triggers for UPDATE and DELETE for
each row changed. For each statement changed, only AFTER triggers are
supported.

Example 5-3 is an Oracle trigger that inserts some values of a deleted row into a
history table.

Example 5-3 Oracle trigger with DML command

CREATE TRIGGER emp_history trg
AFTER DELETE ON employees
FOR EACH ROW
BEGIN
INSERT INTO emp_history(emp_id
,first name
,last_name)
VALUES (:old.emp_id
,:0ld.first _name
,:01d.Tast_name);
END;

Example 5-4 shows how to define the corresponding trigger in DB2.

Example 5-4 DB2 trigger with DML command

CREATE TRIGGER emp_history trg
AFTER DELETE ON EMPLOYEES
REFERENCING OLD AS d
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO emp_history (emp_id
,first_name
,1ast_name)
VALUES (d.emp_id
,d.first_name
,d.last_name);
END!

174 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Note that DB2 does not allow a DML statement in BEFORE triggers. This means
that the Oracle BEFORE trigger that contains UPDATE, INSERT or DELETE
statements will be converted to a DB2 AFTER trigger—and thus, this trigger will
be activated afer the statement is executed.

MERGE statement and triggers

The MERGE statement can execute update, delete, and insert operations. The
applicable UPDATE, DELETE, or INSERT triggers are activated for the MERGE
statement when an update, delete, or insert operation is executed.

5.2.3 Create function

A function that is created by a user that is not one of the built-in functions in DB2
is called a user-defined function (UDF). DB2 supports five different kinds of
functions:

» SQL scalar, table, or row function
» Sourced or template function

» OLE DB function

» External table function

» External scalar function

In this chapter, we discuss only SQL functions. For a description of the other
function types, refer to SQL Reference, Volume 2, SC10-4250.

The most common UDF definition for SQL functions looks like the one shown in
Example 5-5.

Example 5-5 Common UDF definition

CREATE FUNCTION function_name (parameters)
RETURNS return_type
LANGUAGE SQL
READS SQL DATA
RETURN statement

Example 5-6 illustrates a DB2 UDF that duplicates an Oracle built-in function
WIDTH_BUCKET:

Example 5-6 DB2 UDF of Oracle function WIDTH_BUCKET

CREATE FUNCTION DB2ADMIN.width_bucket(col_val double, Tow_val double,
high_val double, num_of buck int)
RETURNS integer

Chapter 5. Conversion reference 175

F1: BEGIN ATOMIC

declare v_each_buck double default 0.00;
declare result int default 0;

if col_val < low_val then return 0;

end if;

if col_val > high_val then return num_of buck + 1;
end if;

set v_each_buck = (high_val - low_val)/num_of buck;
set result = ((col_val - low_val)/v_each_buck)+ 1;
return result;

END

Notes
» Input parameters are optional. However, the parentheses () are mandatory.

» The mandatory return type is one of the following kinds:

— Scalar
A scalar function returns a single value each time it is invoked, and is
generally valid wherever an SQL expression is valid. A scalar function
cannot contain a DML statement (UPDATE, INSERT, and DELETE).

When converting an Oracle function that contains those statements, you
can convert it to DB2 stored procedure or user-defined table function,
because those functions allow the MODIFY SQL clause, and can contain
a DML statement.

— Table
A table function may be used in a FROM clause and returns a table.
Example 5-7 shows a table function that contains a DML statement and
allows you to MODIFY SQL DATA.

Example 5-7

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
RETURNS TABLE (EMPNO CHAR(6),
LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))
LANGUAGE SQL
MODIFIES SQL DATA

176 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

NO EXTERNAL ACTION
DETERMINISTIC
BEGIN ATOMIC
INSERT INTO AUDIT
VALUES (USER,
'Table: EMPLOYEE Prd: DEPTNO = ' CONCAT DEPTNO);
RETURN
SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO
END

— Row
A row function may be used as a transform function and returns a row.

» LANGUAGE SQL is an optional statement.
» READS SQL DATA is optional and is implied by default for the SQL function.

» Following to the RETURN keyword, you have to specify the SQL function
body.

5.2.4 Variables declaration and assignment

Oracle PL/SQL permits declaring variables in four different places:

v

In a parameter list of a stored procedure or function
Within the body of a stored procedure, function, or trigger
Within a package declaration

Within a package body declaration

vyvvyy

In DB2, the notion of package is unrelated to Oracle’s concept of a package as a
logical grouping of functions and procedures. In DB2, schemas are used as the
means of logically grouping procedures and functions. For this reason, variables
can be declared:

» In a parameter list of a stored procedure or function
» In the body of a stored procedure, function, or trigger

DB2 SQL PL supports native data types and user-defined distinct types for the
variable declaration. It requires the DECLARE clause, and uses the optional
DEFAULT clause to initialize variables. For example, here is a PL/SQL
declaration:

1_balance NUMBER(10,2) :=0.0;

This is converted to SQL PL as:
DECLARE 1_balance NUMERIC(10,2) DEFAULT 0.0;

Chapter 5. Conversion reference 177

Note: Variable declarations in a DB2 SQL procedure have to be placed in the
BEGIN ... END block.

SQL PL uses a SET statement to assign values to variables. Here, for example,
is a PL/SQL assignment:

1_balance := 19.99;

This will be converted as:
SET 1_balance = 19.99;

Note: The SET statement also can be used to assign a local variable with a
table column value:

SET 1 _balance =(SELECT balance from account info where account no =
actNo);

The SELECT statement should return one row only. An error will be returned if
more then one row is selected. You can use a FETCH FIRST n ROWS in the
SELECT statement to control the number of rows returned.

Oracle supports defaults for parameters in the parameters list of a procedure or
function. DB2 does not support such defaults; that requires the addition of the
logic to duplicate the same behavior. The following is an Oracle parameters
assignment example:

CRETAE procedure create_dept (
new_dept IN CHAR DEFAULT ‘TEMP’
dept_numb IN NUMBER DEFAULT 0)

This can be converted to DB2 as follows:

CREATE PROCEDURE create dept (new_dept char(5), dept_numb INT)
BEGIN
IF new_dept = NULL THEN
SET new_dept = ‘TEMP’;
END IF;
IF dept_numb = NULL THEN
SET dept_numb = 03
END IF;

178 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.2.5 Conditional statements and flow control

SQL PL and PL/SQL provide similar functionality and syntax for conditional
statements and a variety of LOOP statements to provide flow control. Table 5-1
maps Oracle PL/SQL statements to DB2 SQL PL.

Table 5-1 Mapping of conditional statements

Oracle PL/SQL DB2 SQL PL
IF - THEN - END IF; IF - THEN - END IF;
IF - THEN - ELSE - END IF; IF - THEN - ELSE - END IF;
IF - THEN - ELSIF - END IF; IF - THEN - ELSEIF - END IF;
LOOP [L1:] LoOP
statements; statements;
END LOOP; LEAVE L1;
END LOOP [L1];
WHILE condition LOOP WHILE condition DO
statements; statements;
END LOOP; END WHILE;
LOOP REPEAT
statements; statements;
EXIT WHEN condition; UNTIL condition;
END LOOP; END REPEAT;
OPEN cursor_variable FOR FOR variable AS cursor_name
select_statement; CURSOR FOR select_statement DO
statements;
END FOR;

Note: If cursor variable is a REF
cursor, DB2 would define the
cursor and open it with RETURN TO

CLIENT/CALLER.

FOR 1_count IN No corresponding statements, but the

Tower_bound ..upper_bound MTK will convert it as:

LOOP

statements; SET 1 _count = Tower_bound;

END LOOP; WHILE 1_count <= upper_bound DO

statements;
SET 1_count = 1_count + 1;

END WHILE ;

Chapter 5. Conversion reference 179

Oracle PL/SQL DB2 SQL PL

CASE expression CASE expression

WHEN condition_1 THEN result_1 WHEN cond_1 THEN statementl

WHEN condition_2 THEN result_2 WHEN cond_2 THEN statement2 ...
. WHEN condition_n THEN WHEN cond_n THEN statementN

result n ELSE result END ELSE statement END

5.3 Dynamic SQL

In Chapter 4, “Porting with MTK” on page 89, we provide a conversion example
of the Oracle DBMS_SQL package, which the MTK does not support.
DBMS_SQL can be converted using dynamic SQL in DB2.

In this section, we provide additional examples that show how to convert
dynamic SQL

Example 1 - get_emp_name

Example 5-8 and Example 5-9 are two Oracle stored procedures that use
dynamic SQL. Example 5-8 uses the DBMS_SQL package.

Example 5-8 PL/SQL procedure with usage of DBMS_SQL

CREATE PROCEDURE get emp_name v1(emp id NUMBER) AS

cursor_name INTEGER;

rows_processed INTEGER;

sql_stmt VARCHAR2(1000) ;
BEGIN

cursor_name := dbms_sql.open_cursor;

sql_stmt := 'SELECT last_name FROM employees WHERE emp_id = :x';
DBMS_SQL.PARSE(cursor_name, sql_stmt, dbms_sql.native);
DBMS_SQL.BIND_VARIABLE(cursor_name, ':x', emp_id);

rows_processed := dbms_sql.execute(cursor_name);
DBMS_SQL.close_cursor(cursor_name) ;
EXCEPTION

WHEN OTHERS THEN
DBMS_SQL.CLOSE_CURSOR(cursor_name) ;
END;

Example 5-9 shows a procedure with the same behavior using dynamic SQL.
(Dynamic SQL is available in Oracle since version 8).

Example 5-9 PL/SQL procedure with usage of native dynamic SQL

180 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

CREATE OR REPLACE PROCEDURE get_emp_name_v2(emp_id IN NUMBER) AS
sql_stmt VARCHAR2(1000);
v_result VARCHAR2(20);
BEGIN
sql_stmt := 'SELECT last_name FROM employees WHERE emp_id = :x';
EXECUTE IMMEDIATE sql_stmt
INTO v_result
USING emp_id;
dbms_output.put_line(v_result.last_name);
END;

When using the MTK to convert the procedure get_emp_name_v2(), it will report
that the EXECUTE IMMEDIATE command cannot be converted because the MTK
cannot guarantee the correctness of converted dynamic SQL (only a true runtime
test can determine correctness). DB2 supports dynamic SQL in procedures
using the same type of syntax supported in Oracle (see Example 5-9). If the
dynamic SQL statement is an INSERT, UPDATE, or DELETE statement,
conversion to DB2 is usually straightforward. If the dynamic statement is a
SELECT, however, it needs to be converted using a dynamic cursor in DB2 (as
shown in Example 5-10).

Example 5-10 SQL PL procedure with native dynamic SQL

CREATE PROCEDURE get _emp name v2 (IN emp_id FLOAT)
LANGUAGE SQL
BEGIN

DECLARE v_dyn_sql VARCHAR(1000) ;

DECLARE v_sql _stmt STATEMENT;

DECLARE c_employees CURSOR FOR v_sql_stmt;

SET v_dyn_sql = 'SELECT last_name FROM employees WHERE emp_id = '
|| CHAR(emp_id);
PREPARE v_sql_stmt FROM v_dyn_sql;
OPEN c_employees;
-- FETCH ...
CLOSE c_employees;
END!

Example 2: update_emp_office

Example 5-11 shows a DB2 stored procedure with a dynamic UPDATE
statement.

Chapter 5. Conversion reference 181

Example 5-11 Dynamic UPDATE with EXECUTE IMMEDIATE

CREATE PROCEDURE update emp office vl (IN v_emp_id FLOAT
,IN v _office id FLOAT
,OUT v_num_changes INTEGER)
LANGUAGE SQL
BEGIN
DECLARE v_dyn_sql VARCHAR(1000) ;

SET v_dyn_sql = 'UPDATE employees' ||
' SET office_id = ' || CHAR(v_ office id) ||
' WHERE emp_id = ' || CHAR(v_emp_id);
EXECUTE IMMEDIATE v_dyn sql;

GET DIAGNOSTICS v_num_changes = row_count;
END!

In Example 5-8, the variable rows_processed contained the number of rows
affected by the dynamic SQL statement. In DB2, the same result can be
achieved using GET DIAGNOSTICS. With the GET DIAGNOSTICS statement,
the number of row changed due to the last INSERT, UPDATE, or DELETE may
be returned.

Use EXECUTE IMMEDIATE if the SQL statement only needs to be executed
once or infrequently. If the SQL statement needs to be executed repeatedly, use
the PREPARE and EXECUTE statements.

When using the EXECUTE statement, parameter markers can be employed.
Parameter markers are designated by the question mark (?), as shown in
Example 5-12. Be aware that the EXECUTE statement cannot be used with a
SELECT or VALUES statement.

Example 5-12 demonstrates the use of a dynamic SQL statement using
PREPARE and EXECUTE instead of EXECUTE IMMEDIATE.

Example 5-12 Dynamic UPDATE with EXECUTE and PREPARE

CREATE PROCEDURE update_emp_office_v2 (IN v_emp_id FLOAT
,IN v_office_id FLOAT
,OUT v_num_changes INTEGER)
LANGUAGE SQL

BEGIN
DECLARE v_dyn_sql VARCHAR(1000) ;
DECLARE v_stmt STATEMENT;

182 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

SET v_dyn_sql = 'UPDATE employees' ||
' SET office_id = ?' ||
" WHERE emp_id = ?';

PREPARE v_stmt FROM v_dyn_sql;
EXECUTE v_stmt USING v_office_id, v_emp_id;

GET DIAGNOSTICS v_num_changes = row_count;
END!

Example 3: get_max_band

Example 5-13 demonstrates a Java user-defined function (UDF) with dynamic
SQL. The function uses the invoker’s database connection with all its
authentications. The prepare is followed by the assignment of an input variable
called in0fficelD, to the value of the parameter marker. The SQL statement
may contain a full-select.

Example 5-13 Java UDF with dynamic SQL

import COM.ibm.db2.app.*;
import java.sql.*;

public class UDFemp extends UDF

{
public void maxBand(int in0fficeID, String outBand)
throws Exception

{
try

{
// Get caller's connection to the database
Connection con =
DriverManager.getConnection("jdbc:default:connection");

String query = "SELECT max(band) " +
"FROM employees " +
"WHERE office_id = ?";

PreparedStatement stmt = con.prepareStatement(query);
stmt.setInt(l, inOfficeID);

ResultSet rs = stmt.executeQuery();

while(rs.next())

{

Chapter 5. Conversion reference 183

outBand = rs.getString(1);
}

set(2, outBand);

rs.close();
stmt.close();
con.close();

}

catch (SQLException sqle)

{
setSQLstate("38999");
setSQLmessage("SQLCODE = " + sqle.getSQLState());
return;

}

The corresponding CREATE FUNCTION statement for this Java UDF is shown
in Example 5-14:

Example 5-14 The CREATE FUNCTION statement for a Java UDF

CREATE FUNCTION get max_band(INTEGER)
RETURNS CHAR

EXTERNAL NAME 'UDFemp!maxBand'

FENCED

CALLED ON NULL INPUT

VARIANT

READS SQL DATA

PARAMETER STYLE DB2GENERAL

LANGUAGE JAVA

NO EXTERNAL ACTION!

5.4 Cursor conversion

Because DECLARE CURSOR syntax is not supported in triggers and functions,
it is usually the case that some manual conversion of cursors may required.

This section covers the conversion of cursors in stored procedures. The
examples focus on methods for converting Oracle explicit cursors in function, as
well as how to handle converting cursor attributes.

184 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

In general, Oracle PL/SQL and DB2 SQL PL are similar in their syntax and
support for cursor operations; Table 5-2 lists some of the similarities and

differences.

Table 5-2 Mapping Oracle and DB2 Cursor operation

Operation

Oracle

DB2

Declaring a cursor

CURSOR cursor_name
[(cursor_parameter(s))]
IS select_statement,

DECLARE cursor_name
CURSOR [WITH HOLD] [WITH
RETURN] [TO CALLER | TO
CLIENT] FOR
select-statement

Opening a cursor

OPEN cursor_name
[(cursor_parameter(s))];

OPEN cursor_name [USING
host-variable]

Fetching from cursor

FETCH cursor_name INTO
variable(s)

FETCH [from] cursor_name
INTO variable(s)

Update fetched row

UPDATE table_name
SET statement(s)...
WHERE CURRENT OF

cursor_name;

UPDATE table_name
SET statement(s)...
WHERE CURRENT OF

cursor_name

Delete fetched row

DELETE FROM table_name
WHERE CURRENT OF
cursor_name;

DELETE FROM table_name
WHERE CURRENT OF
cursor_name

Closing cursor

CLOSE cursor_name;

CLOSE cursor_name

5.4.1 Converting an explicit cursor in a procedure

An Oracle SQL cursor is defined similar to a variable in a procedure. The
definition is in the stored procedure specification. Example 5-15 is a sample
Oracle procedure with an explicit cursor defined in the specification.

Example 5-15 Oracle procedure with explicit cursor

PROCEDURE get sum projects(v_office id IN NUMBER
,sum projects OUT NUMBER)
AS
v_prj NUMBER(3);
CURSOR c1 IS
SELECT current_projects
FROM employees
WHERE office_id = v_office_id;
BEGIN
sum_projects := 0;

Chapter 5. Conversion reference 185

OPEN c1;
LOOP
FETCH c1 INTO v_prj;
EXIT WHEN c1%NOTFOUND;
sum_projects := sum_projects + v_prj;
END LOOP;
END;

In DB2, the SQL cursor must be defined in the procedure body. To use
procedure parameters within the cursor, the SQL statement for the cursor must
be defined and prepared. Example 5-16, which is the conversion of the source in
Example 5-15, shows a cursor definition and the PREPARE statement.

Example 5-16 DB2 Stored procedure showing conversion of an explicit cursor

CREATE PROCEDURE get_sum_projects(IN v_office_id INTEGER
,OUT sum_projects INTEGER)
BEGIN
DECLARE SQLCODE INT DEFAULT 0;
DECLARE v_prj SMALLINT default 0;
DECLARE v_no_data SMALLINT DEFAULT 0;

DECLARE c1 CURSOR FOR
SELECT current_projects
FROM employees
WHERE office_id = v_office_id;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET v_no_data = 1;

SET sum_projects = 0;
OPEN c1;
FETCH c1 INTO v_prj;
WHILE (v_no_data =0)
DO
SET sum_projects = sum_projects + v_prj;
FETCH c1 INTO v_prj;

END while;
CLOSE cl;

END!

186 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.4.2 Converting an explicit cursor in functions and triggers

It is important to understand that DB2 triggers and functions must use inline SQL
PL. Oracle cursor operations in triggers and functions, such as explicit cursors,
must be converted to the corresponding inline SQL PL syntax.

In 4.12, “Manual conversion for ORA_EMP database objects” on page 153, we
provide an example of converting an explicit cursor in a trigger. Here,

Example 5-17 shows how to convert an Oracle explicit cursor in a function using
a FOR LOOP. The same method may be used in procedures; in fact, using a
FOR cursor can yield better performance results.

Example 5-17 shows the Oracle function source code.

Example 5-17 Function with an explicit cursor in Oracle

CREATE OR REPLACE FUNCTION CountProjects (
/* Returns the number of projects in which the employee
identified by p_emp ID is currently engaged */
p_empID IN employees.emp ID%TYPE)
RETURN NUMBER AS

v_TotalProjects NUMBER;

-- Total number of projects
v_AccountProjects NUMBER;

-- projects for one account
CURSOR c_DeptAccts IS
SELECT dept_code, acct_id FROM employees
WHERE emp_id = p_empID;
BEGIN

FOR v_AccountRec IN c_DeptAccts LOOP
-- Determine the projects for this account.

SELECT num_projects INTO v_AccountProjects
FROM accounts WHERE dept code = v_AccountRec.dept code
AND acct_id = v_AccountRec.acct_id;

-- Add it to the total so far.
v_Totalprojects := v_Totalprojects + v_AccountProjects;

END LOOP;

RETURN v_Totalprojects;

Chapter 5. Conversion reference 187

END CountProjects;

The converted DB2 code is shown in Example 5-18.

Example 5-18 Conversion using a FOR LOOP in DB2

CREATE FUNCTION CountProjects(p_empID INTEGER)
RETURNS INTEGER
LANGUAGE SQL
BEGIN ATOMIC
DECLARE v_TotalProjects INT DEFAULT 0;
DECLARE v_AccountProjects INT;
X: FOR v_DeptAccts as -[1]
Select dept code, acct_id
FROM employees
WHERE emp_id = p_empID
DO
SET v_AccountProjects = (
SELECT num_projects -[2]
FROM accounts
WHERE dept code = v _DeptAccts.dept code
AND acct_id = v_DeptAccts.acct_id);
SET v_Totalprojects = v_Totalprojects + v_AccountProjects;
END FOR X;
RETURN v_Totalprojects;
END!

The notes in Example 5-18 are explained as follows:

[1] The FOR LOOP X is declared and the values that will be used in the
WHERE clause in the SET statement are selected.

[2] SELECT INTO is not supported in inline SQL. The equivalent can be
achieved using the SET statement.

5.4.3 Converting cursor attributes

Oracle supports cursor attributes to get information about the current status of a
cursor. In DB2, SQLCODE or SQLSTATE can be used to obtain the same
information. Table 5-3 shows the mapping of Oracle cursor attributes to DB2
SQLCODE/SQSTATE values.

