

ibm.com/redbooks

Oracle to DB2
Conversion Guide
for Linux, UNIX, and Windows

Whei-Jen Chen
An Na Choi

Marina Greenstein
Scott J Martin

Fraser McArthur
Carlos Eduardo Abramo Pinto

Arthur V Sammartino
Nora Sokolof

Step-by-step guide to migrating from
Oracle to DB2 9.1

Conversion examples -
including XML conversion

Step-by-step guide to
MTK tool usage

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Oracle to DB2 Conversion Guide for Linux, UNIX,
and Windows

August 2007

International Technical Support Organization

SG24-7048-01

© Copyright International Business Machines Corporation 2003, 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (August 2007)

This edition applies to DB2 Version 9 for Linux, UNIX, and Windows, Oracle 9i, Oracle 10g.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this book . xv

Acknowledgments . xviii
Become a published author . xix
Comments welcome. xix

Summary of changes . xxi
August 2007, Second Edition . xxi

Chapter 1. Introduction . 1
1.1 DB2 family of products . 2

1.1.1 DB2 9 Autonomic computing features. 7
1.2 Terminology. 9

1.2.1 Terminology mapping . 9
1.3 Architecture overview . 10

1.3.1 Memory architecture . 12
1.3.2 Process architecture . 15
1.3.3 Files and directory structure . 20
1.3.4 Data Dictionary and Catalog . 26
1.3.5 Communication . 27
1.3.6 Data replication . 30

1.4 Parallel database architecture. 32
1.4.1 Real Application Clusters . 32
1.4.2 DB2 Enterprise with the Database Partitioning Feature (DPF) 33

Chapter 2. Conversion methodology. 35
2.1 Pre-conversion tasks. 36

2.1.1 IBM Software Migration Project Office team 37
2.2 IBM conversion strategy . 39

2.2.1 Assessment phase . 40
2.2.2 Conversion phase . 41
2.2.3 The test phase . 43
2.2.4 Implementation and cutover phase . 44
2.2.5 Migration project skills, roles, and responsibilities 45

2.3 Additional migration resources . 46
2.4 Conversion planning technical considerations . 47
© Copyright IBM Corp. 2003, 2007. All rights reserved. iii

2.4.1 Task scheduling . 47
2.4.2 Auditing . 48
2.4.3 National Language support . 49
2.4.4 Authentication and authorization. 50
2.4.5 Data partitioning . 53
2.4.6 Oracle External tables. 54
2.4.7 Oracle bigfile table spaces . 55
2.4.8 Table space design . 56
2.4.9 Data encryption . 58
2.4.10 Disaster recovery solutions . 59
2.4.11 Oracle Database Resource Manager . 61
2.4.12 Replication considerations . 62
2.4.13 Data Warehouse considerations . 63

Chapter 3. MTK . 65
3.1 MTK overview . 66

3.1.1 MTK facts . 67
3.1.2 MTK features. 68
3.1.3 MTK GUI interface . 69
3.1.4 Migration tasks . 70
3.1.5 The MTK SQL Translator . 75

3.2 MTK planning . 76
3.2.1 Operating system and version requirements 76
3.2.2 MTK hardware requirements. 77
3.2.3 MTK software requirements . 77
3.2.4 MTK requirements for data extraction. 78
3.2.5 Where to install MTK. 81

3.3 MTK installation. 81
3.3.1 Windows installation . 82
3.3.2 UNIX and Linux Installation. 82
3.3.3 Verifying the environment for creating MTK Java UDFs 83

Chapter 4. Porting with MTK . 89
4.1 Preparation for porting. 90
4.2 Overview of available documentation . 90
4.3 Running MTK . 91

4.3.1 Migration details . 91
4.3.2 Creating and opening an MTK project . 92

4.4 Extracting or importing metadata into MTK . 93
4.4.1 Choosing objects to extract. 96
4.4.2 Import or extract strategies . 99
4.4.3 Viewing extracted files . 102

4.5 The Convert task . 104
iv Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

4.6 The Refine task . 107
4.6.1 Message categories and migration impact 109
4.6.2 The Messages sub-tab . 111
4.6.3 Translator Messages. 115
4.6.4 Refining the metadata conversion. 119