188 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 5-3 Mapping of cursor attributes

Oracle DB2
%ISOPEN Upon open a cursor, DB2 SQLCODE -502 is

returned if the cursor is already open. On
FETCH, SQLCODE -501 is returned if the cursor
is not open yet.

However, In DB2 procedure, you will not be able
to test for any negative sqlcodes (exceptions)
unless they are contained within an exception
handler because control will be returned to the
calling application or procedure.

If %isopen is used to test if a cursor is open
before closing it, it may not be needed in DB2.
DB2 will close the cursor for you.

The SQLSTATE associated with SQLCODE -501 is

24501.

The SQLSTATE associated with SQLCODE -502 is

24502
%NOTFOUND if (SQLCODE = 100) or if SQLSTATE = €02000°
%FOUND if (SQLCODE = 0) or if SQLSTATE = 00000’
%ROWCOUNT Use a counter variable to retrieve number of rows fetched

from the cursor

The following examples demonstrate how to convert these Oracle attributes to
DB2.

%ISOPEN

Consider the following Oracle code fragment that uses %ISOPEN:

IF c1%ISOPEN THEN
fetch cl into varl;
ELSE -- cursor is closed, so open it
OPEN c1;
fetch cl into varl;
END IF;

You can implement the same logic in DB2 using CONDITION HANDLER:

DECLARE cursor_notopen CONDITION FOR SQLSTATE 24501;
DECLARE CONTINUE HANDLER FOR cursor_notopen
BEGIN

Chapter 5. Conversion reference 189

190

open cl;
FETCH cl int varl;
END;

FETCH cl into varl;

For a more detailed discussion of CONDITION HANDLERS, refer to 5.6,
“Condition handling” on page 200.

%NOTFOUND
Here is an Oracle example that uses %NOTFOUND:

OPEN curl;
LOOP
FETCH curl INTO v_varl;
EXIT WHEN curl%NOTFOUND;

END LOOP;

In DB2, this can be implemented by using CONDITION HANDLERS or by
checking the SQLCODE value:

DECLARE SQLCODE int DEFAULT 0;
OPEN c1;
L1: LOOP
FETCH c1 INTO v_varl;
IF SQLCODE = 100 THEN
LEAVE L1;
END IF;

END LOOP L1;

%ROWCOUNT

SQL %ROWCOUNT yields the number of rows affected by an INSERT,
UPDATE, or DELETE statement, or returned by a SELECT INTO statement.
%ROWCOUNT yields 0 if an INSERT, UPDATE, or DELETE statement affected
no rows, or if a SELECT INTO statement returned no rows.

The use of %ROWCOUNT can be demonstrated by the following Oracle
examples. First, consider the example that uses %ROWCOUNT to determine the
condition for the loop:

LOOP
FETCH c1 INTO my_ename, my_deptno;
IF c1%ROWCOUNT > 10 THEN

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

EXIT;
END IF;

END LOOP;

This Oracle code will process only the first 10 rows for the given cursor. This
logic can be implemented in DB2 using the FETCH FIRST N ROWS ONLY
clause in the cursor declaration, and processing this cursor till NOT FOUND.

DECLARE c1 CURSOR FOR
SELECT ename, deptno
FROM emp_table
FETCH FIRST 10 ROWS ONLY;

DECLARE CONTINUE HANDLER FOR NOT FOUND
BEGIN
SET end-of-fetch = 1;
END;

L1: LOOP
FETCH c1 INTO my ename, my deptno;
IF end-of-fetch = 1 THEN
LEAVE L1;
END IF;

END LOOP L1;
If % ROWCOUNT is used to determine how many rows from the cursor have
been processed at any given time, it will look like the following Oracle code:

LOOP
FETCH cl1 INTO my_ename, my_deptno;
IF c1%ROWCOUNT > 10 THEN

END IF;

END LOOP;
In DB2, you would need to use a local variable (counter) to store this information
after each fetch from the cursor:

DECLARE v_CURCOUNT INT DEFAULT 0;

L1: LOOP
FETCH c1 INTO my_ename, my deptno;

Chapter 5. Conversion reference 191

v_CURCOUNT = v_CURCOUNT + 1;
IF VCURCOUNT > 10 THEN

END LOOP L1;
In the following example, %ROWCOUNT is used to take action if more than ten
rows have been deleted:

DELETE FROM emp_table WHERE ...
IF SQL%ROWCOUNT > 10 THEN -- more than 10 rows were deleted

END IF;
DB2 uses the GET DIAGNOSTICS statement to return the number of rows
affected by an INSERT, UPDATE, or DELETE statement:

DECLARE rc INT DEFAULT O0;

GET DIAGNOSTICS rc = ROW_COUNT;
IF rc¢ > 10 THEN -- more than 10 rows were deleted

END IF;

Important: The GET DIAGNOSTICS statement is not supported for the
SELECT or SELECT INTO statement. Note the following points:

» SQLCODE will be 100 if no row is selected.

» SQLCODE will be 0 if one row is selected.

» SQLCODE will be -811 (SQLSTATE 21000 - SQLERROR) if more than
one row is selected.

%FOUND

Note that Oracle treats any SQL statement as an implicit cursor. Implicit cursor
attributes return information about the execution of an INSERT, UPDATE,
DELETE, or SELECT INTO statement.

The values of the implicit cursor attributes always refer to the most recently
executed SQL statement. Before Oracle opens the SQL cursor, the implicit
cursor attributes yield NULL.

In the following example, %FOUND is used to insert a row if a delete succeeds:

192 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DELETE FROM emp WHERE empno = my_empno;
IF SQL%FOUND THEN -- delete succeeded
INSERT INTO emp_table VALUES (my_empno, my_ename);

This code can be converted to DB2 as follows:

DELETE FROM emp WHERE empno = my_empno;
IF SQLCODE = 0 THEN -- delete succeeded
INSERT INTO emp_table VALUES (my_empno, my_ ename);

5.5 Collections

A collection is Oracle’s version of arrays. A collection is a single-dimension list of
an ordered group of elements, all of the same type (for example, bonuses for
employees). Each element has a unique subscript that determines its position in
the collection.

Oracle PL/SQL provides two kinds of collections: nested tables and variable-size
arrays (also known as varrays). Collections can have only one dimension, and
must be indexed by integers. Collections can be passed as parameters—thus,
they can be used to move columns of data into and out of database tables, or
between stored procedures and client-side applications.

5.5.1 Nested tables and varrays

To understand how nested tables and varrays can be converted to DB2, we first
address the difference between Oracle nested tables and varrays.

Nested tables are items of type TABLE within the database. You can view nested
tables as one-column database tables or one-dimension arrays. Oracle stores
the rows of a nested table in no particular order. But when you retrieve the
nested table into a PL/SQL variable, the rows are given consecutive subscripts
starting at 1.

Unlike variable arrays, which have a fixed size, nested tables can grow
dynamically with no upper bound. Another difference is that variable arrays must
have consecutive subscripts, which prevents you from deleting individual
elements from an array. Initially, nested tables have consecutive subscripts, but
they can be sparse (that is, have nonconsecutive subscripts).

Because DB2 does not support collections, the most generic way to convert a
nested table is by using the DB2 Declared Global Temporary Table (DGTT),
where the first column stores the value of the subscript, and the second column
stores the value of Oracle nested table.

Chapter 5. Conversion reference 193

Note: DB2 temporary tables are not similar to Oracle temporary tables. DB2
temporary tables are memory-bound (provided that sufficient memory is
available). They are visible only to the connection that declares it, and they
exist only for as long as a connection is maintained (or dropped). If you
disconnect, the table is automatically cleaned up.

Tip: To use DGTTs, you must create a user temporary table space (none
exists by default). In the simplest case, you can use:

create user temporary tablespace usertempl managed by system using
('usertempl')

The size of the buffer pool associated with this table space will affect how
memory-bound DGTTs are at runtime.

To clarify this concept, refer to Example 5-19; it fills the nested table EmpList with
names of the employees for a given department from table emp_table.

Example 5-19 Oracle code using nested table

DECLARE
TYPE EmpList IS TABLE OF emp_table.ename%TYPE ;
CURSOR c1 IS
SELECT emp_name
FROM emp_table
WHERE dept = v_dept;
EmpName emp_table.ename%TYPE;
empNum NUMBER;
BEGIN
LOOP
FETCH c1 INTO EmpName;
WHEN c1%NOTFOUND EXIT;
empNum := empNum + 1;
EmpList (empNum) := EmpName;
END LOOP;
CLOSE c1;
END;

The same can be implemented in DB2 using DGTT, as shown in Example 5-20.

Example 5-20 DB2 code using DGTT

DECLARE SQLCODE INT DEFAULT O0;

194 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DECLARE v_empname varchar(30);
DECLARE v_num INT DEFAULT 0;
DECLARE c1 CURSOR FOR
SELECT emp_name
FROM emp_table
WHERE dept = v_dept;
DECLARE GLOBAL TEMPORARY TABLE SESSION.temp_emp_list
(num integer, EmpName varchar(30))
WITH REPLACE
ON COMMIT PRESERVE ROWS
NOT LOGGED;

OPEN c1;
WHILE (SQLCODE = 0) DO
FETCH c1 INTO v_empname;
SET v_num = v_num +1;
INSERT INTO SESSION.temp_emp_list
VALUES (v_num,v_empname) ;
END WHILE;
CLOSE cl1;

The code is even more efficient if converted as shown in Example 5-21.

Example 5-21 Efficient DB2 code using DGTT

DECLARE GLOBAL TEMPORARY TABLE SESSION.temp emp list
(num integer,EmpName varchar(30))

WITH REPLACE

ON COMMIT PRESERVE ROWS

NOT LOGGED;

INSERT INTO session.temp emp Tist
SELECT row_number() over(), emp_name
FROM emp_table
WHERE dept = v_dept;

To convert Oracle varrays, you can also use DGTT—or sometimes the redesign
can help achieve the same functionality.

5.5.2 Bulk collect

In Oracle 8i and higher, you can fetch more than one row at a time into a
collection by using the BULK COLLECT clause. This clause is used as part of the

Chapter 5. Conversion reference 195

SELECT INTO, FETCH INTO, or RETURNING INTO clause, and will retrieve
rows from the query into indicated collections.

Example 5-19 on page 194 can be rewritten using the BULK COLLECT clause
as follows:

DECLARE
TYPE EmpList IS TABLE OF emp_table.ename%TYPE ;
CURSOR c1 IS
SELECT emp_name
FROM emp_table
WHERE dept = v_dept;
BEGIN
OPEN c1;
FETCH cl1 BULK COLLECT INTO EmpList;
CLOSE cl;
END;

or

DECLARE

TYPE EmpList IS TABLE OF emp_table.ename%TYPE ;
BEGIN

SELECT emp_name BULK COLLECT INTO EmpList;
END;

Oracle will treat SELECT INTO as an implicit cursor. It will fetch the data starting
at index 1, and successively overwrite elements in the output collection EmpList
until it has retrieved all requested rows.

To convert the BULK COLLECT statement to DB2, a DB2 DGTT can be used as
shown in Example 5-20 on page 194. In some cases the INSERT INTO
(SELECT * FROM) statement can be used, as shown in Example 5-22.

Example 5-22 DB2 code using INSERT INTO

DECLARE v_empname varchar(30);
DECLARE v_num INT DEFAULT 0;
DECLARE GLOBAL TEMPORARY TABLE SESSION.temp_emp_list
(num INTEGER, EmpName VARCHAR(30))
WITH REPLACE
ON COMMIT PRESERVE ROWS
NOT LOGGED;
INSERT INTO SESSION.temp_emp_Tlist (
SELECT emp_name
FROM emp_table
WHERE detp = v_dept);

196 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information about the GLOBAL TEMPORARY TABLE, refer to the IBM
DB2 9 publication SQL Reference Volume 2.

5.5.3 Passing result sets between procedures

In 5.5.2, “Bulk collect” on page 195, we discuss general conversion principles for
Oracle collection. Here, we demonstrate special cases of passing multiple row
result sets from one procedure to another.

It is often convenient to manipulate many variables at once as one unit. Oracle
nested tables and varrays are frequently used to implement this kind of
application. In Example 5-23, all employees from a specified department who
have an account code equal to 307 need to be retrieved, and the result passed to
an PL/SQL block (it could as well be a client program). The example illustrates a
PL/SQL procedure that returns nested tables as the output parameter.

Example 5-23 PL/SQL procedure returns nested table

CREATE PACKAGE BODY AccountPackage AS
PROCEDURE AccountList(p_dept_code IN accounts.dept code%TYPE,

p_acct_id IN accounts.acct id%TYPE,
p_IDs ouT t EmployeelDTable,

p_NumEmployees IN OUT NUMBER) IS
v_EmployeeID Employees.Emp id%TYPE;

-- Local cursor to fetch the registered Employees.
CURSOR c_RegisteredEmployees IS
SELECT Emp_id
FROM Employees
WHERE dept_code = p_dept_code
AND acct_id = p_acct_id;
BEGIN
/* p_NumEmployees will be the table index. It will start at
0, and be incremented each time through the fetch loop.
At the end of the Toop, it will have the number of rows
fetched, and therefore the number of rows returned in
p_IDs. */
p_NumEmpToyees := 0;
OPEN c_RegisteredEmployees;
LOOP
FETCH c_RegisteredEmployees INTO v_EmployeelD;
EXIT WHEN c_RegisteredEmployees%NOTFOUND;

Chapter 5. Conversion reference 197

p_NumEmployees := p_NumEmployees + 1;
p_IDs(p_NumEmployees) := vEmployeelD;
END LOOP;
END AccountList;
END AccountPackage;

Note that type ¢ EmployeelDTable should be declared within the
AccountPackage specification, as follows:

TYPE t EmployeeIDTable IS TABLE OF Employees.Emp_id%TYPE;

The AccountList procedure can be called from the following PL/SQL block:

DECLARE
v_DeptEmployees AccountPackage.t EmployeelDTable;
v_NumEmpToyees BINARY_INTEGER := 20;

BEGIN
-- Fi11 the PL/SQL table with employees from dept 'BA'
AccountPackage.AccountList('BA', 307,
v_DeptEmployees,v_NumEmployees);

-- Insert these employee into temp_table

FOR v_LoopCounter IN 1..v_NumEmployees
LOOP
INSERT INTO temp_table (num col, char _col)
VALUES (v_DeptEmployees(v_LoopCounter),
'"In Department BA');
END LOOP;
END;

Using nested table t_EmployeelDTable, the results from cursor
c_RegisteredEmployees are passed to the calling block as one unit or as one
output variable.

DB2 has a different mechanism for processing multiple rows results. SQL
procedure uses the following to return result sets to a caller:

» Specify the DYNAMIC RESULT SETS clause in a CREATE PROCEDURE
statement.

» Declare the cursor using a WITH RETURN clause.
» Keep the cursor open for the client application.

» Unlike Oracle, no parameter is required in order for the result set to be
passed out of this procedure.

198 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 5-24 shows how an SQL procedure can pass results from the same
cursor to the calling application. The name of the cursor has been changed to
adhere to the DB2 18 character limit.

Example 5-24 SQL procedure returns multiple rows using CURSOR WITH RETURN

CREATE PROCEDURE AccountPackage.AccountList (IN p_dept code CHAR(3),
IN p_acct_id SMALLINT)

LANGUAGE SQL

RESULT SET 1

BEGIN
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE c_RegisteredEmplol CURSOR WITH RETURN TO CALLER
FOR SELECT "EMP_ID"
FROM EMPLOYEES
WHERE "DEPT_CODE" = p_dept_code
AND "ACCT_ID" = p_acct_id;
OPEN c_RegisteredEmplol;

END

There are two options for the WITH RETURN clause:

» WITH RETURN TO CALLER (default): Use this option to return the result set
to the invoker, whether the invoker is an application or another procedure.

» WITH RETURN TO CLIENT: Use this option to return the result set directly to
the application, bypassing any intermediate nested routines.

To imitate the Oracle example in full, we convert a PL/SQL block that calls the
AcountPackage.AccountList procedure to a DB2 SQL procedure, as shown in
Example 5-25.

Example 5-25 DB2 store procedure calls AccountPackage.AccountList

CREATE PROCEDURE AccountPackage.CALL AccountList ()
LANGUAGE SQL
BEGIN
DECLARE sqlcode INT DEFAULT 0;
DECLARE v_empId INT DEFAULT 0;
DECLARE v_empNum INT DEFAULT 0;
DECLARE v_empCnt INT DEFAULT O0;
DECLARE 1locl RESULT_SET_LOCATOR VARYING; - [1]

Chapter 5. Conversion reference 199

SET v_empNum = 20;

CALL AccountPackage.AccountList('BA',307);
ASSOCIATE RESULT SET LOCATOR(Tlocl) WITH - [2]
PROCEDURE AccountPackage.AccountList;

ALLOCATE c1 CURSOR FOR RESULT SET locl; - [3]

L1: LOOP
FETCH FROM cl1 INTO v_empID;
IF (sqlcode = 100) or (v_empCnt > v_empNum)
THEN LEAVE L1;
ELSE
SET v_empCnt = v_empCnt + 1;
INSERT INTO temp_table (num_col, char_col)
VALUES (v_empId, 'IN DEPARTMENT ');
END IF;
END LOOP L1;
END

The notes in Example 5-25 are explained as follows; to receive result sets in SQL
procedures, you need to:

» [1] DECLARE result set locators to the stored procedure expected to return
these result sets.

» [2] ASSOCIATE result set locators to the stored procedure expected to return
these result sets.

» [3] ALLOCATE each cursor expected to be returned to a result set locator.

After this is done, rows can be fetched from the result sets. The cursor in this
case plays the role of an Oracle nested table, and allows you to pass multiple
variables (the result set from cursor) as one unit.

5.6 Condition handling

This section discusses the various methods of implementing condition handling
conversion.

200 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.6.1 Condition handling in stored procedure

Both PL/SQL and SQL PL support EXCEPTION HANDLERS to trap SQL errors
and handle them. This mechanism permits separation of a procedure’s error
processing from its main logic.

PL/SQL uses the following syntax for EXCEPTION:

EXCEPTION
WHEN exception_namel THEN <executable statements>
WHEN exception_name2 THEN <executable statements>

WHEN exception_nameN THEN <executable statements>
WHEN OTHER <executable statements> ;

Where exception_name is one of the predefined exceptions (NO_DATA_FOUND,
TOO_MANY_ROWS) or has been defined using the following syntax:

exception_name EXCEPTION;
PRAGMA EXCEPTION_ INIT(exception _name, SQLCODE);

In DB2, SQL procedures exception handling is accomplished through the use of
condition handlers.

A condition handler is an SQL statement that is executed when a specified
condition is encountered during execution of a statement within the body of a
procedure. The handler is declared within a compound statement, and the
handler’'s scope is limited to that compound statement.

The following is the syntax for the condition handler declaration:

DECLARE {CONTINUE | EXIT | UNDO} HANDLER FOR <condition>
SQL-procedure-statement;

where <condition> is one of the following:

» SQLSTATE value
SQLEXEPTION (SQLCODE < 0)
SQLWARNING (SQLCODE > 0)
NOT FOUND

Condition name

vyvyyy

Important: In DB2, an INSERT, UPDATE or DELETE that affects no rows
also results in a NOT FOUND condition (+100).

In the absence of a NOT FOUND handler, the SQLWARNING handler will be
invoked.

Chapter 5. Conversion reference 201

Based on this, to convert the following PL/SQL code to DB2:

EXCEPTION
WHEN NO_DATA_FOUND THEN v_status :=0;
WHEN OTHER THEN v_err_flag :=1;

Two condition handlers need to be declared:

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET v_status = 0;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET v_err_flag = 1;

In this example, the Oracle exception name corresponds to a DB2 condition
name, and the predefined NO_DATA_FOUND exception corresponds to the
NOT FOUND condition. To match other Oracle predefined exceptions, the
appropriate DB2 SQLSTATE values would have to be used, and the condition
would be defined using the following syntax:

DECLARE condition_name CONDITION FOR SQLSTATE value;

For example, the Oracle predefined exception TOO_MANY_ROWS can be
converted using the following statement:

DECLARE too_many_rows CONDITION FOR SQLSTATE '21000';

Then a HANDLER for this CONDITION can be declared as follows:

DECLARE EXIT HANDLER FOR too_many_rows
BEGIN

END;
The following procedure, shown in Example 5-26, updates title_desc column
declared as char(50). If in_title_desc is longer than 50 characters, then
SQLEXCEPTION value is too Tong would occur and invoke the declared

HANDLER. As a result, the table will not be updated and err_num = -433 will be
returned as an output parameter.

Example 5-26 demonstrates the use of CONDITION HANDLERS in SQL
procedures.

Note: This example uses a CONTINUE handler. That is, after the handler
logic is complete, the flow of control continues from where the condition
originally occurred. Without the continue handler, the procedure would have
exited early, and returned an exception to the application.

202 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 5-26 Condition handler - SQL EXCEPTION

CREATE PROCEDURE new title (IN in_title desc varchar(100)

,OUT err_num INT)

LANGUAGE SQL

P1: BEGIN
DECLARE SQLCODE INTEGER DEFAULT O0;
DECLARE SQLSTATE CHAR(5) DEFAULT ' ';
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, SQLWARNING
SET err_num = SQLCODE;
UPDATE books
SET title_desc = in_title_desc
WHERE author = 'JACK LONDON';
END P1

Now this procedure can be changed to HANDLE a long value of title_desc and,
should a value longer than 50 characters occur, update the books table with a
truncated value; refer to Example 5-27.

Example 5-27 Condition handler - handle a long value

CREATE PROCEDURE new_title_1 (IN in_title_desc VARCHAR(100)

,OUT message_out CHAR(70))

LANGUAGE SQL

P1:

BEGIN

DECLARE SQLCODE INTEGER DEFAULT 0;

DECLARE SQLSTATE CHAR(5) DEFAULT ' ';

DECLARE v_trunc INT DEFAULT 0;

DECLARE value_error CONDITION FOR SQLSTATE '22001';

DECLARE CONTINUE HANDLER FOR value_error
BEGIN
UPDATE books
SET title_desc = substr(in_title_desc,1,50)
WHERE author = 'JACK LONDON';
SET v_trunc = 1;
END;

UPDATE books
SET title_desc = in_title_desc
WHERE author = 'JACK LONDON';

IF v_trunc = O THEN

Chapter 5. Conversion reference 203

SET message_out = 'TITLE UPDATED WITHOUT PROBLEM';
ELSE
SET message_out = 'TITLE UPDATED WITH TRUNCATION'
END IF;
END P1

5.6.2 Condition handling in triggers and functions

Unfortunately, condition handling is not supported in triggers or functions.
However, there are often cases where condition handlers may not be required.
Here we present some examples.

Consider the following Oracle function, which contains a condition handler:

CREATE OR REPLACE FUNCTION func_with_handlerl
RETURN NUMBER
AS
v_id NUMBER;
BEGIN
BEGIN
SELECT 0bjID
INTO v_id
FROM T1;
EXCEPTION WHEN OTHERS THEN
v_Id := 0;
END;
RETURN v_id;
END;

When converted through the MTK, this function is converted as a stored
procedure because a condition handler is not supported in DB2 functions. In
some cases, this may be the appropriate conversion. If this function were used in
an SQL statement, however, we would need to make an effort to retain it as a
function in DB2.

Upon closer examination of this function, you can see that the function can be
rewritten without handlers, provided that the column ObjID in table T1 is not
nullable. It can be rewritten as follows:

CREATE FUNCTION func_with_handlerl()
RETURNS INT
BEGIN ATOMIC
DECLARE v_id INT;
SET (v_id) = (SELECT ObjID FROM T1);
IF (v_id = NULL) THEN

204 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

SET v_id = 03
END IF;
RETURN v_id;
END

The value of v_id is set to null if the SELECT statement returns no rows.
Assuming the column ObjID is not nullable, if v_id is null after SELECT, it must
be the case that no rows were returned. The same technique can be applied to
triggers.

Of course, it could very well be that the logic is so complex that such a simple
substitution is not possible. In that case, the other option is to change your
application so that the function operates without handlers. If an error does occur,
then the exception will be returned to the function caller (whether a stored
procedure or the application itself) for handling.

5.6.3 Converting RAISE_APPLICATION_ERROR

Oracle PL/SQL permits the issuance of user-defined error messages from stored
procedures using RAISE_APPLICATION_ERROR. Thus, errors can be reported
to the application.

To call raise_application_error, you can use the following syntax:

raise_application_error(error number, message[, {TRUE | FALSE}]);

DB2 SQL procedures support SIGNAL SQLSTATE statements to provide a
similar functionality.

Example 5-28 shows how to rewrite a new_title procedure to report a detection of
input value longer than 50 characters.

Example 5-28 Condition handler - SIGNAL SQLSTATE

CREATE PROCEDURE new_title_2 (IN in_title_desc VARCHAR(100))
LANGUAGE SQL
P1: BEGIN

DECLARE SQLCODE INTEGER DEFAULT 0;

DECLARE SQLSTATE CHAR(5) DEFAULT ' ';

IF (Tength(in_title_desc) > 50) THEN

SIGNAL SQLSTATE '71001'

SET MESSAGE_TEXT = 'Value for update is too long';
ELSE

UPDATE books

SET title_desc = in_title_desc

Chapter 5. Conversion reference 205

WHERE author = 'JACK LONDON';
END IF;
END P1

In the ORACLE PL/SQL exception handler, functions SQLCODE and SQLERRM
can be used to determine which error occurred and to get the associated error
message.

DB2 SQL PL supports the GET DIAGNOSTICS statement to obtain information
related to the SQL statement just executed. This statement can be used within
the CONDITION HANDLER declaration to return a message associated with the
error:

DECLARE EXIT HANDLER FOR SQLEXCEPTION
GET DIAGNOSTICS EXCEPTION 1 out_err msg = MESSAGE_TEXT;

Together with the error message, GET DIAGNOSTICS permits retrieval of the
number of rows that were affected by the previous UPDATE, DELETE, or
INSERT statement:

GET DIAGNOSTICS v_rowcount = ROW_COUNT;

The RETURN value of a nested procedure can be retrieved by using:
GET DIAGNOSTICS v_retcode = RETURN_STATUS;

5.7 Package initialization

With Oracle you can define initialization in PL/SQL packages, which is executed
only one time when starting a new database session. Example 5-29 shows the
initialization within an Oracle package.

Example 5-29 Oracle package with initialization

CREATE OR REPLACE PACKAGE BODY pkg init vl AS

-- function / procedure definition

-- Body initialization
BEGIN

END pkg_init_vl;

206 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

In DB2, each SQL PL block is a function or procedure beginning with CREATE
FUNCTION or CREATE PROCEDURE. The MTK is able to convert
Example 5-29 if you define a procedure with the initialization commands.

Example 5-30 shows an alternative of Example 5-29 with the same behavior. In
the initialization, as illustrated in the example, part is now only the call of the
procedure init. Within init is the source of the initialization.

Example 5-30 Oracle package with initialization as procedure

CREATE OR REPLACE PACKAGE BODY pkg_init_v2 AS

-- function / procedure definition

-- initialization procedure
PROCEDURE init IS
BEGIN

END;

-- Body initialization
BEGIN

init;
END pkg_init_v2;

Within your application, you have to add the call of the procedure init in order to
perform the initialization every time you connect to the database.

5.8 Global variables

Global variables in Oracle are distinct for each connected user. The variables are
global to the connection. The appropriate conversion is to use DB2 global
temporary tables.

Example 5-31 shows a simple Oracle package with the definition and
initialization of two global variables.

Example 5-31 Definition of global variables in Oracle

CREATE OR REPLACE PACKAGE pkg_gv IS

global variable 1 VARCHAR2(128) := NULL;
global variable 2 INTEGER = 1;

Chapter 5. Conversion reference 207

END pkg_gv;

Definition and initialization

Example 5-32 is a DB2 stored procedure with the definition of a global temporary
table. The table contains all the global variables you need within a session. Each
column of the table corresponds to a global variable. The table needs only to
have one row with the respective values.

The INSERT statement is necessary to initialize the global variables.

Example 5-32 Temporary table with global variables

CREATE PROCEDURE init_global variables
LANGUAGE SQL
BEGIN
-- declare temporary table for global variables
DECLARE GLOBAL TEMPORARY TABLE session.global variables (
global variable_ 1 VARCHAR(128)
,global variable 2 INTEGER)
ON COMMIT PRESERVE ROWS;

-- initialize global variables
INSERT INTO session.global variables (
global variable 1
,global variable 2)
VALUES (null
0)3
END!

Note: ON COMMIT PRESERVE ROWS indicates that rows of the table will be
preserved after ending a transaction with COMMIT.

Using a procedure to initialize the temporary table yields two key benefits:

» The procedure developer does not have to hunt through application code
(which may be maintained by another person) to find the DDL of the
temporary table.

» The definition of the table is centralized at one place. If the global variables
require changes, you do not have to search for all the declarations. Instead,
you simply change the definition in one place.

As mentioned before, the values of the global variables are distinct for each
connection. This means that you have to define the DB2 global temporary table

208 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

at the beginning of each session. To do this with the definition of Example 5-32,
you need to call the stored procedure init_global_variables after you connect to
the DB2 database in your application.

When developing or converting other procedures that rely on these global
variables, you will have to run the init_global_variables procedure first to define
the temporary table in the current connection. Otherwise, DB2 will not be able to
resolve references to the temporary table at build time.

Setting values of global variables

To set a new value to a global variable, use an UPDATE statement to the
corresponding column in the temporary table GLOBAL_VARIABLES as shown:

UPDATE session.global _variables
SET global variable 1 = new_value;

Getting values of global variables

To get the value of a global variable, use a SELECT statement to the
corresponding column in the temporary table GLOBAL_VARIABLES, as shown:

SELECT global_variable_1
INTO gv_value
FROM session.global_variables
FETCH FIRST 1 ROWS ONLY;

Under normal circumstances, you only have one row in the
GLOBAL_VARIABLES table. To ensure that you get no more than one row as a
result of the SELECT statement, use the FETCH FIRST 1 ROWS ONLY clause.

To prevent users from direct accessing the global temporary table, you may
optionally encapsulate the statements to set or get values in stored procedures.
In this case, you have to implement a procedure for each global variable. After
that, you have to grant the user the appropriate authority.

Using INOUT parameters

When using only a few global variables shared by a few procedures, it might be
more practical to simply convert the global variables as parameters. In this case,
change the parameter definition of the procedures (which uses global variables)
by adding an INOUT parameter for each of the global variables.

5.9 Hierarchical queries
The Oracle CONNECT BY ... START WITH ...clause can be used to select data

that has a hierarchical relationship, usually some sort of parent - child
relationship. In Example 5-33, the table EMPLOYEES consists of just these

Chapter 5. Conversion reference 209

attributes: parent and child. We make sure (by means of a unique constraint) that
the child is unique within the table.

Example 5-33 Oracle hierarchical query

SELECT substr(lpad(' ', level * 2) || emp_id,1,20) AS emp_id
, last_name
, emp_mgr_id
, level

FROM employees

CONNECT BY PRIOR emp_id = emp_mgr_id

START WITH emp_mgr_id IS NULL;

EMP_ID LAST_NAME EMP_MGR_ID LEVEL
10000 Sands 1
10001 Marcus 10000 2
10004 Polite 10001 3
10005 Tenor 10001 3
10002 January 10000 2
10008 Even 10002 3
10010 December 10002 3
10011 August 10002 3
10003 March 10000 2
10006 Blonde 10003 3
10007 Damon 10003 3
10009 Ration 10003 3

In the following example we provide a DB2 UDF to get the same result. The
identity of each row is actually its encoded position in the hierarchy (this is
arbitrary). The solution also assumes that the resulting sorting can be done
based on the path. Here this works as long as no more than nine siblings exist on
any given level. However, a simple formatting of the path to a specific number of
digits per level can solve this problem.

The script uses SQL table functions. This capability, however, is only used for
encapsulation and is not required for function.

The function get_direct_childs() collects all immediate children of a node in the
hierarchy and returns them together with their relative position to each other and
in the tree; see Example 5-34.

Example 5-34 Computing of direct child data

CREATE FUNCTION get direct childs(code VARCHAR(30), parent INTEGER)
RETURNS TABLE(code VARCHAR(30), id INTEGER)

210 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

READS SQL DATA
DETERMINISTIC
NO EXTERNAL ACTION
RETURN
SELECT code || '.' || RTRIM(CHAR(RANK() OVER (ORDER BY child_id))),
child_id
FROM (SELECT empno FROM emp
WHERE emp.mgr
= get_direct_childs.parent)
AS T(child_id)!

The function get_rec_childs() contains the recursive logic. It starts with the root,
which is provided by the caller, and then collects children until no more new
children can be found; see Example 5-35.

Example 5-35 Hierarchical query with entry point

CREATE FUNCTION get rec_childs(root INTEGER)
RETURNS TABLE(code VARCHAR(30), id INTEGER)
READS SQL DATA
DETERMINISTIC
NO EXTERNAL ACTION
RETURN
WITH rec(code, id)
AS (VALUES(CAST('1' AS VARCHAR(30)), root)
UNION ALL
SELECT t.code, t.id
FROM rec, TABLE(get direct childs(rec.code, rec.id)) AS T)
SELECT code, id FROM rec !

The function get_level() computes the hierarchy level of the current data; see
Example 5-36.

Example 5-36 Compute hierarchy level

CREATE FUNCTION get level(code VARCHAR(30))
RETURNS INTEGER
DETERMINISTIC
NO EXTERNAL ACTION
RETURN
(1ength(code) - length(replace(code, '.', '')))!

You get the hierarchy tree with the UDF get_rec_childs(). As a parameter, you
have to specify the root.

Chapter 5. Conversion reference 211

Example 5-37 shows the use of the hierarchy function and its output with an
adequate format.

Example 5-37 Sample use of hierarchical query

SELECT T.code
,T.id
,substr((space(2 * get_level(code)) || employees.last name)
, 1
, 20) as last_name
,emp_mgr_id
FROM TABLE(get rec_childs(10000)) AS T
,employees
where T.id = employees.emp_id
ORDER BY code!

CODE ID LAST_NAME EMP_MGR_ID
1 10000 Sands -
1.1 10001 Marcus 10000
1.1.1 10004 Polite 10001
1.1.2 10005 Tenor 10001
1.2 10002 January 10000
1.2.1 10008 Even 10002
1.2.2 10010 December 10002
1.2.3 10011 August 10002
1.3 10003 March 10000
1.3.1 10006 Blonde 10003
1.3.2 10007 Damon 10003
1.3.3 10009 Ration 10003

The article “Port CONNECT BY to DB2” at the following Web site explains how to
map recursive queries from Oracle to DB2 using recursive common table
expressions:

http://www.ibm.com/developerworks/db2/1ibrary/techarticle/dm-0510rie
Tau/

5.10 Print output messages

When converting the call statement of Oracle function dbms_output.put_line(),
the MTK provides only a function skeleton for you. You still need to implement
the function that will best suit your application needs.

212 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0510rielau/

We offer you a user-defined function (UDF) solution called PUT_LINE() that will
enable file output from pure SQL, such as an SQL stored procedure. You can
use it as a tool for debugging stored procedures. However, it also allows you to
write to a specified file for other purposes.

You can find the sources of the function and an installation guide as additional
material on the IBM Redbooks Internet site; see details in Appendix G,
“Additional material” on page 701.

5.11 Implicit casting in SQL

In addition to syntax differences, here we also highlight differences in how Oracle
and DB2 handle data type casting. Whether you know it or not, Oracle performs
implicit casting of data types (as required), while DB2 is strongly typed. Consider
the following example:

[1] create table tl (cl number);
[2] insert into t1 ('1")
[3] select * from tl where cl='1"

In the first line we create a table, t1, which has a numeric column. In line two,
however, the character value 1 can be inserted into t1 without error. The value
was implicitly cast by Oracle from varchar2 to number.

In line three, we have yet another example of implicit casting because the
predicate c1 (numeric type) and 1 (character type) are allowed to be compared.
Certainly there are many more cases than this. Implicit casting can happen in a
variety of cases.

Because DB2 is strongly typed, SQL may have to be slightly rewritten to perform
explicit casts. Implicit casting can raise positive and negative issues. It certainly
makes SQL programming easier, but it can also be dangerous, and incurs some
overhead, which is why purists will discourage its use.

Following the previous example, we can rewrite the series of SQL as follows:

[1] create table tl (cl INT);
[2] insert into tl1 (1)
[3] select * from tl where cl=1

Of course, these are the easiest cases to solve because it is obvious where the
problem lies. Another common area where implicit casting must be resolved is in
functions and operators. For example:

create procedure echo_input (v_num in numver(9,0), v_echo out
varchar2)

Chapter 5. Conversion reference 213

as
begin

v_echo := ' Input number is: ' || v_num;
end;

In this case, the concatenation operator (| |) in Oracle will automatically cast
v_num to varchar2 so that the strings can be combined. In DB2, v_num will have
to be explicitly cast to a character type.

If you convert this code through the MTK, it will help you identify all places where
implicit casting is occurring by providing code to perform explicit casting. If you
decide to perform a conversion without tools, it will take more time to find them.
DB2 supports the CAST function to help you with datatype conversion.

Here how that code fragment will look in DB2:

create procedure echo_input (v_num 1in integer, v_echo out
varchar(80))
as
begin

v_echo := ' Input number is: ' || cast (v_num as CHAR(7));
end;

Based on past experience, among the most time-consuming porting activities will
revolve around converting implicit casting to explicit casting in dynamic SQL.
Because dynamic SQL, in general, cannot be fully resolved until runtime, the
MTK is unable to determine the proper casting functions to apply.

Consider the following example:

create procedure dyn_cast

as
val varchar2(100) := '100';
begin
EXECUTE IMMEDIATE 'CREATE TABLE T1 (C1 number)';
EXECUTE IMMEDIATE 'INSERT INTO T1 VALUES (''' || val || "'')';
end;

Here we create a table T1 with a numeric column C1. When you convert to DB2,
the procedure will build with very few changes. The final SQL statement as
submitted to the database engine will look like this:

INSERT INTO T1 VALUES ('100');

However, it will fail at runtime because implicit casting is occurring in the INSERT
statement.

214 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Dealing with implicit casting will be quite troublesome at first, but as you
troubleshoot these problems, you will learn to quickly identify these situations.
The upside is that it will ultimately make your applications cleaner and in some
cases, better performing (especially in high volume SQL statements).

5.12 Outer join

Both Oracle and DB2 support outer join. DB2 supports the ANSI SQL syntax for
three types of outer join: right, left, and full. Oracle supports the same syntax,
starting in version 9i. Oracle also has proprietary left and right outer join syntax
that DB2 does not support. Table 5-4 demonstrates how to map this old syntax to
the DB2 equivalent for simple examples.

Table 5-4 Mapping of join definition

Oracle

DB2

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B

WHERE A.id (+) = B.sales_rep_id;

SELECT A.last_name,A.id,B.name
FROM emp A

RIGHT OUTER JOIN customer B
ON A.id = B.sales_rep_id;

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B
WHERE A.id = B.sales_rep_id (+);

SELECT A.last _name,A.id,B.name
FROM emp A

LEFT OUTER JOIN customer B

ON A.id = B.sales_rep_id;

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B

WHERE A.id (+) = B.sales_rep_id
(+);

SELECT A.last_name,A.id,B.name
FROM emp A

FULL OUTER JOIN customer B

ON A.id = B.sales_rep_id;

The MTK provides basic support for Oracle outer joins, with the following
restrictions:

» Only the equality (=) operator is supported.
» The (+) operator cannot follow a complex expression; it can follow a column
reference only.

In some cases, the MTK will not be able to convert complex outer join syntax.
The following example shows how a complex SQL statement involving multiple
outer joins can be mapped from Oracle to DB2 syntax.

It is important to realize that in Oracle, outer joins are defined in the WHERE
clause. By contrast, in DB2 they are defined in the FROM clause. Further, the

Chapter 5. Conversion reference 215

outer join condition of the two tables must be specified in the ON clause, not in
the WHERE clause.

Example 5-38 shows the Oracle outer join syntax.

Example 5-38 Oracle outer joins

SELECT
tl.surname
FROM
EXAMPLE_TABLE1 t1,
EXAMPLE_TABLE2 t2,
EXAMPLE_TABLE3 t3,
EXAMPLE_TABLE4 t4
WHERE
((tl.emptype = 1) OR (tl.position = 'Manager'))
AND (tl.empid = t2.empid(+))
AND (t2.empid = t3.empid(+))
AND (t2.sin t3.sin(+))
AND (t3.jobtype(+) = 'Full-Time')
AND (t2.empid = t4.empid(+))
AND (t2.sin = td.sin(+))
ORDER BY
tl.emptype, t2.other

Example 5-39 shows the DB2 conversion.

Example 5-39 DB2 outer join conversion

SELECT
tl.surname,
FROM
EXAMPLE_TABLE1 t1 LEFT OUTER JOIN
EXAMPLE TABLE2 t2 ON (t2.empid = tl.empid) LEFT OUTER JOIN
EXAMPLE TABLE3 t3 ON (t3.sin = t2.sin)
AND (t3.empid = t2.empid)
AND (t3.jobtype = 'Full-Time')
LEFT OUTER JOIN
EXAMPLE_TABLE4 t4 ON (t4.sin = t2.sin)
AND (t4.empid = t2.empid)
WHERE
((tl.emptype = 1) OR (tl.position = 'Manager'))

ORDER BY
tl.emptype, t2.other

216 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.13 Decode statement

The Oracle DECODE statement can be converted to a DB2 CASE statement in

two ways:

DECODE (condition, casel, assignl, case2, assign 2....,default)

This can be converted to the simple CASE statement:

CASE condition
WHEN casel THEN assign 1
WHEN case2 THEN assign 2
ELSE default

END

Or, to the searched CASE statement:

CASE
WHEN condition THEN assign 1
WHEN condition THEN assign 2
ELSE default

END

For example, here is the Oracle code:

SELECT AVG(DECODE(Grade, 'A', 1,
'B', 2,
'c', 3,
'D', 4,
'E', 5))
INTO v_Grade FROM Students
WHERE DEPARTMENT = p_Department AND Course_ID = p_Course_ID;

This can be converted to DB2 code:

SELECT AVG(CASE GRADE WHEN 'A' THEN
WHEN 'B' THEN
WHEN 'C' THEN
WHEN 'D' THEN
WHEN 'E' THEN 5
END) INTO v_Grade

S o N =

FROM Students

Chapter 5. Conversion reference

217

WHERE DEPARTMENT = p_Department
AND Course_ID = p_Course_ID;

5.14 Rownum

Oracle uses the ROWNUM pseudo-column to control the number of rows
returned from an SQL statement. In DB2, you determine the number of rows to
read with the FETCH FIRST n ROWS ONLY statement.