4.7 The Generate Data Transfer Scripts task . 122
4.7.1 Creating unload and load scripts. 125
4.7.2 Files generated by the Generate Data Transfer Script task 126

4.8 Deploy to Target . 127
4.8.1 Considerations . 128
4.8.2 Deployment strategy . 131
4.8.3 Deployment results . 135

4.9 Next steps . 138
4.10 Converting the remaining objects . 138

4.10.1 Translator Messages. 140
4.10.2 Status . 149

4.11 Deployment of the remaining objects . 149
4.11.1 Verification report . 151

4.12 Manual conversion for ORA_EMP database objects 153
4.12.1 Stored procedures. 158
4.12.2 Manual deployment of stored procedures. 162

Chapter 5. Conversion reference . 165
5.1 Tools . 166

5.1.1 Developer Workbench. 166
5.1.2 The DB2 Command Window. 167
5.1.3 Control Center. 169
5.1.4 Recommended reading materials . 171

5.2 Comparing SQL PL and inline SQL PL . 171
5.2.1 Create procedure . 172
5.2.2 Create trigger . 173
5.2.3 Create function . 175
5.2.4 Variables declaration and assignment . 177
5.2.5 Conditional statements and flow control . 179

5.3 Dynamic SQL . 180
5.4 Cursor conversion . 184

5.4.1 Converting an explicit cursor in a procedure. 185
5.4.2 Converting an explicit cursor in functions and triggers 187
5.4.3 Converting cursor attributes . 188

5.5 Collections. 193
5.5.1 Nested tables and varrays . 193
5.5.2 Bulk collect . 195
5.5.3 Passing result sets between procedures . 197
 Contents v

5.6 Condition handling. 200
5.6.1 Condition handling in stored procedure . 201
5.6.2 Condition handling in triggers and functions 204
5.6.3 Converting RAISE_APPLICATION_ERROR 205

5.7 Package initialization. 206
5.8 Global variables. 207
5.9 Hierarchical queries. 209
5.10 Print output messages. 212
5.11 Implicit casting in SQL. 213
5.12 Outer join. 215
5.13 Decode statement . 217
5.14 Rownum . 218
5.15 INSERT, UPDATE, DELETE returning values 219
5.16 Select from DUAL . 219
5.17 Manipulating date and time . 220
5.18 Set operations . 223
5.19 Function that returns rowtype . 224
5.20 Local functions . 225
5.21 Partitioning and MDC . 227
5.22 %ROWTYPE and %TYPE . 236
5.23 MERGE . 238
5.24 Index conversion . 241

5.24.1 Differences between Oracle and DB2. 241
5.25 Oracle database links . 242
5.26 Temporary tables . 246
5.27 Concurrency and transaction . 247

5.27.1 Read concurrency . 248
5.27.2 Update concurrency . 251
5.27.3 Miscellaneous differences. 253
5.27.4 Transaction . 253

5.28 Encryption . 254
5.29 Oracle multitable, conditional, and pivot insert 257
5.30 Additional considerations . 258

5.30.1 Building C/C++ routines . 258
5.30.2 Building Java routines . 261

Chapter 6. Data conversion . 265
6.1 Data conversion process. 266
6.2 Time planning . 267
6.3 Data movement through flat files. 268

6.3.1 Moving data using the MTK . 269
6.3.2 Using shell scripts . 269
6.3.3 Using Oracle’s stored procedures. 273
vi Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

6.4 Alternative ways for moving data . 276
6.4.1 Data movement through named pipes . 276
6.4.2 WebSphere Federation Server . 276

Chapter 7. Application conversion . 279
7.1 DB2 application development introduction . 280

7.1.1 Embedded SQL. 280
7.1.2 Driver support . 282

7.2 Application migration planning . 285
7.3 Self-build application . 288

7.3.1 Converting Oracle Pro*C applications to DB2. 288
7.3.2 Converting Oracle Java applications to DB2. 297
7.3.3 Converting Oracle Call Interface applications 305
7.3.4 Converting ODBC applications . 311
7.3.5 Converting Perl applications . 312
7.3.6 Converting PHP applications . 316
7.3.7 Converting .NET applications . 324