Table 5-5 shows how different statements can be converted.

Table 5-5 Mapping of the ROWNUM function

Oracle DB2
SELECT select * from tabl select * from tabl
where ROWNUM < 10 FETCH FIRST 9 ROWS ONLY;
UPDATE update tabl FOR Tv as temp_cur CURSOR FOR
set cl = vl SELECT *
where c2 = v2 FROM tabl
and ROWNUM <= 10 WHERE c2 = v2

FETCH FIRST 10 ROWS ONLY
FOR UPDATE DO
UPDATE tabl

SET cl = vl
WHERE CURRENT OF temp_cur;
END FOR;

With FixPak 4 or above:

UPDATE (select cl from
tablwhere c2=v2 fetch first 10
rows only) set cl=vl

DELETE delete from tabl FOR Tv as temp_cur CURSOR FOR
where ROWNUM <= 100 SELECT * FROM tabl
FETCH FIRST 100 ROWS ONLY
FOR UPDATE DO
DELETE FROM tabl
WHERE CURRENT OF temp_cur;
END FOR;

With FixPak 4 or above:
DELETE FROM (SELECT 1 FROM tabl
FETCH FIRST 100 ROWS ONLY)

218 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.15 INSERT, UPDATE, DELETE returning values

DB2 has introduced several new features that let you use SELECT and SELECT
INTO statements to retrieve result sets from SQL data-change operations
(INSERT, UPDATE, and DELETE) embedded in the FROM clause. This feature
can be used to migrate Oracle code using a similar feature. Example 5-40 is
sample Oracle code using a RETURNING INTO statement to retrieve a value
after updating a table.

Example 5-40 Oracle code using RETURNING INTO

Update staff

Set salary =10000.0

where id =p_id

returning name into p_name;

Example 5-41 and Example 5-42 show two ways to convert this Oracle code into
DB2 code; here SELECT INTO is shown.

Example 5-41 DB2 code using SELECT INTO

SELECT name INTO p_name
FROM NEW TABLE (
UPDATE staff
SET salary = 10000.0
WHERE id = p_id);

Here, using SELECT is shown.

Example 5-42 DB2 code using SELECT

set p_name = (SELECT name
FROM NEW TABLE (
UPDATE staff
SET salary = 10000.0
WHERE id = p_id));

5.16 Select from DUAL

Oracle provides a dummy table called DUAL, which is frequently used to retrieve
system information. When converting references to DUAL, you have several
options:

» Change the SELECT statement to a VALUES statement
» Directly assign special registers to variables (in SQL PL)

Chapter 5. Conversion reference 219

» Create a table or view called DUAL to mimic the Oracle DUAL table (DUAL
would need to be created or aliased under all schemas)

» Use the DB2 dummy table SYSIBM.SYSDUMMY 1, which has a single row
and one column, IBMREQD, with a value of Y

» Create a synonym of SYSIBM.SYSDUMMY1 called DUAL

Table 5-6 illustrates dummy table usage.

Table 5-6 Use of dummy table for system information

Oracle DB2

select SYSDATE from DUAL VALUES (CURRENT TIMESTAMP) INTO
<variable>
or

select CURRENT TIMESTAMP from
SYSIBM.SYSDUMMY1

In some circumstances it may be too costly to comb through all source code to
convert references to DUAL and Oracle system variables to use DB2 syntax. As
an alternative, you can preserve your existing SQL by defining a view named
DUAL with the (column) value(s) you need; see Example 5-43.

Example 5-43 DB2 dummy view for system information

create view dual (sysdate)

as select CURRENT TIMESTAMP from SYSIBM.SYSDUMMY1
!

Here is the result:
db2 => select sysdate from dual
SYSDATE

2003-10-15-18.03.59.399071

1 record(s) selected.

5.17 Manipulating date and time

Both Oracle and DB2 have date and time data types and functions to get the
date and time from the system or convert the date and time into different formats,
and perform arithmetic on dates. Oracle has DATE, which can be mapped to

220 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2 TIMESTAMP. DB2 has two other date and time functions known as DATE
and TIME.

If your applications only use the date portion of Oracle’s date data type, it will be
more efficient to convert these types to DB2’s DATE type (rather than
TIMESTAMP).

Here we show examples of date manipulation.
» Getting dates
In Oracle, you use SELECT to get the date:
SELECT sysdate from dual;
In DB2, you use VALUES to get the date:

SELECT current timestamp FROM sysibm.sysdummyl;
SELECT current date FROM sysibm.sysdummyl;
SELECT current time FROM sysibm.sysdummyl;

» Converting dates
To convert the date in Oracle, TO_CHAR is used:

to_char(sysdate,'YYYY-MM-DD')
to_char(sysdate, 'MM/DD/YYYY"')

DB2 V8.1 supports functions TO_CHAR and TO_DATE but for only one
format, as illustrated:

TO_CHAR (timestamp_expression,'YYY-MM-DD HH24:MI:SS')
TO_DATE (string_expression, 'YYY-MM-DD HH24:MI:SS')

In addition, you can use the CHAR function to convert the date and specify
the localized format such as:

CHAR(current date,IS0);
CHAR(current date,USA);

The following additional examples demonstrate how DB2 dates can be
converted to different formats:

char(current date) = '10/01/2003"
char(current date + 3 days) = '10/04/2003"
char(current date,ISO0) '2003-10-01"
char(current date,EUR) '01.10.2003"
char(current date,JIS) = '2003-10-01"
char(current time,USA) = '02:21 PM'
char(current time + 2 hours,EUR) ='16.21.23"

Note: For more information about using the CHAR function for date and
time conversion, refer to the DB2 publication SQL Reference.

Chapter 5. Conversion reference 221

» Dates arithmetic
Dates arithmetic is frequently used. Here is an Oracle example:
add_months (sysdate,16)
In DB2, similar function can be implemented as follows:
current date + 16 months

Here are other examples of how arithmetic manipulation can be done with
DB2 dates:

current date = 10/02/2003

current date + 3 days = 10/05/2003

current timestamp + 2 years = 2005-10-02-12.33.27.667000
current timestamp - 2 months = 2003-08-02-12.33.27.667002
current time + 5 minutes = 12:38:27

DB2 also provides other functions to manipulate with dates, such as days,
dayname, monthname, and much more.

» Using UDF

Certain Oracle functions not supported by DB2 can be easily duplicated by
writing UDFs. For example, the following UDF can be used to convert the
Oracle built-in function last_day:

CREATE FUNCTION last_day(v_date date)

RETURNS DATE

SPECIFIC Tastday

LANGUAGE SQL

CONTAINS SQL

NO EXTERNAL ACTION

DETERMINISTIC

RETURN (v_date + 1 MONTHS) - DAY(v_date + 1 MONTHS) DAYS;

You can find the UDF samples to convert Oracle DUMP(date), NEW_TIME,
NEXT_DAY(), TRUNC() and other sample UDFs for migration at the following
IBM Web site:

http://www7b.software.ibm.com/dmdd/1ibrary/samples/db2/0205udfs/

Another example of using DB2 UDF in dates arithmetic is converting the
Oracle months_between function:

months_between(sysdate,v_date)

If you use the MTK to automate your conversion, it will implement
months_between as a User Defined Function and automatically deploy it into
the database. Here is the source code for this function:

CREATE FUNCTION months_between(dl TIMESTAMP, d2 TIMESTAMP)
RETURNS FLOAT

LANGUAGE SQL

DETERMINISTIC

222 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www7b.software.ibm.com/dmdd/library/samples/db2/0205udfs/

NO EXTERNAL ACTION
CONTAINS SQL
RETURN 12*(year(dl) - year(d2)) + month(dl) - month(d2)
+ (TIMESTAMPDIFF(2,CHAR(d1 - (d2 + (12*(year(dl) - year(d2))
+ month(dl) - month(d2)) MONTHS))) / 2678400.0)

This function employs the DB2 built-in function TIMESTAMPDIFF. Details for
TIMESTAMPDIFF can be found in the DB2 manual SQL Reference.

Here we provide another version of a months_between UDF:

CREATE FUNCTION NoCASE.months between(dl TIMESTAMP, d2 TIMESTAMP)
RETURNS FLOAT

LANGUAGE SQL

DETERMINISTIC

NO EXTERNAL ACTION

CONTAINS SQL

RETURN 12*(year(dl) - year(d2)) + month(dl) - month(d2)

+ SIGN(ABS(day(dl) - day(d2)) * (day(dl + 1 day)*day(d2 + 1 day) -
1))

*((day(dl) - day(d2))*86400 + midnight seconds(dl) -
midnight_seconds(d2)) / 2678400.0

END

For more information about manipulation with dates, refer to the article on the
DB2 developer domain:

http://www7b.software.ibm.com/dmdd/1ibrary/techarticle/0211yip/0211yip3
.html

5.18 Set operations

Set operators can be used to combine result sets in both Oracle and DB2.
Table 5-7 lists the differences between the products.

Table 5-7 Mapping of set operations

Oracle DB2

UNION UNION
UNION ALL UNION ALL
MINUS EXCEPT
INTERSECT INTERSECT

DB2 supports the ALL option on each operator, allowing duplicates to be
preserved. Oracle allows ALL only on UNION.

Chapter 5. Conversion reference 223

http://www7b.software.ibm.com/dmdd/library/techarticle/0211yip/0211yip3.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0211yip/0211yip3.html

Null values conversion

In Oracle, the function NVL provides a conversion of NULL values to non-null
values:

NVL(TO_CHAR(MANAGER_ID),’No Manager’)
This statement converts all of the NULL values in the manager_id column to the
string No Manager.
In DB2, use the COALESCE function to convert nulls, as shown here:

COALESCE (MANAGER_ID,’No Manager’)

5.19 Function that returns rowtype

Oracle allows result sets to be returned from functions if their return type is an
REF cursor, as illustrated in Example 5-44. You will likely convert such functions
as procedures in DB2, because this minimizes the number of application
changes required (you would simply add the word CALL in front of the function
call).

The (less desirable) alternative is to convert this as a table function, but table
functions in DB2 have limited functionality, and the application must convert the
function call into a SELECT statement.

Example 5-44 Oracle function with a REF cursor

CREATE OR REPLACE PACKAGE ReturnRtype AS
TYPE t_RefCur IS REF CURSOR;

-- Selects from employees based on the supplied department,
-- and returns the opened cursor variable.
FUNCTION EmployeesQuery(p_Department IN VARCHAR2)
RETURN t_RefCur;
END ReturnRtype;

CREATE OR REPLACE PACKAGE BODY ReturnRtype AS

-- Selects from employees based on the supplied department,
-- and returns the opened cursor variable.
FUNCTION EmployeesQuery(p_Department IN VARCHAR2)
RETURN t_RefCur IS
v_ReturnCursor t_RefCur;
v_SQLStatement VARCHAR2(500);
BEGIN
v_SQLStatement := 'SELECT * FROM employees WHERE department = :m';

224 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

-- Open the cursor variable, and return it.
OPEN v_ReturnCursor FOR v_SQLStatement USING p_Department;
RETURN v_ReturnCursor;
END EmployeesQuery;
END ReturnRtype;

The converted DB2 code is shown in Example 5-45.

Example 5-45 Conversion to a procedure with a Result Set in DB2

Create Procedure EmployeesQuery (IN p_Department varchar(30))
LANGUAGE SQL
DYNAMIC RESULT SETS 1
BEGIN
DECLARE C1 cursor with return to client for
Select * from employees where department = p_Department;
OPEN C1;
END!

5.20 Local functions

Oracle allows procedures or functions—called Local Procedures or Local
Functions—to be created and referenced within the body of a stored procedure.
When converting this to DB2, the Local Procedure or Local Function must be
created outside of the Stored Procedure that references it, before it can be used.

Example 5-46 shows how a Local Function created and referenced in an Oracle
stored procedure would be converted to DB2. It shows the Oracle source code of
the function.

Example 5-46 Oracle procedure with Local function

CREATE OR REPLACE PROCEDURE calllLocalFunc AS
/* Local declarations, which include a cursor, variable, and a
function. */
CURSOR c_Al1Employees IS
SELECT first_name, last_name
FROM employees;

v_FormattedName VARCHAR2(50);

Chapter 5. Conversion reference 225

/* Function which will return the first and last name
concatenated together, separated by a space. */
FUNCTION FormatName(p_FirstName IN VARCHAR2,
p_LastName IN VARCHAR2)
RETURN VARCHAR2 IS
BEGIN
RETURN p_FirstName || ' ' || p_LastName;
END FormatName;

-- Begin main block.
BEGIN
FOR v_EmployeeRecord IN c_Al1Employees LOOP
v_FormattedName :=
FormatName(v_ EmployeeRecord.first_name,
v_ EmployeeRecord.last_name);
DBMS_OUTPUT.PUT_LINE(v_FormattedName);
END LOOP;
END callLocalFunc;

Example 5-47 shows the DB2 conversion of the function.

Example 5-47 DB2 Conversion of Oracle Procedure with Local Function

CREATE FUNCTION FormatName(p_ FirstName VARCHAR(20), -[1]
p_LastName VARCHAR(20))
RETURNS VARCHAR(41)
LANGUAGE SQL
BEGIN ATOMIC
RETURN p_FirstName || '' || p_LastName;
END!

CREATE PROCEDURE callFunc ()
LANGUAGE SQL

BEGIN
DECLARE c_AT1Employees CURSOR WITH RETURN FOR
SELECT FormatName(first name, last name) FROM employees;

OPEN c_All1EmpTloyees;
END!

226 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The note in Example 5-47 is explained as follows:
[1] The function must be created before the procedure that references it.

5.21 Partitioning and MDC

If you are using partitioned tables on Oracle, you will need to decide how to
partition your data in DB2. In this section we introduce the various partitioning
features provided by DB2 and compare them to the partitioning techniques on
Oracle.

In a single database partition, DB2 automatically organizes data on disk by
distributing data in a round robin fashion across all containers of a table space.
This method of data organization is the default behavior on DB2 and does not
require any type of further definition. However, DB2 can be designed to organize
data in other ways as well. These different data organization schemes can be
specified at the database or table level.

The data organization methods available on DB2 are:

» Table partitioning

» Database partitioning

» Multidimensional clustering

» Combined organization schemes

Table partitioning

Table partitioning in DB2 is also referred to as range partitioning or data
partitioning. This data organization scheme is one in which table data is divided
across multiple storage objects called data partitions or ranges according to
values in one or more table columns. Each data partition is stored separately and
can be in different table spaces.

Example 5-48 is an example of table partitioning on DB2. The example
demonstrates the use of a “shorthand” notation that automatically generates

24 partitions of uniform size; that is, one partition for each month over a two-year
period. Note that MINVALUE and MAXVALUE will catch all values that fall below
and above the defined ranges.

Example 5-48 DB2 table partitioning

CREATE TABLE orders

(
1_orderkey DECIMAL(10,0) NOT NULL,
1_partkey INTEGER,
1_suppkey INTEGER,

Chapter 5. Conversion reference 227

1_Tinenumber INTEGER,

1_quantity DECIMAL(12,2),
1_extendedprice DECIMAL(12,2),
1_shipdate DATE

) PARTITION BY RANGE(1_shipdate)
(STARTING MINVALUE,
STARTING '1/1/1992' ENDING '12/31/1993' EVERY 1 MONTH,
ENDING AT MAXVALUE);

Example 5-49 illustrates table partitioning using manual syntax, which is required
when the partitioning key is composed of a composite column.

Example 5-49 Table partitioning using manual syntax

CREATE TABLE sales
(
year INT,
month INT
)
IN tbspl, tbsp2, tbsp3, tbsp4, tbsp5, tbsp6, tbsp7, tbsp8
PARTITION BY RANGE (year, month)
(STARTING FROM (2001, 1)
ENDING (2001,3) IN tbspl,
ENDING (2001,6) IN tbsp2,
ENDING (2001,9) IN tbsp3,
ENDING (2001,12) IN tbsp4,
ENDING (2002,3) IN tbsp5,
ENDING (2002,6) IN tbsp6,
ENDING (2002,9) IN tbsp7,
ENDING AT MAXVALUE);

Oracle’s range partitioning is conceptually comparable to table partitioning on
DB2. The differences between them lie mainly in the syntax used to define how
the table is partitioned.

As a comparison, the DB2 example (Example 5-49) has been rewritten to show
how range partitioning might be written on Oracle (Example 5-50).

Example 5-50 Oracle range partition

CREATE TABLE sales
(

year int,
month int

228 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

PARTITION BY RANGE (year, month)

(PARTITION pl VALUES LESS THAN (2002,4) tablespace tbspl,
PARTITION p2 VALUES LESS THAN (2002,7) tablespace tbsp2,
PARTITION p3 VALUES LESS THAN (2002,10) tablespace tbsp3,
PARTITION p4 VALUES LESS THAN (2002,13) tablespace tbsp4,
PARTITION p5 VALUES LESS THAN (2003,4) tablespace tbsp5,
PARTITION p6 VALUES LESS THAN (2003,7) tablespace tbsp6,
PARTITION p7 VALUES LESS THAN (2003,10) tablespace tbsp7,
PARTITION p8 VALUES LESS THAN (MAXVALUE) tablespace tbsp8);

Note that on Oracle each partition is given a name. In contrast, on DB2 the
partitions in these examples are not named. On DB2, if the partition is not
explicitly named, a system name is generated by default. However, because the
system name can be long and cumbersome, it is recommended that you
explicitly name the partition. This can be done using the PART or PARTITION
keyword.

Also note that on Oracle each partition contains values less than, and not
including, the value that defines that partition. On DB2, the values defined for
each partition are included within that partition.

DB2 provides a method of table partitioning that is based on a generated
expression of a column. Depending on the situation, table partitioning on a
generated column may be used in a similar way to list partitioning on Oracle.

Example 5-51 is an example of Oracle’s list partitioning.

Example 5-51 Oracle list partitioning

CREATE TABLE customer
(

cust_id
cust_prov

int,
varchar2(2)

PARTITION BY LIST (cust_prov)

(PARTITION pl VALUES ('AB', °MB™) tablespace tbsp_ab,
PARTITION p2 VALUES ('BC') tablespace thsp bc,
PARTITION p3 VALUES ('SA') tablespace thsp_mb,
PARTITION p13 VALUES ('YT') tablespace thsp yt,
PARTITION pl14 VALUES(DEFAULT) tablespace tbsp_remainder);

Example 5-52 shows how Oracle’s list partitioning can be written as DB2 table
partitioning based on a generated column.

Chapter 5. Conversion reference 229

230

Example 5-52 DB2 conversion of Oracle list partition

CREATE TABLE customer

(
cust_id INT,
cust_prov CHAR(2),
cust_prov_gen GENERATED ALWAYS AS
(CASE
WHEN cust prov = 'AB' THEN 1
WHEN cust prov = 'BC' THEN 2
WHEN cust prov = 'MB' THEN 1
WHEN cust prov = ‘SA’ THEN 3
WHEN cust prov = 'YT' THEN 13
ELSE 14
END)
)
IN tbsp_ab, tbsp_bc, tbsp mb, tbsp remainder

PARTITION BY RANGE (cust_prov_gen)
(STARTING 1 ENDING 14 EVERY 1);

In Example 5-52, numeric values are generated based on values for
CUST_PROV. The numeric values populate the generated column,
CUST_PROV_GEN, on which table partitioning is based.

Because an automatic version of the syntax is used in this example, it is
sufficient to list the table spaces for each partition with a single IN clause. If the
manual version of the syntax was used and each partition was defined
individually, then an IN clause for each partition would be required (as shown in
Example 5-49 on page 228).

Database partitioning

On DB2, database partitioning is used when the database is created as a
multiple partitioned database. This feature of DB2 is an optional feature and is
known as the Database Partitioning Feature (DPF). DPF is mostly used for large,
data warehousing applications although it can be used in some types of OLTP
applications as well. When database partitioning is used, the multiple database
partitions appear and work together as a single unit, This architecture allows
complex data access tasks to run on different parts of the data in parallel.

When this feature is enabled, data organization is based on a hashing algorithm
that distributes table data across the multiple database partitions. Each database
partition can reside on a separate physical machine. Data is hashed according to
a distribution key that is either explicitly defined in the table using the

DISRIBUTE BY HASH clause, or is defaulted to the first qualified column. Ideally,

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

a distribution key is chosen that can hash the table data evenly across all
database partitions.

Example 5-53 is an example of how a table is defined when database partitioning
is used.

Example 5-53 Define a table in a partitioned database

CREATE TABLE partition_table
(partition_date date NOT NULL,
partition_data VARCHAR(20) NOT NULL
)

IN tbsp_parts

DISTRIBUTE BY HASH (partition_date);

The DISTRIBUTE BY HASH clause of a table is only used in a multiple database
environment. To partition data in a single database partitioned environment,
table partitioning or multidimensional clustering organization is used.

Hash partitioning on Oracle is done in a single database environment.
Example 5-54 shows an example of how hash partitioning syntax on Oracle
compares to DB2.

Example 5-54 Oracle hash partitioning

CREATE TABLE hash_table
(
hash_part date,
hash_data varchar2(20)

)

PARTITION BY HASH(hash part)
(partition pl tablespace tbspl,
partition p2 tablespace tbsp2
)s

Multidimensional clustering

Multidimensional clustering, also known as an MDC table, is a method of data
organization that clusters data together on disk according to dimension key
values. A dimension is a key or attribute, such as product, time period, or
geography, used to group factual data into a meaningful way for a particular
application.

A dimension can consist of a composite of two or more columns. A desirable
characteristic of dimension values is that they are of a low cardinality and consist
of a minimal number of unique values.

Chapter 5. Conversion reference 231

Example 5-55 is an example of an MDC table definition.

Example 5-55 MDC table definition

CREATE TABLE SALES

(

STORE INT NOT NULL,
SKU INT NOT NULL,
DIVISION INT NOT NULL,
QUANTITY INT NOT NULL

)
ORGANIZE BY DIMENSIONS (STORE, SKU);

As shown in Example 5-55, a table is created that specifies that division and
quantity is to be organized by two dimensions, STORE and SKU. All data in the
table will be stored on disk in blocks of data organized by STORE and SKU
values. Each block on disk will only contain rows of data based on a unique set of
dimension values.

When dimension keys are used as predicates in the WHERE clause of a
SELECT statement, query performance is usually greatly improved because
many rows are retrieved with fewer 1/Os. In addition, performance benefits are
gained from the smaller block index that is used with MDC tables. Because all
rows in a block are referenced by the same dimensions, only one index entry per
dimension is needed to locate all the rows in that block.

Oracle does not have an data organization scheme that is similar to the MDC
table.

Combining methods of data organization
Just as Oracle has composite partitioning, a variety of data organization

schemes can be combined on DB2.

These combinations are:

» Database partitioning with a sublevel of table partitioning

» Database partitioning with a sublevel of MDC data organization

» Database partitioning with a sublevel of table partitioning followed by a
sublevel of MDC data organization

» Table partitioning with a sublevel of MDC data organization

Example 5-56 shows an example of combining database partitioning, table
partitioning, and MDC organization.

232 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 5-56 Combining database partitioning, table partitioning, and MDC

CREATE TABLE orders

(

order_id INTEGER,

ship_date DATE,

region SMALLINT,

category SMALLINT

)

IN thspl, thsp2, thsp3, thsp4

DISTRIBUTE BY HASH (order_id)

PARTITION BY RANGE (ship_date)

(STARTING FROM ('01-01-2005') ENDING ('12-31-2006') EVERY (1 MONTH))
ORGANIZE BY DIMENSION (region, category);

In Example 5-56, the data is distributed over multiple database partitions using a
hashed value of ORDER_ID. Within each database partition, the table is
partitioned by the SHIP_DATE month, and within each table partition the data is
organized in blocks by dimensions REGION and CATEGORY.

On Oracle, composite partitioning is used to combine the following types of
partitioning methods.

These combinations are:

» Range partitioning with hash subpartitioning
» Range partitioning with list subpartitioning

The composite partitioning on Oracle is used when partitioning by a range alone
does not provide enough granularity for managing a partition. On DB2, to break
down a table partition into smaller units, you can use a composite column as a
range partitioning key. The range partition key is defined by the PARTITION BY
RANGE clause as shown in Example 5-57.

Example 5-57 Using PARTITION BY RANGE clause

CREATE TABLE sales
(
year INT,
month INT
)
IN tbspl, tbsp2, tbsp3, tbsp4, tbsp5, tbsp6, tbsp7, tbsp8
PARTITION BY RANGE (year, month) ...

If adding a secondary column to the partitioning key is not possible, then use a
generated column to complete the composite column.

Chapter 5. Conversion reference 233

Table 5-8 summarizes comparisons between Oracle’s partitioning methods with

DB2.

Table 5-8 Mapping Oracle data organization schemes to DB2

Oracle DB2 data Oracle 10g syntax | DB2 9.1 syntax
partitioning organization
No equivalent Round robin None Default: occurs
automatically on
single partition
database
Range partitioning | Table partitioning PARTITION BY PARTITION BY
RANGE RANGE
Hash partitioning Database PARTITION BY DISTRIBUTE BY
partitioning HASH HASH
List partitioning Table partitioning PARTITION BY PARTITION BY
with generated LIST RANGE
column
Composite Combination of: PARTITION BY DISTRIBUTE BY
partitioning: database RANGE, HASH
partitioning, SUBPARTITION PARTITION BY
hash-range table partitioning, BY HASH RANGE
hash-list multidimensional SUBPARTITION ORGANIZE BY
clustering BY LIST DIMENSIONS
No equivalent Multidimensional None ORGANIZE BY
clustering DIMENSIONS

Indexes

With the table partitioning feature, each index on a partitioned table can be
placed into its own table space regardless of the underlying table space for the
table. The CREATE INDEX statement supports the IN tablespace-name clause
as follows:

CREATE INDEX indexl ON tablel IN tablespacel;

This means that if the partitioned table uses an SMS table space, each index can
be placed into its own table space. If no table space for an index is provided, the
index will be placed into the first table space specified for a table.

Indexes that are created on partitioned tables are global; that is, the index holds
entries for all partitions on the table.

234 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Roll-in and roll-out of data

DB2 supports attaching a new partition to an existing partitioned table (roll-in)
and the detaching of a partitioned table into a single table (roll-out). This
functionality is achieved by using the ATTACH PARTITION and DETACH
PARTITION clauses of the ALTER TABLE statement. By attaching a new
partition to a table, you facilitate the adding of a new range of data to a
partitioned table. A new partitioned range can be added anywhere in the table,
and not only to the high end of the table.

To attach a partition, the data is loaded into a newly created table and then that
table is attached to the existing partitioned table. Example 5-58 shows the newly
created table DECO3 that has been loaded with data rolled into the partitioned
table STOCK.

Example 5-58 Roll-in

ALTER TABLE stock ATTACH PARTITION dec03
STARTING FROM '12/01/2003' ENDING AT '12/31/2003'
FROM dec03;

COMMIT WORK 3

The new table that is attached must match the existing table in several ways.
The source and target tables must match in column order and definitions, default
values, nullability, compression and table space types used.

When a source is newly attached it is offline and remains offline until the SET
INTEGRITY statement is executed. The following example shows the SET
INTEGRITY statement:

SET INTEGRITY FOR stock ALLOW WRITE ACCESS
IMMEDIATE CHECKED FOR EXCEPTION IN stock USE stock_ex;
COMMIT WORK;

SET INTEGRITY validates the data in the newly attached data partition. The
COMMIT WORK is needed to end the transaction and to make the table
available for use.

In a similar way, an existing table can have a partition detached into a separate
table by using the ALTER statement:

ALTER TABLE stock DETACH PART decOl INTO stock_drop;

DROP TABLE stock_drop;

In addition, partitioned tables may be modified using the ADD PARTITION and
DROP PARTITION options of the ALTER TABLE statement. The ADD
PARTITION clause is used to add an empty partition with a new range to an

Chapter 5. Conversion reference 235

existing partitioned table. After it is added, the partitioned table can be loaded
with data.

5.22 %ROWTYPE and %TYPE

The %TYPE and %ROWTYPE PL/SQL declarations are used to define PL/SQL
variables to inherit the data type definition from other variable or database
columns. These declarations are particularly useful for variables used to hold
database data values. The %TYPE declaration is used to inherit a single column
data type definition. The %ROWTYPE declaration is used to retrieve a record
type that represents all columns in a table or cursor result set.

The MKT does not automatically convert % TYPE and %ROWTYPE declarations
that use collection or cursor variable as object. (For a more detailed discussion of
collection conversion, refer to 5.5, “Collections” on page 193.)

In this section, we discuss how the MTK handles the conversion of % TYPE and
%ROWTYPE variable declarations.

%TYPE

In Oracle, you can refer to the type of an existing variable, field, or column by
using the %TYPE attribute in PL/SQL. The MTK supports %TYPE for variables,
columns, and fields of record variables. The MTK replaces these references
directly by the type they refer to.

Example 5-59 shows some Oracle %TYPE examples.

Example 5-59 Oracle %TYPE

-- Base table: employees (emp_id int, first name char(20))

-- %TYPE referencing to a table column definition
v_id employee.emp_id%TYPE;
v_fname employee.emp_name%TYPE;

--%TYPE referencing to a variable definition
v_id2 var_id%TYPE;
v_fname2 var_name%TYPE;

--%TYPE referencing to a table variable
TYPE Typ_Recl IS RECORD (emp_id INT, first name CHAR(20));
varl Typ_Recl;

The converted DB2 code is shown in Example 5-60.

236 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 5-60 DB2 conversion of %TYPE

-- Base table: employee (emp_id INTEGER, first name CHAR(20))

DECLARE V_ID INTEGER;
DECLARE V_FNAME CHAR(20);

DECLARE V_ID2 INTEGER;
DECLARE V_FNAME2 CHAR(20);

DECLARE VAR1_EMP_ID INTEGER;
DECLARE VAR1_FIRST_NAME CHAR(20);

%ROWTYPE

On Oracle, you can use %ROWTYPE in PL/SQL to refer to the record type that
represents a row, a cursor, or a cursor variable. PL/SQL scripts containing the
%ROWTYPE attribute are handled in the same way as a record type that has
been previously declared.

During the conversion process, the MTK produces a list of DB2 variables
matching the record fields, and creates a variable for each of these record fields.
In addition to the variable declaration, you must also change how the variables
are referenced in the code. Oracle uses dot notation to reference the field in the
record, and after the conversion you must directly use the new variable created
by the MTK.

Example 5-61 shows an example of Oracle %ROWTYPE usage.

Example 5-61 Oracle %ROWTYPE declaration and usage

-- Base table: employee (emp_id int, emp_name char(40))
declare

-- ROWTYPE declaration

v_emp employees%ROWTYPE ;

begin
-- Assigning values
v_emp.emp_id := 1000 ;
v_emp.first_name := 'John';

end;

/

Example 5-62 shows the %ROWTYPE converted to DB2.

Example 5-62 %ROWTYPE conversion to DB2
-- Base table: employee (emp_id INTEGER, emp name CHAR(40))

Chapter 5. Conversion reference 237

BEGIN ATOMIC

DECLARE V_EMP_EMP_ID INTEGER;
DECLARE V_EMP_EMP_NAME CHAR(40);

SET V_EMP_EMP_ID = 1000 ;
SET V_EMP_EMP_NAME = “John’;

END!

5.23 MERGE

The MERGE statement is used to merge data from a source, such as table, view,
or query, into a target, such as table or view. Depending on whether the target
already has the data to be merged, you can specify different actions, for
example, insert the new rows or update or delete existing ones.

The MTK translates the Oracle MERGE statement to DB2 with the exception of
the following clauses:

» Optimizer hints
» error_logging_clause

Because the Oracle optimizer hints are not applicable to DB2, if used in a
MERGE statement, you have to manually convert the MERGE statement. The
error_logging_clause is not supported in DB2.

DB2 and Oracle MERGE statements perform differently when a DELETE clause
is included that contains an UPDATE clause. DB2 rows that were updated by the
MERGE statement containing an UPDATE clause will not be deleted if they
match the condition in the DELETE clause. When you use a translated MERGE
statement (by the MTK), you need to keep this difference in mind.

We show a conversion example of a MERGE statement with the DELETE
clause. We use two tables in our example: STAGE_TABLE and PRODUCTS.
STAGE_TABLE is our source table, and its data will be merged into the
PRODUCTS table, our target table.

These two tables have the following data:
» STAGE_TABLE

select * from stage_table;

PROD_NO DESCRIPTION QUANTITY

238 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

1 7
2 2
4 1
5 Hoad 9
6 Cap 20
» PRODUCTS

SQL> select * from products;

PROD_NO DESCRIPTION QUANTITY
1 Shoes 10
2 Socks 5
3 Shirts 25
4 Paints 3

Example 5-63 shows the MERGE statement in Oracle, and the result of the

MERGE statement.

Example 5-63 Oracle MERGE example

MERGE INTO products pd
USING (SELECT prod no, description, quantity
FROM stage table) st
ON (pd.prod no = st.prod_no)
WHEN MATCHED THEN
UPDATE SET pd.quantity = pd.quantity + st.quantity
DELETE WHERE pd.quantity > 15
WHEN NOT MATCHED THEN
INSERT (prod_no, description, quantity)
VALUES (st.prod _no, st.description, st.quantity);

5 rows merged.

SQL> select * from products;

PROD_NO DESCRIPTION QUANTITY
2 Socks 7
3 Shirts 25
4 Paints 4
5 Hoad 9
6 Cap 20

Chapter 5. Conversion reference

239

240

In Example 5-63, the DELETE clause of the MERGE statement deletes only
matched rows with quantity greater than 15 after the update operation. Note that
although products 3 and 6 have quantities greater than 15, they are not deleted
because they are not updated by the MERGE statement. The DELETE clause
will not be executed against any row affected by the UPDATE clause.

Example 5-64 shows how to achieve similar functionality in DB2. In this example,
we first merge two tables and set the quantity accordingly. Since the Oracle
MERGE statement only deletes rows after they have been updated, after merge,
we use the DELETE statement to remove the records that have a quantity
greater than 15.

Example 5-64 DB2 MERGE conversion example

MERGE INTO products pd
USING (SELECT prod no, description, quantity
FROM stage_table) st
ON (pd.prod no = st.prod no)
WHEN MATCHED THEN
UPDATE SET
pd.quantity = pd.quantity + st.quantity
WHEN NOT MATCHED THEN
INSERT (prod _no, description, quantity)
VALUES (st.prod no, st.description, st.quantity)

DELETE FROM products pr WHERE pr.prod no IN (SELECT pd.prod no FROM
products pd INNER JOIN stage table st ON (pd.prod no = s

t.prod_no) WHERE (pd.quantity + st.quantity) > 15 AND pd.quantity <>
st.quantity)

db2 => select * from products

PROD_NO DESCRIPTION QUANTITY
2 Socks 7
3 Shirts 25
4 Paints 4
5 Hoad 9
6 Cap 20

5 record(s) selected.

Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.24 Index conversion

Indexes are used to speed up queries by providing the optimizer another way of
retrieving data other than a sequential scan. Most indexes in the Oracle
database are translated by the MTK, but there are a few differences between
Oracle and DB2.

INCLUDE column index

INCLUDE column index is introduced in DB2 9. When creating a unique index,
you have the option to include extra columns to the index using the INCLUDE
clause. The INCLUDE columns are stored with the index, but will not be sorted
and considered for uniqueness. Use of INCLUDE columns improves the
performance of data retrieval when index access is involved. DB2 does not need
to access the data page because the data value is already available on the index

page.
Creating an index with INCLUDE columns is shown in Example 5-65.

Example 5-65 Creating index with INCLUDE columns

CREATE UNIQUE INDEX ix1 ON employee
(name ASC)
INCLUDE (dept, mgr, salary, years)

5.24.1 Differences between Oracle and DB2

Both Oracle and DB2 use index for query performance optimization. There are
differences in the implementation of indexes between Oracle and DB2.

Different meaning of cluster index

In Oracle, a cluster index means an index on a clustered table or a partitioned
table.

In DB2, if the index is created with the CLUSTER option, the index is the
clustering index of the table. While creating the clustering index, the data in the
table is rearranged in the same order as that of the index.

The clustering index provides performance enhancements when a query scans
most of the data in the same order as that of the index. When a new row is
inserted, an attempt is made to keep the new row physically close to rows that
have key values logically closed in the index-key sequence. Over time, updates
and inserts may make the table less well clustered in relation to the index. You
might need to periodically reorganize the table to make the data clustered again.

Chapter 5. Conversion reference 241

Example 5-66 provides an example of the command that is used to create a
clustering index.

Example 5-66 DB2 clustering index

CREATE INDEX inxcls_emp_empno
ON employee(empno ASC)
CLUSTER

PCTFREE 10

MINPCTUSED 40;

Bitmap indexes

The Oracle bitmap index is not available in DB2. This type of index is aimed at
data warehousing and is suitable for an index where there are very few key
values (low cardinality)—for example, gender or state.

Although you can’t explicitly create a bitmap index in DB2, the DB2 optimizer
may create dynamic bitmap indexes during the execution of certain types of
queries.

Functional indexes

An Oracle function-based index computes the value of the function or expression
and stores it in the index. The function-based index is not available in DB2. To
achieve similar functionality, you should create a computed column with the
generated values for the function expression, and then create an index on this
column.

5.25 Oracle database links

A table that resides in another database can be accessed like a local table
through the features delivered by the database management systems. In Oracle,
the database link provides this capability, while in DB2, the Homogeneous
Federation Feature delivers the ability to access database objects in different
DB2 data servers.

You can have unified access to the data managed by multiple data servers,
including DB2 and Informix with DB2 Homogeneous Federation Feature. This
allows applications to access and integrate diverse data—mainframe and
distributed—as though it were a DB2 table, regardless of where the information
resides, while retaining the autonomy and integrity of the data sources. The
WebSphere Federation Server significantly expands the choice of data sources
to any kind of data including database management systems on various
platforms, flat files, Excel®, rich media, e-mails, XML, as well as LDAP.

242 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information about WebSphere Federation Server, refer to:

http://www.ibm.com/software/data/integration/support/federation_server/

or the DB2 manual Administration Guide for Federated Systems, SC19-1020.

DB2 Homogeneous Federation Feature enables you to:

>

vvyy

Gain virtualized real-time access to disparate data sources
Speed time to market for new projects

Access more data sources

Extend your data warehouse or data mart with remote data

Setting up federated databases

Setting up the federated databases is simple. We demonstrate the steps by an
example. In this example, we want to join the LOCAL_DEPARTMENT table in
the DB2_EMP database with the EMPLOYEE table in database SAMPLE. Since
the query will be executed on DB2_EMP, it will be the federated server.

1.

Enable the Federation feature.

The Federation feature is enabled by setting the DB2 database manager
configuration (DBM CFG) parameter FEDERATED to YES on the federated
server. You can check and set the value as shown in Example 5-67.

Example 5-67 Enabling Federation feature

/WORK # db2 get dbm cfg |grep "Federated Database"

Federated Database System Support (FEDERATED) = NO
/WORK # db2 update dbm cfg using federated yes immediate
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command
completed

successfully.

/WORK # db2 get dbm cfg |grep "Federated Database"

Federated Database System Support (FEDERATED) = YES

Once the FEDERATED value in DBM CFG is changed, it is applied after
restarting the database server. See Example 5-68.

Example 5-68 Restart the server

/WORK # db2stop force

02/14/2007 10:09:04 0 0 SQL1064N DB2STOP processing was
successful.

SQL1064N DB2STOP processing was successful.

/WORK # db2start

02/14/2007 10:09:08 0 0 SQL1063N DB2START processing was
successful.

Chapter 5. Conversion reference 243

http://www.ibm.com/software/data/integration/support/federation_server/

SQL1063N DB2START processing was successful.

2. Configure the component that is needed to federate the table in another
database.

WRAPPER - A mechanism by which a federated server can interact with
certain types of data sources. In our example, we create a wrapper for the
SAMPLE database from DB2_EMP. You can check the data source from
the catalog view syscat.servers.

SERVER - A data source to a federated database. In our example, the
data source is the SAMPLE database.

USER MAPPING - Definition of mapping between an authorization ID that
uses a federated database and the authorization ID and password to use
at a specified data source.

NICKNAME - Alias for a data source object. In our example, we create a
nickname, REMOTE_EMPLOYEE, for the EMPLOYEE table of the
SAMPLE database. From DB2_EMP, we then use this nickname in the
query to join data.

Example 5-69 shows the script, fed_config.db2, we used to set up the
federated system in our lab.

Example 5-69 Source of fed_config.db2

CONNECT TO db2_emp;

--Create wrapper;
CREATE WRAPPER drda;
SELECT * FROM syscat.wrappers;

CREATE SERVER fedserver

SELECT * FROM syscat.servers

type db2/udb version '9.1'
WRAPPER "DRDA"

AUTHID "db2inst1"

PASSWORD "db2instl"

OPTIONS (dbname 'SAMPLE');

-- Map user

CREATE USER MAPPING FOR USER

SERVER fedserver
OPTIONS(REMOTE_AUTHID 'db2instl', REMOTE_PASSWORD 'db2instl');

244 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

SELECT * FROM syscat.usermappings;

CREATE NICKNAME remote_employee FOR fedserver.db2instl.employee;

Use the following command to execute the script:
/WORK # db2 -tf fed_config.db2

You can see the registered federation values in the result of the selection
from the system catalog tables.

After you configure a Federation server and link a remote table with a
nickname in the local database, you can access the remote table because it
is in the local database.

Example 5-70 demonstrates that you can delete and insert records on table
EMPLOYEE of the SAMPLE database from DB2_EMP because it is one of
the tables in this database.

Example 5-70 Access to a remote table

CONNECT TO db2_emp;

DELETE FROM remote_employee WHERE empno='999999';
INSERT INTO
remote_employee(empno, firstnme,lastname,workdept,edlevel)
VALUES ('999999', 'CARLOS', 'EDUARDO','E11',20);
SELECT empno, firstnme,workdept
FROM remote employee WHERE empno='999999';

999999 CARLOS E1ll

You also can join the remote table with the local table as shown in
Example 5-71.

Example 5-71 Join data in two tables

connect to db2_emp;

CREATE TABLE Tlocal_department

Chapter 5. Conversion reference 245

(deptno CHAR(3), deptname CHAR(20));

INSERT INTO local_department VALUES
('EO1','Operation'),
('E10','Sales'),
('E11','Global Services');

SELECT * FROM Tocal_department;

SELECT empno, firstnme, deptname
FROM remote_employee r, Tocal_department d
WHERE r.workdept=d.deptno and empno='999999';

The result of joining a remote table (REMOTE_EMPLOYEE) and a local table
(LOCAL_DEPARTMENT) is shown in Example 5-72.

Example 5-72 The result of joining two tables

-- Result of the first SELECT (SELECT FROM Tocal department)

DEPTNO DEPTNAME

EOL Operation
E10 Sales
E1ll Global Services

-- Result of the second SELECT (Join local department and
remote_employee)

EMPNO FIRSTNME DEPTNAME

999999 CARLOS Global Services

5.26 Temporary tables

An Oracle temporary table can be translated as the DB2 global temporary table.

In DB2, the DECLARE GLOBAL TEMPORARY TABLE statement defines a
temporary table for the current session. The description of the declared
temporary table does not appear in the system catalog. It is not persistent and
cannot be shared with other sessions. Each session that defines a declared

246 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

global temporary table of the same name has its own unique description of the
temporary table. When the session terminates, the rows of the table are deleted,
and the description of the temporary table is dropped.

The USER TEMPORARY table space must exist to create a global temporary
table.

Example 5-73 shows how to create a DB2 global temporary table.

Example 5-73 Creating a DB2 global temporary table

CREATE USER TEMPORARY TABLESPACE demotmp
PAGESIZE 4 k MANAGED BY SYSTEM
USING ('/db2/demotmp');

DECLARE GLOBAL TEMPORARY TABLE E1
LIKE employee
ON COMMIT PRESERVE ROWS NOT LOGGED IN demotmp;

INSERT INTO session.el
SELECT * FROM employee WHERE workdept = 'D21';

SELECT empno, workdept, salary FROM session.el;

The result of this script is shown in Example 5-74.

Example 5-74 Data in the global temporary table
EMPNO WORKDEPT SALARY

000070 D21 96170.00
000230 D21 42180.00
000240 D21 48760.00
000250 D21 49180.00
000260 D21 47250.00
000270 D21 37380.00
200240 D21 37760.00

5.27 Concurrency and transaction

Both concurrency control and locking are used to ensure the data integrity in any
DBMS. The concurrency can be categorized into read concurrency and update
concurrency.

Chapter 5. Conversion reference 247

First of all, the default concurrency processing is different for Oracle and DB2. So
when you migrate an application to DB2, you need to keep in mind the
fundamental differences shown in Table 5-9.

Table 5-9 Summary of different default settings between Oracle and DB2

Oracle DB2
Lock mode Set lock node to wait Set lock mode to not wait
Isolation level Set isolation to dirty read Set isolation to cursor stability

5.27.1 Read concurrency

Oracle uses a feature called read consistency, which lets a query return a result
based on the state of the data when the query starts, regardless of other
processes such as update or delete on the same data while the query is running.
This mechanism is called Multi-Version Read Consistency and is implemented
by undo data in the undo segments.

DB2 does not support this type of processing. The application should be
analyzed to determine if this difference is acceptable. If not, then it must be
determined what the requirement is: readers not blocking writers, query results
based on the state of the data when the query began (read consistency), or both.

DB2 implements various isolation levels to support read concurrency.

Uncommitted Read

Uncommitted Read (UR), also known as dirty read, is the lowest level of
isolation. It is the least restrictive, but provides the greatest level of concurrency.
However, it is possible for a query executed under UR to return data that has
never been committed to the database.

Cursor Stability

Cursor Stability (CS) is the default isolation mode. It is used when no isolation is
set in an application. In this isolation mode, only the row on which the cursor is
currently positioned is locked. This lock is held until a new row is fetched or the
unit of work (UOW) is terminated. If a row is updated, the lock is held for the
duration of the transaction.

Read Stability

Under Read Stability (RS) isolation, locks are only placed on the rows that an
application retrieves within a unit of work. Applications cannot read uncommitted
data and no other application can change the rows locked by the Read Stability

248 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

application. It is possible to retrieve phantom rows if the application retrieves the
same row more than once within the same unit of work.

The Read Stability isolation level ensures that all returned data remains
unchanged until the time the application sees the data, even when temporary
tables or row blocking are used. One of the objectives of the Read Stability
isolation level is to provide both a high degree of concurrency as well as a stable
view of the data. To assist in achieving this objective, the optimizer ensures that
table level locks are not obtained until lock escalation occurs.

Repeatable Read

Repeatable Read (RR) is the highest level of isolation and has the lowest level of
concurrency. Locks are held on all rows processed (scanned) for the duration of
a transaction. Because so many locks are required for repeatable read, the
optimizer might choose to lock the entire table instead of locking individual rows.
The same query issued by the application more than once in a unit of work gives
the same result each time (no phantom reads). No other application can update,
delete, or insert a row that affects the resulting table until the unit of work is
completed.

Table 5-10 DB2 isolation level summary

Isolation level Read a data Lock placed on data rows
locked by
other users
Uncommitted Read yes No
Cursor Stability no Only a row currently fetched by cursor, until
fetching the next row.
Read Stability no Rows retrieved within a UOW.
Repeatable Read no All rows processed (scanned) within a

transaction.

In DB2, the isolation level can be specified for a session, a client connection, or
an application before a database connection and is set to control the type of
locks and the degree of concurrency allowed by the application. For embedded
SQL, the level is set at bind time; and for dynamic SQL, the level is set at run
time.

The isolation level is set by the SET ISOLATION statement, as shown in
Example 5-75.

Example 5-75 Setting the isolation level
SET ISOLATION TO ur ;

Chapter 5. Conversion reference 249

SET ISOLATION TO rs ;

Or you can set the isolation level in a SELECT statement, as shown in
Example 5-76.

Example 5-76 Set the isolation level in a SELECT statement

SELECT deptno, deptname, mgrno
FROM dept

WHERE admrdept ='a00'

WITH UR;

Read scanners can skip honcommitted INSERTs or DELETEs
To improve concurrency, DB2 permits the deferral of row locks for Cursor
Stability or Read Stability isolation scans in certain situations, until a record is
known to satisfy the predicates of a query. By default, when row locking is
performed during a table or an index scan, DB2 locks each row before
determining whether the row qualifies for the query. To improve concurrency of
scans, it may be possible to defer row locking until after determining that a row
qualifies for a query. This lock deferral feature was introduced using the registry
variable DB2_EVALUNCOMMITTED.

In addition, you might improve concurrency by setting the registry variables
DB2_SKIPDELETED and DB2_SKIPINSERTED. These registry variables permit
scans to unconditionally skip uncommitted deletes and inserts, respectively.

The default value for all these registry variables is OFF.

DB2_SKIPINSERTED=ON

DB2 will treat the uncommitted INSERTSs (for CS and RS isolation levels only) as
though they had not yet been inserted. This feature provides increased
concurrency without sacrificing isolation semantics. DB2 implements the ability
for scanners to skip uncommitted inserted rows versus waiting, when in conflict
through lock attributes and feedback on lock requests.

DB2_SKIPDELETED=ON

This acts in the same manner for deletions as DB2_SKIPINSERTED does for
insertions. When set to ON, it allows uncommitted deletions to be ignored for
cursors using the CS or RS isolation levels. DB2 will unconditionally bypass any
uncommitted rows in a query.

DB2 EVALUNCOMMITTED=ON

DB2 allows scans with isolation level Cursor Stability (CS) or Read Stability (RS)
to avoid or defer row locking until a data row is known to satisfy predicate

250 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

evaluation. Rows that do not satisfy your query are bypassed. With this variable
enabled, predicate evaluation can occur on uncommitted data.

For more information, refer to the white paper “Lock avoidance in DB2 UDB V8"
at:

http://www.ibm.com/developerworks/db2/1ibrary/techarticle/dm-0509schuetz/

Recommendation for the appropriate isolation level

Choosing the appropriate isolation level to use for a transaction is very important.
The isolation level not only influences how well the database supports
concurrency, but it also affects the overall performance of the application
containing the transaction. That is because the resources needed to acquire and
free locks vary with each isolation level.

Generally, when more restrictive isolation levels are used, less concurrency
support is provided and the overall performance may be decreased because
more resources are required. However, when deciding on the best isolation level
to use, the deciding factor should be which phenomena are acceptable and
which phenomena are not. The following heuristic can be used to help you
decide which isolation level to use for a particular situation:

» If you are executing queries on read-only databases or if you are executing
queries and do not care if uncommitted data values are returned, use the
Uncommitted Read isolation level. (The Read-only transactions are needed.
High data stability is not required.)

» If you want maximum concurrency without seeing uncommitted data values,
use the Cursor Stability isolation level. (The Read/Write transactions are
needed. High data stability is not required.)

» If you want concurrency and you want qualified rows to remain stable for the
duration of an individual transaction, use the Read Stability isolation level.

» If your application uses a cursor which selects a few data rows and fetches to
perform some additional processing, you need to set the isolation level as
Read Stability or Repeatable Read to avoid a phantom select.

» Even though a cursor in your application has only one row, if your isolation
level is set to Repeatable Read, make sure that your query uses a proper
index to fetch a row to avoid locking all rows in the table caused by the table
scan.

5.27.2 Update concurrency

When an update such as an INSERT, DELETE, or UPDATE statement occurs in
the database, a lock is used to support the update concurrency. In Oracle, locks
placed on the table elements can be on individual rows, or on pages of rows in

Chapter 5. Conversion reference 251

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0509schuetz/

the table. In DB2, the database manager imposes locks on objects such as rows,
tables, and table spaces as they are required. The default used by DB2 is row
locking.

In DB2, databases, table spaces, and tables can be explicitly locked. Here are
some examples of commands that can be used to lock the database objects:
» Database lock

CONNECT TO database IN EXCLUSIVE MODE
» Table space lock

QUIESCE tablespace FOR TABLE tablename INTENT FOR UPDATE;
» Table lock

LOCK TABLE tablename IN EXCLUSIVE MODE;

In DB2, databases, tables, and rows can be implicitly locked. For example:

» Databases are locked during full database restore.
» Tables are locked during lock escalation.
» Rows are locked through normal data modification.

SELECT FOR UPDATE

If you convert the Oracle UPDATE cursor or SELECT FOR UPDATE statement
to DB2, you can use a DB2 cursor.

Example 5-77 shows the Oracle SELECT FOR UPDATE code sample.

Example 5-77 Oracle - SELECT FOR UPDATE

EXEC SQL select * from staff where id=p_id for update;

EXEC SQL update staff set salary = 10000.0
where id =p_id ;

Example 5-78 shows how this can be converted to DB2.

Example 5-78 DB2 Update cursor sample in ESQL/C program

EXEC SQL DECLARE C1 CURSOR FOR
select * staff where id=:p_id for update of salary;
EXEC SQL OPEN C1;
EXEC SQL FETCH C1 INTO ... ;
if (strcmp (change, "YES") == 0)
EXEC SQL update staff set salary = :salary
WHERE CURRENT OF C1;

252 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

EXEC SQL CLOSE C1;

If SELECT FOR UPDATE is used for holding the update lock on a specific row
but not to update the data on Oracle, you can use SELECT with the USE AND
KEEP UPDATE [SHAREIEXCLUSIVE] LOCKS clause in DB2 to achieve the
purpose, as shown in Example 5-79:

Example 5-79 Using the DB2 USE AND KEEP UPDATE clause

EXEC SQL select * from staff where id=:p_id
FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCK;

In Example 5-79, SELECT retrieves data from the STAFF table with exclusive
lock on the data. Because the data will be updated later with a searched update,
and should be locked when the query is executed.

5.27.3 Miscellaneous differences

Unlike in Oracle, in DB2 locks are stored in the memory and not in data pages.
The LOCKLIST database configuration parameter can be used to configure the
memory available for locks, while the MAXLOCKS configuration parameter
defines the maximum amount of memory for a particular application's locks.

Also In DB2 9, LOCKLIST can be set to AUTOMATIC to enable self tuning. This
allows the memory tuner to dynamically size the memory area controlled by this
parameter as the workload requirements change. The value of LOCKLIST is
tuned together with the MAXLOCKS parameter. Therefore, disabling self tuning
of the LOCKLIST parameter also disables self tuning of the MAXLOCKS.
Enabling self tuning of the LOCKLIST parameter automatically enables self
tuning of the MAXLOCKS.

5.27.4 Transaction

Most transaction statements—COMMIT, ROLLBACK, and SAVEPOINT—in
Oracle are converted to DB2 by the MTK.

Different COMMIT behavior

The Oracle COMMIT statement does not close currently open cursors. The DB2
COMMIT statement does close currently open cursors (except those declared
using WITH HOLD). Manual conversion might be required if open cursors are
used after a COMMIT in the Oracle source code. COMMIT in both Oracle and
DB2 releases the locks held by the cursors, except in DB2 for WITH HOLD
cursors.

Chapter 5. Conversion reference 253

Multiple SAVEPOINT

You can convert an Oracle multiple SAVEPOINT into DB2, as shown in
Example 5-80.

Example 5-80 DB2 multiple SAVEPOINT

CREATE TABLE DEPT_SAVEPOINT (

DEPTNO CHAR(6),

DEPTNAME VARCHAR(20),

MGRNO INTEGER) ;
INSERT INTO DEPARTMENT VALUES ('A20', 'MARKETING', 301);
SAVEPOINT SAVEPOINT1 ON ROLLBACK RETAIN CURSORS;
INSERT INTO DEPARTMENT VALUES ('B30', 'FINANCE', 520);
SAVEPOINT SAVEPOINT2 ON ROLLBACK RETAIN CURSORS;
INSERT INTO DEPARTMENT VALUES ('C40', 'IT SUPPORT', 430);
SAVEPOINT SAVEPOINT3 ON ROLLBACK RETAIN CURSORS;

INSERT INTO DEPARTMENT VALUES ('R50', 'RESEARCH', 150);

At this point, the DEPT_SAVEPOINT table exists with rows A20, B30, C40, and
R50.

If you now issue the ROLLBACK TO SAVEPOINT SAVEPOINTS, row R50 is no
longer in the DEPARTMENT table.

If you then issue ROLLBACK TO SAVEPOINT SAVEPOINT1, the
DEPARTMENT table still exists, but the rows inserted since SAVEPOINT1 was
established (B30 and C40) are no longer in the table.

For more information about Concurrency and Transaction, refer to “Managing
concurrency” in the DB2 manual Performance Guide, SC10-4222.

5.28 Encryption

In DB2, the encryption and decryption module are bundled, so you can
implement an encrypted database using encryption and decryption built-in
functions. You can encrypt a column with an encryption key (password). The

254 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

data can then be decrypted using the password. You also can include a hint for
the key. A function is provided to get the password hint.

Only a data of CHAR and VARCHAR data type can be encrypted. The column
data type to store an encrypted value is VARCHAR FOR BIT DATA. To encrypt a
column, you need to declare a column with sufficient size to contain the
encrypted value.

» When the hint parameter is specified, the length attribute of the result is equal
to the total of the following:

Length attribute of the unencrypted data

8 bytes

Number of bytes to the next 8-byte boundary
32 bytes for the length of the hint

» When the hint parameter is not specified, the length attribute of the result is
equal to the total of the following:

— Length attribute of the unencrypted data
— 8 bytes
— Number of bytes to the next 8-byte boundary

You can use the encrypt function to find the length of the result before you create
a table, as shown in the Example 5-81:

Example 5-81

values length(encrypt('IBM Redbook','los gatos'))

1 record(s) selected.

values length(encrypt('IBM Redbook','los gatos','a city of the cat'))

1 record(s) selected.

Example 5-82 illustrates how to store encrypted data; an error in the password is
also included.

Example 5-82 Creating data encryption
CREATE TABLE encryptions

Chapter 5. Conversion reference 255

(
id INT NOT NULL,
data CHAR(30) FOR BIT DATA

)s

-- Insert few rows with encryption function
-- These inserts will success.

INSERT INTO encryptions VALUES
(1,encrypt('100-1111"', 'WheiZen')),
(2,encrypt('200-2222','Carlos')),
(3,encrypt('300-3333','Fraser','CA'));

-- This insert does not have a valid password

INSERT INTO encryptions VALUES
(4, ENCRYPT('400-4444','Anna'));

DB21034E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned:

SQL20144N The encryption password is invalid because the Tength of the
specified password was less than 6 bytes or greater than 127 bytes.
SQLSTATE=428FC

Example 5-83 shows how to use the decryption function to retrieve data.

Example 5-83 Retrieve encrypted data

-- Select a encrypted value and actual value with decryption function

SELECT data FROM encryptions
WHERE id=1;

x'0CO09F7FF0333D5A350B39B651F58A96E248F7E53E44708B9202020202020"
1 record(s) selected.

-- select a data with a key

SELECT id,DECRYPT_CHAR(data,'WheiZen') FROM encryptions

where id=1

ID 2

256 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

1 100-1111

1 record(s) selected.

-- select data with wrong key

select id, DECRYPT_CHAR(data,'AnnaChoi')

FROM encryptions

WHERE id=2;
SQL20145N The decryption function failed. The password used for
decryption does not match the password used to encrypt the data.
SQLSTATE=428FD

-- select a hint for decryption

SELECT GETHINT(data) From encryptions
where id=3;

1 record(s) selected.

You can also set an encryption password in the session level. See Example 5-84.
It will affect every insert if no encryption key is specified.

Example 5-84 Set encryption password in the session level

set encryption password = 'The Pride';

insert into encryptions values
(20,encrypt('500-5555"')),
(30,encrypt('600-6666"'));

5.29 Oracle multitable, conditional, and pivot insert

Oracle multitable, conditional, and pivot insert are not converted to DB2
statements by the MTK. To convert, you need to separate an Oracle multitable,
conditional, or pivot insert SQL statement into appropriate SQL statements.

Chapter 5. Conversion reference 257

Example 5-85 shows an Oracle multitable insert SQL statement.

Example 5-85 Oracle multitable insert

INSERT ALL

INTO emp_dept VALUES(empno,firstnme,workdept)

INTO emp_salary VALUES(empno,firstname,salary,comm)
SELECT empno, firstnme,workdept,salary,comm

FROM employee

WHERE edlevel < 16;

Example 5-86 shows the DB2 conversion code.

Example 5-86 Conversion of Oracle multitable insert to DB2

INSERT INTO emp_dept

SELECT empno, firstnme,workdept
FROM employee

WHERE edlevel < 16;

INSERT INTO emp_salary

SELECT empno,firstnme,salary,comm
FROM employee

WHERE edlevel < 16;

5.30 Additional considerations

External procedures and functions are also frequently seen in Oracle and DB2
applications. Complete information about building and running external
procedures and functions is beyond the scope of this book. We provide here two
examples of building routines using C and Java. For complete information about
building and running external procedures and functions, consult the following
IBM DB2 9 documents:

» Getting Started with Database Application Development, SC10-4252
» Developing SQL and External Routines, SC10-4373
5.30.1 Building C/C++ routines

We now show an example of creating a stored procedure written in C. First, here
are some basic steps that must be followed when creating any C procedure (or
function):

258 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

>

Create the external procedure/function and save it on your file system. If the
procedure/function contains embedded SQL, then it should be saved with the
extension .sqc, if not save it with the extension .c

Create the export file (AIX ONLY)

AlX requires you to provide an export file that specifies which global functions
in the library are callable from outside it. This file must include the names of
all routines in the library. Other UNIX platforms simply export all global
functions in the library. This is an example of an AIX export file for the
procedure outlanguage that exists in the file spserver.sqc:

#1 spserver export file
outlanguage

The export file spserver.exp lists the stored procedure outlanguage. The
linker uses spserver.exp to create the shared library spserver that contains
the outlanguage stored procedure.

On Windows, a DEF file is required which has a similar purpose. See
sqllib/samples/c/spserver.def for an example.

Run the bldrtn script which creates the shared library:
bldrtn my routine my database name
The script copies the shared library to the server in the path sqllib/function.

Catalog the routines by running the catalog my routine script on the server.

Notes

»

After a shared library is built, it is typically copied into a directory from which
DB2 will access it. When attempting to replace a routine shared library, you
should either run /usr/sbin/slibclean to flush the AlX shared library cache, or
remove the library from the target directory, and then copy the library from the
source directory to the target directory. Otherwise, the copy operation may fail
because AlIX keeps a cache of referenced libraries and does not allow the
library to be overwritten.

DB2 provides build scripts for precompiling, compiling, and linking C stored
procedures. These are located in the sqllib/samples/c directory, along with
sample programs that can be built with these files. This directory also
contains the embprep script used within the build script to precompile a *.sqc
file. The build scripts have the .bat (batch) extension on Windows, and have
no extension on UNIX platforms. For example, bldrtn.bat is a script to build
C/C++ stored procedure on Windows platform; bldrtn is the equivalent on
UNIX.

Chapter 5. Conversion reference 259

Example

Here is a simple example of creating and cataloging a stored procedure written in
C. This procedure queries the sysprocedures table from the DB2 system catalog
to determine in which language (JAVA, C, etc.) that a procedure
TWO_RESULT_SETS is written.

» The C source file (Example 5-87), with embedded SQL, is created and saved
as outlanguage.sqc.

Example 5-87 Stored procedure in C

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlca.h>
#include <sqludf.h>
#include <sql.h>
#include <memory.h>
SQL_API RC SQL_API_FN outlanguage(char language[9]){
struct sqlca sqlca;
EXEC SQL BEGIN DECLARE SECTION;
char out_lang[9];
EXEC SQL END DECLARE SECTION;
/* Initialize strings used for output parameters to NULL */
memset (1anguage, '\0', 9);
EXEC SQL SELECT Tanguage INTO :out lang
FROM sysibm.sysprocedures
WHERE procname = ‘TWO_RESULT SETS’;
strcpy(Tanguage, out_lang);
return 0;
} /* outlanguage function */

» The .exp file is created and saved as outlanguage.exp. Here are the contents
of that file:

outlanguage

» The file outlanguage_crt.db2, which catalogs the procedure, is created and
saved. Here are the contents:

CREATE PROCEDURE outlanguage (OUT language CHAR(8))
DYNAMIC RESULT SETS 0

LANGUAGE C

PARAMETER STYLE SQL

NO DBINFO

FENCED NOT THREADSAFE

MODIFIES SQL DATA

260 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

PROGRAM TYPE SUB
EXTERNAL NAME 'outlanguage!outlanguage'!

» The build script b1drtn for the outlanguage.sqc file is executed using the
db2_emp database:

bldrtn outlanguage db2_emp
» A connection is made to the database:
db2 connect to db2_emp
» The script to catalog the procedure is executed:
db2 —td! —vf outlanguage crt.db2 > message.out
» DB2 responds with the message:
DB20000I The SQL command completed successfully.

The message.out file should be viewed for messages, especially if any other
message than The SQL command completed successfully is returned.

» The procedure is tested:
db2 “call outlanguage(?)”
Results:

Value of output parameters

Parameter Name : LANGUAGE
Parameter Value : JAVA
Return Status = 0

5.30.2 Building Java routines

Here are the basic steps to create an external Java User-Defined Function (UDF)
from the DB2 Command Window:

» Compile your_javaFileName.java to produce the file
your_javaFileName.cTlass with this command:

Jjavac your javaFileName.java

» Copy your_ javaFileName.class to the sqllib\function directory on Windows
operating systems, or to the sqllib/FUNCTION directory on UNIX.

» Connect to the database:
db2 connect to your_database_name

» Register the your_javaFileName library in the database using the CREATE
FUNCTION SQL statement.

db2 —td! —vf <your_create_function_statement.db2>

Chapter 5. Conversion reference 261

Example

Here is an example of a Java UDF that will retrieve the system name from the
DB2 Registry variable DB2SYSTEM.

» The Java source file as shown in Example 5-88 is saved as
db2system_nameUDF java.

Example 5-88 UDF Java source

import java.io.*;
public class db2system nameUDF {
public static String db2system name() {
Runtime rt = Runtime.getRuntime();
Process p=null;
String s = null;
String returnString = "";
try {
// WINDOWS: **** uncomment and compile the following for Windows
// p = rt.exec("cmd /C db2set DB2SYSTEM");
// UNIX: **** yncomment and compile the following for UNIX
p = rt.exec("db2set DB2SYSTEM");
BufferedInputStream buffer =
new BufferedInputStream(p.getInputStream());
BufferedReader commandResult =
new BufferedReader(new InputStreamReader(buffer));
try {
while ((s = commandResult.readLine()) !'= null)
returnString = returnString.trim() + s.trim() ;
// MAX number of chars for the DB2SYSTEM variable is 209
characters
commandResult.close();
// Ignore read errors; they mean process is done
} catch (Exception e) {
}
} catch (IOException e) {
returnString = "failure!";
}
return(returnString);
}
}

» Compile the Java source. The compile command is:
javac db2system nameUDF.java
» Copy the .class file to the /sqllib/function directory:
$ cp db2system_nameUDF.java /home/db2inst1/sqllib/function

262 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

» Construct the Create Function file and save it as db2system_name.db2:

DROP FUNCTION DB2SYSTEM_NAME !

CREATE FUNCTION DB2SYSTEM_NAME ()

RETURNS VARCHAR(209)

EXTERNAL NAME 'db2system nameUDF!db2system name'
LANGUAGE JAVA

PARAMETER STYLE JAVA

NOT DETERMINISTIC

NO SQL

EXTERNAL ACTION!

» Connect to the database:
db2 connect to db2_emp
» Execute the script to register the UDF with the database:
db -td! -vf db2system name.db2
» Test the UDF:
db2 “values db2system name()”
Result:

smpoaix

—_

record(s) selected.

Chapter 5. Conversion reference 263

264 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Data conversion

Data conversion is a sensitive task in the porting project. You have to ensure that
all data is moved to the target database, both correctly and in time.

In this chapter, we discuss the data conversion methods for deploying the data
from Oracle to the DB2 database. The data can be transformed by the following
methods:

>

>

>

»

»

Using the IBM Migration Toolkit (MTK) generated scripts and data files
Using the MTK to move data online

Exporting the data manually from Oracle to flat file and importing or loading to
DB2

Using operating system named pipes
Using WebSphere Federation Server

Furthermore, we give some hints for time planning of the data movement
process.

© Copyright IBM Corp. 2003, 2007. All rights reserved. 265

6.1 Data conversion process

The data conversion process is quite complex. Before you define a porting
method, you should do some tests with only a portion of the data to verify that the
chosen method works successfully for your database environment. Generally, it
is a good idea that tests cover all potential cases. For these reasons, we
recommend that you start early with the testing.

The tasks of the test phase are:

» Calculate the source data size and calculate the required space for the files
on disk.

» Select the tools and the conversion method.

» Test the conversion using the chosen method with only a small amount of
data.

With the result of the test, you should be able to:

» Estimate the time for the complete data conversion process.

» Create a plan for the development environment conversion.

» Create a plan for the production environment conversion, using the
information from the development environment conversion.

» Schedule the time for the data conversion.

The following factors influence the time and complexity of the process:
» Amount of data and data changes

The more data that you have to move, the more time you need. Consider the
data changes as well as the timestamp conversions.

» System availability

You can run the data movement either when the production system is down
or when the business process is running, by synchronizing source and target
database. Depending on the strategy you choose, you will need less or more
time.

» Hardware resources

Be aware that you need up to three times the disk space during the data
movement for:

— The source data in Oracle
— The unloaded data stored in the file system
— The loaded data in the target DB2

266 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

6.2 Time planning

After testing the data movement and choosing the proper tool and strategy, you
should create a detailed time plan. This time plan should include the following
tasks:

| 2

»

>

Depending on the data movement method:

— Implementing or modifying scripts for data unload and load
— Learning how to use the chosen data movement tools

Data unload from Oracle

Data load to DB2

Backup of the target DB2 database

Testing the loaded data in DB2 for completeness and consistency
Switching of the applications, including database interfaces
Fallback process in case of incidents

The most sensitive environment is a production system with a 7x24 hour
availability requirement. Figure 6-1 shows the way to move data to the target
database in a high availability (HA) environment. The dark color represents the
new data, the light color represents the converted and moved data. If possible,
export the data from a standby database or mirror database to minimize the
impact on the production environment. The following tasks should be performed
to move data from an HA environment:

1.
2.

Create scripts that export all data up to a defined timestamp.

Create scripts that export changed data since the last export. This includes
new data as well as deleted data.

Repeat Step 2 as often as necessary, until all data is moved to the target DB2
database.

Define a fallback strategy and prepare fallback scripts.

Chapter 6. Data conversion 267

Data
movement

—
Time

Figure 6-1 Data movement strategy in a high availability environment

When the data is completely moved to the target DB2 database, you can switch
the application and database. Prepare a well-defined rollout process for the
applications and the interfaces belonging to DB2. It is always a good idea to
allow some buffer time for any unplanned incidents.

6.3 Data movement through flat files

The main principle of data movement is to export the Oracle data to flat files in a
well-defined format, and then to LOAD or IMPORT the data to DB2. We can use
any tool or write any application to achieve this. This section discusses the data
movement through flat files.

The script examples included in this section can be downloaded from the IBM
Redbook Web site. See Appendix G, “Additional material” on page 701 for
details.

Before writing data into a flat file, ensure that the maximum file size of your
operating system is big enough. On AlIX, you can get the actual file size limit in
blocks with the following command:

ulimit -a

268 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

To set the file size limit to unlimited on AlX, enter the following command as the
root user:

ulimit -f -1

6.3.1 Moving data using the MTK

In 4.7, “The Generate Data Transfer Scripts task” on page 122, we explain how to
use the MTK to generate scripts for data unload and data load; the correlation of
scripts and table definitions of the source and target are defined in the MTK. The
MTK also allows you to move (deploy) data through its GUI, online, without the
need for the generated scripts.

6.3.2 Using shell scripts

We use UNIX shell scripts in our example, which make use of the Oracle
SQL*Plus utility to extract the data from Oracle tables to flat files. These scripts
can only be run on UNIX platforms, and should be run under a user that has the
Oracle environment set. Additionally, these scripts will only work against Oracle
tables containing CHAR, VARCHAR2, and NUMBER data types. For exporting
LOB columns, special programs must be written using Oracle APIs. Example 6-1
shows the main data_unload.sh script. This script reads the table name from the
table_list_file parameter specified when invoking the script, constructs the
dynamic query, and estimates the line size using two awk scripts. Once the
query is constructed, it is fed to the SQL*Plus utility, the output is spooled and
stored in the output file table_name.DAT as delimited ASCII (DEL).

Example 6-1 The data_unload.sh script

#1/bin/ksh
R EEEEEEEEEEEEEEEEEEEEEEEEEE NN

Shell script: data_unload.sh

#

Syntax: data_unload.sh <table_list_file>

#

Starting from an flat file containing a Tist of all the table,

extracts data from Oracle for each table and writes data into

a file named table_name.DAT, formatted in columns

#

This script uses the awk command with the following awk command files:
desc.awk formats the query command files using RTRIM and DECODE

to obtain a column-formatted output

count.awk computes the total Tength of a record

#
IEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEENE:EH::

#

Chapter 6. Data conversion 269

Define the environment variables for the oracle user and password
ORACLE_USR=userl

ORACLE_PWD=userl

#

Start of main program

Loop on all the tables listed in the input file
for i in “cat $1°
do
Define some environment variables for temporary files
export OUTFILE=$i.DAT
DSCFILE=$i.dsc
SQLFILE=$i.sql
VARFILE=$i.var
ALLFILE=$i.al1
POSFILE=$1.pos
rm -f $OUTFILE
rm -f $DSCFILE
rm -f $SQLFILE

Extract the table description from Oracle catalog
sqlplus -s $ORACLE_USR/$ORACLE PWD <<EOF >/dev/null 2>&l1
clear columns

clear breaks

set pagesize 100

set newpage 1

set feedback off

spool $DSCFILE

desc $i

EOF

Cut head and tail from the file containing the descriptions of the tables
Change also the NOT NULL clause in a blank string

and cut the blanks in the first column

tail +3 $DSCFILE | sed 's/NOT NULL/ /; s/~ //' > $DSCFILE.tmpl

NL="wc -1 < $DSCFILE.tmpl~

NLM1="expr $NL - 1°

head -$NLM1 $DSCFILE.tmpl > $DSCFILE.tmp2

cp $DSCFILE.tmp2 $VARFILE

Change the data types, leaving in the file the respective lengths

It is assumed that 41 bytes are enough to contain the significative
part of the NUMBER fields

sed -e 's/ VARCHAR2(/ /' \

-e 's/ NUMBER(/ /' \

-e 's/ NUMBER/ 41/' \

-e 's/ INTEGER(/ /' \

-e 's/ INTEGER/ 41/' \

-e 's/ CHAR(/ /' \

270 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

-e 's/ CHAR/ 1/' \

-e 's/ RAW(/ /' \

-e 's/ VARCHAR(/ /' \

-e 's/)//"\

-e 's/\([0-91*\)\,\([0-9 T\)*/\1/" \
$DSCFILE.tmp2 > $DSCFILE.tmp3

mv $DSCFILE.tmp3 $DSCFILE

rm -f $DSCFILE.tmp*

Compute the record Tength of the table
using the count.awk awk script
LS="awk -f count.awk $DSCFILE"

Prepare the heading of the query statement on the table
by echoing the statements into the sql file
echo "clear columns" > $SQLFILE

echo "clear breaks" >> $SQLFILE

echo "set pagesize 50000" >> $SQLFILE

echo "set linesize $LS" >> $SQLFILE

echo "set feedback off" >> §SQLFILE

echo "set heading off" >> $SQLFILE

echo "set space 0" >> §SQLFILE

echo "set newpage 1" >> $SQLFILE

echo "spool $OUTFILE" >> $SQLFILE

echo "select '' " >> §SQLFILE

Append to the query statement file the Tist of the table fields
to obtain the column layout, using the desc.awk awk script
awk -f desc.awk $VARFILE >> $SQLFILE

Append to the query statement file the "from" clause
and the closing instructions

echo "from $i;" >> $SQLFILE

echo "spool off" >> §SQLFILE

echo "quit" >> $SQLFILE

Execute the query statement
sqlplus -s $ORACLE_USR/$ORACLE_PWD @$SQLFILE >/dev/null 2>&1

Cut the first line from the output file
tail +2 $OUTFILE > $OUTFILE.tmp
mv $OUTFILE.tmp $OUTFILE

Change the DATE data type into its DB2 external length, 26 bytes
sed 's/ DATE/ 26/' $DSCFILE > $DSCFILE.tmpl
mv $DSCFILE.tmpl $DSCFILE

done

Chapter 6. Data conversion 271

The table name is read from table_list_file and described using the DESCRIBE
TABLE command, and output is directed to a describe file TABLE_NAME.dsc.
From the describe file, the SELECT query is constructed using the awk script file
desc.awk, which produces the TABLE_NAME.sq|l file. Example 6-2 shows the
desc.awk script. The TABLE_NAME.sq| file contains the SELECT statement
which, when executed, produces the result that can be exported to a delimited
ASCII file type, which can be used for the LOAD or IMPORT utilities. The
character data types are enclosed by the ™ character and the DATE data types
are converted to the equivalent DB2 TIMESTAMP data type. The query uses the
concatenation string || to concatenate the column values to a single line.

Example 6-2 The desc.awk script

BEGIN {}
{
if ($2 == "DATE")
print " || rtrim(DECODE("$1",NULL," ',TO_CHAR("$1",'YYYY-MM-DD-HH24 .MI.SS")
|| '.000000'),26)"
if (substr($2,1,4) == "CHAR")

pr_int n |||~|||rtr.im(u$lu)|||~’| n
if (substr($2,1,8) == "VARCHAR2")
pr‘int n |||N|||rtr.im(||$1u)|||m,| u

if (substr($2,1,6) == "NUMBER")
print " ||rtrim("$1")]|"',""

The data_unload.sh script also uses another awk script, count.awk, to count the
length of each column to estimate the output line size for the SQL*Plus utility.
Example 6-3 shows this script. Once the SELECT statement and the line size is
ready, the SQL*Plus environment is set using the SET PAGESIZE, and SET
LINESIZE commands. The commands SET PAGESIZE, SET LINESIZE, and
SET FEEDBACK manipulate the output. The SET LINESIZE is set with the
output produced by the count.awk script. Then the SQL*Plus runs the
TABLE_NAME.sql file and spools the output to the TABLE_NAME.dat output flat
file. This file is in delimited ASCII (DEL) format and can be used by either the
LOAD or IMPORT utility. For example, to export the ACCOUNTS table, enter the
table name into a file, such as table.Ist, edit the data_unload.sh script, and enter
the Oracle user name ORACLE_USR and password ORACLE_PWD, and then
invoke using the command:

sh data_unload.sh table.lst
This produces the accounts.dsc, accounts.sql, accounts.var, and accounts.DAT
files. To load the data using LOAD utility, use the command:

DB2 LOAD FROM accounts.DAT OF DEL MODIFIED BY CHARDEL™ INSERT INTO
ACCOUNTS

272 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

To load the data using the IMPORT utility, use the command:

DB2 IMPORT FROM accounts.DAT OF DEL MODIFIED BY CHARDEL™ INSERT
INTO ACCOUNTS

Example 6-3 The count.awk script

BEGIN { total=0 }
{
if ($2 == "DATE")
total +=26
else
total += §2+4
}
END { print total }

6.3.3 Using Oracle’s stored procedures

In this example, we explain an Oracle stored procedure, export_table, written by
the authors of this book, to demonstrate how to unload the data from Oracle
using this stored procedure, and to load the data into DB2. As in our previous
example, this stored procedure can only be used for CHAR, VARCHAR2,
NUMBER, and DATE data types. As in the shell script, this stored procedure
gets the table name as the input parameter, constructs the SELECT query for
output, and exports the table data to an output flat file. This output file format is
also delimited in an ASCII file format.

The advantage of using this stored procedure is that it can be used on both
Windows and UNIX platforms. The output file is placed under the directory
specified by the UTL_FILE_DIR initialization parameter, which specifies the
directory for PL/SQL file I/0O. So, it is a must that this initialization parameter be
specified in the Oracle instance before using this stored procedure. Example 6-4
shows the export_table stored procedure script.

Example 6-4 Procedure to export_ table data

/***/

/* This stored procedure accept the table name as input */
/* and exports the data into flat file identified by the */
/* UTL_FILE_DIR with the format acceptable by the DB2 */

/* IMPORT utility or LOAD utility as Delimited ASCII file */
/* Note : this procedure can be used for the table with data */
/* types CHAR,VARCHAR2 and NUMBER. */

/***/

CREATE OR REPLACE PROCEDURE export_table(
i_table_name IN VARCHAR2 -- table name to be exported

IS

Chapter 6. Data conversion 273

stmt_1 VARCHARZ2 (4000) := 'select '; -- first part of select

stmt_2 VARCHAR(50) := ' as linecol from '; -- second part of the select
stmt_cursor INTEGER; -- statement handle

linecol VARCHARZ (4000) ; -- output buffer for utl _file
ret INTEGER; -- dbms_sql handle

filepath VARCHAR (40) :="c:\oracle'; -- path for output file
filename VARCHAR (40) ; -- output filename

filemode CHAR(1) :="'w'; -- output file mode for write
filelnsz INTEGER := 4000; -- max file line size
dtype_excp EXCEPTION;

fhandle utl_file.file_type; -- file handle for utl_file

CURSOR col_crsr(tab_col_name IN VARCHAR2) IS
SELECT column_name, data_type
FROM user_tab_columns
WHERE table_name = tab_col_name;

BEGIN
stmt_1 := stmt_1||'/*parallel('||i_table name||',4)*/"||""""||'""";

/***/

/* Build the select statement */

/***/

FOR my_rec IN col_crsr(i_table_name) LOOP
IF my_rec.data_type = 'DATE' THEN

stmt_1 := stmt_1 || || rtrim(DECODE('|| my_rec.column_name
|| ',NULL, || Prroter|], TO_CHAR(!
|| my_rec.column_name ||','""
[| "YYYY-MM-DD-HH24.MI.SS'||''")))
ELSIF my_rec.data_type = 'CHAR' THEN
stmt_1 :=stmt 1 [“|]"] etreim(
|| my_rec.column_name||")||"""||"~,"||'"""";
ELSIF my_rec.data_type = 'VARCHAR2' THEN
stmt 1 :=stmt 1 || || L et eim(
my_rec.column_name||")[|"""||"~,"||'""";
ELSIF my _rec.data type = 'NUMBER' THEN
stmt_1 := stmt_1 || "||rtrim("||my_rec.column_name
[l s
ELSE RAISE dtype_excp;
END IF;
END LOOP;

stmt 2 := stmt 2 || i_table_name;
stmt_1 := stmt_1 || stmt_2;

/***/

/* Execute the statement and open the cursor */
/***/

stmt_cursor := dbms_sql.open_cursor;
dbms_sql.parse(stmt_cursor,stmt_1,dbms_sql.native);
dbms_sql.define_column(stmt_cursor,1,1inecol,4000);

274 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

ret := dbms_sql.execute(stmt_cursor);
filename:=i_table name||'.DAT';
fhandle:= ut1_file.fopen(filepath,filename,filemode,filelnsz);

/**************** """" *kkkkkkkk k% ***********************/
/* Fetch the rows and write it to output file */
/**************** """" *kkkkkkkk k% ***********************/

WHILE dbms_sql.fetch_rows(stmt_cursor)>0 LOOP
dbms_sq1.column_value(stmt_cursor,1,1inecol);
utl file.put_line(fhandle,linecol);

END LOOP;
/**************** """" * kK Kk kkkkkkk **********************/
/* Close the cursor and file */

/**/

dbms_sql.close_cursor(stmt_cursor);
utl_file.fclose(fhandle);

EXCEPTION
WHEN dtype_excp THEN dbms_output.put_Tine('Invalid Data type');
END;

This stored procedure uses the Oracle DBMS_SQL package to construct the
SELECT statement and retrieve the result set. It uses the UTL_FILE Oracle
package to create the output file, open it, and write the output data to the output
file. The UTL_FILE can only write to output files created under the
UTL_FILE_DIR identified directory. The filepath variable in the stored procedure
has to be edited and given the value for the UTL_FILE_DIR initialization
parameter. In our example, it points to C:\Oracle as the UTL_FILE_DIR
parameter. The output file created will be named as TABLE_NAME.DAT file. For
example, to export the data in the ACCOUNTS table, the stored procedure is
called using the command:

CALL EXPORT TABLE(“ACCOUNTS?)
Note that the table name should be entered in uppercase. When the stored

procedure is called successfully, it produces the output file ACCOUNTS.DAT. To
load the data using the LOAD utility, use the command:

DB2 LOAD FROM ACCOUNTS.DAT OF DEL MODIFIED BY CHARDEL™ INSERT INTO
ACCOUNTS
To load the data using the IMPORT utility, use the command:

DB2 IMPORT FROM ACCOUNTS.DAT OF DEL MODIFIED BY CHARDEL™ INSERT INTO
ACCOUNTS

Chapter 6. Data conversion 275

6.4 Alternative ways for moving data

Besides the MTK, there are many other tools and products for data movement.
Here we show a couple of them. There are also a number of third-party tools that
work with both Oracle and DB2, but they are not covered here. A quick Internet
search can identify many of them. You should choose the tool according to your
environment and the amount of data that will be moved.

6.4.1 Data movement through named pipes

As described in 6.1, “Data conversion process” on page 266, you need additional
disk space during the data movement process. To avoid the space for the flat
files, you can use named pipes on UNIX-based systems. To use this function,
the writer and reader of the named pipe must be on the same machine. You must
create the named pipe on a local file system before exporting data from the
Oracle database.

Because the named pipe is treated as a local device, there is no need to specify
that the target is a named pipe. The following is an AlIX example:
1. Create a named pipe:
mkfifo /u/dbuser/mypipe
2. Use this pipe as the target for a data unload operation:
<data unload routine> > /u/dbuser/mypipe
3. Load the data into DB2 from the pipe:
<data load routine> < /u/dbuser/mypipe
The commands in step 2 and 3 show only the principle of using the named pipes.

To unload and load the data, use the routines discussed previously in this
chapter.

Note: It is important to start the pipe reader after starting the pipe writer.
Otherwise, the reader will find an empty pipe and exit immediately.

6.4.2 WebSphere Federation Server

In a high availability environment, you will usally need to move the data during
production activity. A practical solution is to use the federated access that
WebSphere Federation Server provides.

IBM WebSphere Federation Server provides integrated, real-time access to
diverse data as if it were a single database, regardless of where it resides. You

276 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

can hold the same data both in Oracle and in DB2, and you are free to switch to
the new DB2 database when the functionality of the ported database and
application is guaranteed.

The WebSphere Federation Server, formerly known as WebSphere Information
Integrator, lets users manage data movement strategies between mixed
relational data sources including distribution and consolidation models.

Data movement can be managed table-at-a-time, such as for warehouse loading
during batch windows, or with transaction consistency for data that is never
offline. It can be automated to occur on a specific schedule, at designated
intervals, continuously, or as triggered by events. Transformation can be applied
inline with the data movement through standard SQL expressions and stored
procedure execution.

For more information, visit the WebSphere Federation Server product site:

http://www.ibm.com/software/data/integration/federation_server/

Chapter 6. Data conversion 277

http://www.ibm.com/software/data/integration/federation_server/

278 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Application conversion

In this chapter, we discuss some aspects of converting an application from an
Oracle environment to a DB2 environment. The following topics are covered:

» Planning

» Conversion of self-build applications
— Written with Oracle Pro*C
— Written in Java
— Based on Oracle OCI
— Based on ODBC
— Based on Perl
— Based on PHP
— Based on .NET

» Package application migration
— SAP

© Copyright IBM Corp. 2003, 2007. All rights reserved. 279

7.1 DB2 application development introduction

To develop applications that access the DB2 database, embed the data access
method of the high-level language into the application. IBM DB2 provides various
programming interfaces for data access and manipulation.

There are various methods for performing data interaction from your application,
including: embedded static, dynamic SQL, native API calls, and methods
provided by DB2 drivers for a specific application environment.

7.1.1 Embedded SQL

The SQL statement can be embedded within a host language where SQL
statements provide the database interface while the host programming language
provides all remaining functionality. Embedded SQL applications require a
specific precompiler for each language environment in order to preprocess (or
translate) the embedded SQL calls into the host language.

Building embedded SQL applications involves two prerequisite steps prior to
application compilation and linking. This is different from building applications
with Oracle database access, as Oracle database applications do not have the
concept of binding applications to a database prior to runtime. It also explains
why the static embedded SQL method is efficient and can yield good
performance.

The two prerequisite steps for building DB2 embedded SQL applications are:

1. Preparing the source files containing embedded SQL statements using the
DB2 precompiler

The PREP (PRECOMPILE) command is used to invoke the DB2 precompiler.
The precompiler reads the source code, parses and converts the embedded
SQL statements to DB2 run-time services API calls, and writes the output to a
new modified source file. The precompiler produces access plans for the SQL
statements, which are stored together as a package within the database.

2. Binding the statements in the application to the target database

Binding is done, by default, during precompilation (the PREP command). If
binding is to be deferred (for example, running the BIND command later),
then the BINDFILE option needs to be specified at PREP time in order for a
bind file to be generated.

Figure 7-1 illustrates the precompile-compile-bind process for creating a program
with embedded SQL.

280 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Application
with Embedded SQL

l Step 1: Precompile(db2 PREP)

Modified Source File h 4
bind file

l Step 2: Host Language Compiler

[Object files

Step 4: Binder (db2 BIND)
l Step 3: Host Language Linker

[Executable Program]

}

e —
Database Manager Package | <

Figure 7-1 Precompile-compile-bind process for creating embedded SQL applications

DB2 supports the C/C++, FORTRAN, COBOL, and Java (SQLJ) programming
languages for embedded SQL.

Embedded SQL applications can be categorized as follows:
» Static embedded SQL

In embedded SQL, you are required to specify the complete SQL statement
structure. This means that all the database objects (including columns and
table) must be fully known at the precompile time with the exception of
objects referenced in the SQL WHERE clause. However, all the host variable
data types still must be known at the precompiler time. Note that host
variables should be declared in a separate EXEC SQL DECLARE section
and be compatible with DB2 data types.

Example 7-1 shows a fragment of a COBOL program with static embedded
SQL.

Example 7-1 A COBOL static embedded SQL program

move "Clerk" to job-update.

EXEC SQL UPDATE staff SET job=:job-update
WHERE job='Mgr'

END-EXEC.

move "UPDATE STAFF" to errloc.

Chapter 7. Application conversion 281

» Dynamic embedded SQL

If not every database object in the SQL statement is known at the precompile
time, use dynamic embedded SQL. The dynamic embedded SQL statement
accepts a character string host variable and a statement name as arguments.
These character string host variables serve as placeholders for the SQL
statements to be executed later. Note that dynamic SQL statements are
prepared and executed during program runtime.

Example 7-2 is a fragment of a C program with a dynamic SQL statement.

Example 7-2 A dynamic SQL C program

EXEC SQL BEGIN DECLARE SECTION;
char st[80];

char parm_var[19};

EXEC SQL END DECLARE SECTION;

strcpy(st, "SELECT tabname FROM syscat.tables");
strcat(st, " WHERE tabname <> ? ORDER BY 1");

EXEC SQL PREPARE s1 FROM :st;
EXEC SQL DECLARE c1 CURSOR FOR s1;
strcpy(parm_var, "STAFF");
EXEC SQL OPEN cl USING :parm_var;

Note that host variable PARM_VAR still needs to be declared in EXEC SQL
DECLARE SECTION.

7.1.2 Driver support

DB2 supports numerous drivers for developing more complex applications.The
driver manager defines a set of methods, variables, and conventions that provide
a consistent database interface specifically for the DB2 database. Applications
utilizing drivers are compiled and linked with the driver manager’s libraries to
invoke standardized APIs.

DB2 currently supports a large number of drivers, including CLI/ODBC, ADO and
OLEDB, JDBC, SQLJ, PERL DBI, PHP, and the .NET Data Provider.

Perl database interface

To better understand how the interface works, let us examine the PERL
database interface (DBI). A Perl program uses a standard API to communicate
with the DBI module for Perl, which supports only dynamic SQL. It defines a set
of methods, variables, and conventions that provide a consistent database
interface independent of the actual database being used. DBI gives the APl a
consistent interface to any database that the programmer wishes to use.

282 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DBD::DB2 is a Perl module which, when used in conjunction with DBI, allows
Perl to communicate with the DB2 database.

Figure 7-2 illustrates the Perl/ DB2 environment.

PERL > DBI » DBD::DB2 DB2
script driver database database
driver

Figure 7-2 Perl/DB2 environment

Installation
You can acquire Perl as follows:

» The source can be downloaded from
http://www.perl.com
and compiled.

» A binary version called ActivePerl, available for most operating systems, can
be downloaded from ActiveState at:

http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=htt
p%3A%2F%2Fwww.activestate.com%2F

Note: The latest version of ActivePerl, at the time of this writing, is 5.8.8.820

System requirements
The following requirement information is available at the ActiveState Web site:

http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=htt
p%3A%2F%2Fwww.activestate.com%2F

» General

— Recommended 90 MB hard disk space for typical install
— Web browser for online help

» AIX

— PowerPC®
— Minimum AIX 5.1

Chapter 7. Application conversion = 283

http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://www.perl.com

> HP-UX

— PA-RISC: Minimum HP-UX 11.00
— Iltanium: Minimum HP-UX 11.22

» Linux

— x86
— libc-2.1.x+ (e.g. Red Hat 6.x+, Debian 2.2+)

» Solaris

— SPARC: Minimum Solaris 2.6
— x64/x86: Minimum Solaris 10
— You must use GNU tar to unpack the ActiveState Installer Package

» Windows

— x86

All Windows platforms: IE 5.5+
Windows 95: DCOM for Windows 95
Windows NT: Service Pack 5+

In addition to Perl, two additional modules need to be downloaded and installed
in order to enable the Perl driver for DB2:

» DBI
» DBD:DB2
These modules can be downloaded from the Comprehensive Perl Archive
Network (CPAN) at:
http://CPAN.org

Information regarding installation of these modules may also be found at this
location.

Note: For the latest information about PERL and DB2, and related PERL
modules, refer to the following Web site:

http://www.ibm.com/software/data/db2/perl/

PHP extensions

IBM supports access to DB2 databases from PHP applications through two
extensions that offer distinct sets of features:

» ibm_db2

This is an extension written, maintained, and supported by IBM for access to
DB2 databases. It offers a procedural API that, in addition to the normal
create, read, update, and write database operations, also offers extensive

284 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://CPAN.org
http://www.ibm.com/software/data/db2/perl/
http://www.ibm.com/software/data/db2/perl/

access to the database metadata. This extension can be compiled with either
PHP 4 or PHP 5.

» PDO_IBM and PDO_ODBC

These are drivers for the PHP Data Objects (PDO) extension that offers
access to DB2 databases through the standard object-oriented database
interface. PDO_IBM is an IBM database driver. Both PDO_IBM and
PDO_ODBC extensions can be compiled directly against the DB2 libraries to
avoid the communications overhead and potential interference of an ODBC
driver manager.

Installation

An easy method of installing and configuring PHP on Linux, UNIX, or Windows
operating systems is Zend Core for IBM, which can be downloaded and installed
for use in production systems from the following Web site:

http://www.zend.com/downloads

Additionally, precompiled binary versions of PHP are available for download
from:

http://php.net/

Most Linux distributions include a precompiled version of PHP. On UNIX
operating systems that do not include a precompiled version of PHP, your own
version of PHP may be compiled.

Requirements

For setting up the PHP environment on Linux, UNIX, or Windows operating
systems refer to Developing Perl and PHP applications; SC10-4234.

7.2 Application migration planning

Application migration is another major step in the migration project. This process
includes:

Check of software and hardware availability and compatibility
Education of developers and administrators

Analysis of application logic and source code

Setting up the target environment

Change of database specific items

Application test

Application tuning

Roll-out

User education

VVYyYVYVYYVYVYYVYY

Chapter 7. Application conversion 285

http://php.net/
http://www.zend.com/downloads
http://www.zend.com/downloads

The planning includes the creation of a project plan. Plan enough time and
resources for each task. IBM and our business partners can help you with
questions in order to define a well prepared project.

For the applications developed in-house, the migration effort is on the shoulder of
the migration team. For package applications, you can contact the vendor for a
recommended migration process. In 7.4, “Package applications migration
planning” on page 330, we explain the recommended migration process of some
packages.

Check software and hardware availability and compatibility
The architecture profile is one of the outputs of the first task of migration planning
assessment. While preparing the architecture profile, you need to check the
availability and compatibility of all involved software and hardware in the new
environment.

Education of developers and administrators

Ensure that the staff has the skills for all products and the system environment
you will use for the migration project. Understanding the new product is essential
for analyzing the source system.

Analyzing application logic and source code

In this analysis phase you should identify all the Oracle proprietary features and
the affected sources. Examples of Oracle proprietary features are direct SQL
queries to the Oracle Data Dictionary, Optimizer hints and Oracle joins, which
are not supported by DB2. You also need to analyze the database calls within
the application for the usage of database API.

Setting up the target environment

The target system, either the same or a different one, has to be set up for
application development. The environment can include:

The Integrated Development Environment (IDE)
Database framework

Repository

Source code generator

Configuration management tool

Documentation tool

vyvyvyvyyvyy

A complex system environment usually consists of products from different
vendors. Check the availability and compatibility before starting the project.

286 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Change of database-specific items

Regarding the use of the database API, you need to change the database calls in
the applications. The changes include:

» Language syntax changes
The syntax of database calls varies in the different programming languages.
In 7.3, “Self-build application” on page 288, we discuss the varieties of C/C++
and Java applications. For information regarding other languages, contact
IBM Technical Sales.

» SQL query changes
Oracle supports partly nonstandard SQL queries such as including of
optimizer hints or table joins with a (+) syntax. To convert such queries to
standard SQL, you can use the MTL SQL Translator.

You need to modify the SQL queries to the Oracle Data Dictionary as well,
and change them to select the data from the DB2 Catalog.

» Changes in calling procedures and functions
Sometimes there is a need to change procedures to functions and vice versa.
In such cases, you have to change all the calling commands and the logic
belonging to the calls in other parts of the database and the applications.

» Logical changes
Because of architectural differences between Oracle and DB2, changes in the
program flow might be necessary. Most of the changes are related to the
different concurrency models.

Application test

A complete application test is necessary after the database conversion and
application modification to ensure that the database conversion is completed,
and all the application functions work properly.

It is prudent to run the migration several times in a development system to
guarantee the process, then run the same migration on a test system with
existing test data, then a copy or subset of productions data, before eventually
running the process in production. Chapter 10, “Testing” on page 447 discusses
the testing steps in detail.

Application tuning

Tuning is a continuous activity for the database since data volume, number of
users, and applications change from time to time. After the migration, application
tuning should be concerned with the architectural differences between Oracle
and DB2. For the details, see Chapter 10, “Testing” on page 447, in DB2
Performance-tuning Guidelines, SC10-4222, and DB2 V7.1 Performance Tuning
Guide, SG24-6012.

Chapter 7. Application conversion 287

Roll-out

The roll-out procedure varies and depends on the type of application and the
kind of database connection you have. Prepare the workstations with the proper
driver (for example, DB2 Runtime Client, ODBC, and JDBC) and server
according to the DB2 version.

User education

In case of changes in the user interface, the business logic, or the application
behavior because of system improvements, user education is required. Be sure
to provide enough user education since the acceptance of the target system is
corresponding to the skills and satisfaction of the users.

7.3 Self-build application

Self-build (in-house developed) applications are unique in every case. There are
a variety of languages used in applications and each one can have its unique
way of using APIs. In this section we explain the necessary steps in converting
self-build applications from Oracle to DB2, and we provide some examples in
C/C++ and Java, which show you how to convert the database calls.

Note that the examples included in this chapter are excerpts from the actual
programs, and cannot be compiled and executed by themselves.

Note: Since some differences exist in functionality and syntax between SQL
statements in Oracle and DB2, all converted SQL statements should be tested
in the target (DB2) environment before incorporating them in the converted
DB2 application.

7.3.1 Converting Oracle Pro*C applications to DB2

While many aspects of DB2 application development underwent changes in
recent years (stored procedures from C/COBOL/Java to SQL procedure
language, support for PL/SQL in user-defined functions, triggers, and in-line
SQL, and an enriched set of built-in functions, etc.), support for embedding SQL
into other host languages (C/C++) practically has not changed.

This chapter explains the steps necessary during application conversion to
programs with embedded DB2 SQL calls.

Connecting to the database

There is a difference in how C programs connect to the database. In Oracle each
instance (service name) can manage only one database. DB2 instances can be

288 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

used to manage multiple databases, thus the database name should be implicitly
provided by a connection statement.

In order to connect to the Oracle database, you need to specify the Oracle user
and the password for that user:

EXEC SQL CONNECT :user_name IDENTIFIED BY :password;

In DB2, you need to specify the database name, user ID, and password for that
user ID. So, the above statement will be converted to:

EXEC SQL CONNECT TO :dbname USERID :userid PASSWORD :password;

Note that dbname, userid, and password need to be declared as host variables.

Host variable declaration

Host variables are C or C++ language variables that are referenced within SQL
statements. They allow an application to pass input data to and receive output
data from the database manager. After the application is precompiled, host
variables are used by the compiler as any other C/C++ variable.

Host variables should not only be compatible with DB2 data types (accepted by
the DB2 precompiler), but also must be acceptable for the programming
language compiler.

As the C program manipulates the values from the tables using host variables,
the first step is to convert Oracle table definitions to DB2 data types; see
Appendix A, “Data types” on page 597 for details. Note that this mapping is
one-to-many because it depends on the actual usage of data. For example,
Oracle DATE data can be converted to DB2 DATE, if it only stores the actual
date, but it needs to be converted to DB2 TIMESTAMP if it stores DATE and
TIME.

The next step is to match DB2 data types with C data types. The table in
Appendix A, “Data types” on page 597 shows mapping between data types.

All host variables in a C program need to be declared in a special declaration
section, so that the DB2 precompiler can identify the host variables and the data
types:
EXEC SQL BEGIN
DECLARE SECTION;
char emp_name[31] = {'\0'};
sqlint32 ret_code = 0;
EXEC SQL END DECLARE SECTION;

Chapter 7. Application conversion =~ 289

Within this declaration section, there are rules for host variable data types that
are different from Oracle precompiler rules. Oracle precompiler permits host
variables to be declared as VARCHAR. VARCHAR|n] is a pseudo-type
recognized by the Pro*C precompiler. It is used to represent blank-padded,
variable-length strings. Pro*C precompiler converts it into a structure with a
2-byte length field followed by an n-byte character array. DB2 requires usage of
standard C constructs. So, the declaration for the variable emp_name
VARCHARI[25] needs to be converted as follows:

struct emp_name {
short var len;
char var _data[25] };

Or, as mentioned above, the use of a char emp_name[n] is also permitted for
VARCHAR data. Variables of user-defined types (using typedef) in PRO*C need
to be converted to the source data type. For example, type theUser_t has been
declared to host values from Oracle object type:

typedef struct user_s
{short int userNum;
char userName[25];
char userAddress[40];
} theUser t;

In Pro*C program, you can have host variables declared as theUser_t:

EXEC SQL BEGIN DECLARE;
theUser_t *myUser;
EXEC SQL END DECLARE SECTION;

To use this host variable for DB2, you would need to take it out of EXEC SQL
DECLARE SECTION and define the host variable MyUser as a structure.

DB2 allows for the host variable to be declared as a pointer with the following
restriction: If a host variable is declared as a pointer, no other host variable may
be declared with that same name within the same source file.

The host variable declaration char *ptr is accepted, but it does not mean a
null-terminated character string of an undetermined length. Instead, it means a
pointer to a fixed-length, single-character host variable. This may not be what
was intended for the Oracle host variable declaration.

It is recommended that sqlint32 and sqlint64 be used for INTEGER and BIGINT
host variables, respectively. By default, the use of long host variables results in

the precompiler error SQL0402 on platforms where long is a 64-bit quantity such
as 64 BIT UNIX. Use the PREP option LONGERROR NO to force DB2 to accept

290 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

long variables as acceptable host variable types and treat them as BIGINT
variables.

Starting with Version 9, DB2 supports XML type for host variables. In the
declaration section of the application, declare the XML host variables as LOB
data types as shown in the following:

EXEC SQL BEGIN DECLARE;
SQL TYPE IS XML as CLOB(N) my xml varl;
SQL TYPE IS XML as BLOB(N) my xml var2;
EXEC SQL END DECLARE SECTION;

You can learn more on handling XML types within C applications from DB2
Express-C: The Developer Handbook for XML, PHR, C/C++, Java, and .NET,
SG24-7301.

Oracle host tables

In Pro*C programs, you can declare host variables using arrays, then declare a
cursor you want to get results from. You can then issue a fetch statement that will
get all rows from the cursor into that host array.

Here is a fragm