7.4 Package applications migration planning . 330
7.4.1 SAP . 331

Chapter 8. XML conversion . 335
8.1 DB2 XML data type introduction . 336

8.1.1 DB2 pureXML native storage . 336
8.1.2 DB2 decomposition . 338

8.2 Converting the XML data model . 339
8.2.1 XML data type differences . 340
8.2.2 XML schema conversion and registration . 342
8.2.3 Oracle unstructured and structured storage to DB2 pureXML 350
8.2.4 Oracle structured storage to DB2 decomposition 353

8.3 XML data movement . 354
8.3.1 Exporting XML data from Oracle. 354
8.3.2 Inserting XML data into DB2 . 356
8.3.3 Importing XML data into DB2 . 359
8.3.4 XML validation. 360

8.4 Converting XML queries . 362
8.4.1 SQL/XML. 362
8.4.2 XQuery . 365
8.4.3 Updates and deletes . 368
8.4.4 Referential Integrity . 369

8.5 Converting XML indexes . 370
8.6 Converting XML in stored procedures. 374

8.6.1 Comparison overview . 375
8.6.2 Converting an Oracle procedure with XML to DB2 376
 Contents vii

8.6.3 The Oracle procedures . 377
8.6.4 DB2 stored procedure . 381
8.6.5 Other restrictions or limitations . 385

8.7 Converting XML in Java applications . 386
8.7.1 JDBC drivers . 387
8.7.2 XML retrieval . 388
8.7.3 Java XML insert . 393
8.7.4 Java XML update . 398
8.7.5 XMLType object method mapping . 404

8.8 XML tools and utilities . 417
8.8.1 Oracle Enterprise Manager, DB2 Control Center 417
8.8.2 Oracle JDeveloper, DB2 Developer Workbench. 420

8.9 Best practices . 421

Chapter 9. Script conversion . 423
9.1 Data load scripts . 424

9.1.1 Data load migration approach . 425
9.1.2 Loading fixed-format fields . 425
9.1.3 Loading variable-length data. 426
9.1.4 Initializations in the Oracle SQL*Loader control file 427
9.1.5 Loading data into multiple tables. 427

9.2 Oracle Data Pump scripts . 428
9.2.1 Data Pump migration approach . 430
9.2.2 Transferring a schema . 430
9.2.3 Export data operations . 433
9.2.4 Import data functionality . 435

9.3 Administration scripts . 437
9.3.1 Dynamic performance views and table function 437
9.3.2 System catalog views . 439
9.3.3 Frequently used commands and DDLs by DBA 440
9.3.4 Backup scripts conversion . 441

9.4 Tools and wizards . 443
9.5 Report tools . 445

Chapter 10. Testing . 447
10.1 Planning . 448

10.1.1 Principles of software tests . 448
10.1.2 Test documentation. 448
10.1.3 Test phases. 451
10.1.4 Time planning and time exposure . 452

10.2 Data checking technique . 454
10.2.1 IMPORT/LOAD messages . 454
10.2.2 Data checking scripts . 457
viii Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

10.3 Code and application testing . 460
10.3.1 View sanity check . 460
10.3.2 PL/SQL to SQL PL object check . 461
10.3.3 Application code check . 462
10.3.4 Security . 462
10.3.5 Tools for testing and problem tracking . 463

10.4 Troubleshooting. 463
10.4.1 Interpreting DB2 informational messages 464
10.4.2 DB2 diagnostic logs . 465
10.4.3 DB2 support information . 470
10.4.4 Problem determination tools . 472

10.5 Initial tuning . 487
10.5.1 Table spaces. 487
10.5.2 Physical placement of database objects . 489
10.5.3 Buffer pools . 491
10.5.4 Large transactions. 496
10.5.5 SQL execution plan. 500
10.5.6 Configuration Advisor . 503
10.5.7 Design Advisor . 509

Chapter 11. Database administration and management 513
11.1 DB2 administration tools . 514

11.1.1 DB2 command line processor . 514
11.1.2 DB2 Control Center. 516

11.2 Instance management commands . 520
11.2.1 Managing instances . 520
11.2.2 Retrieving instance information. 525
11.2.3 Managing instance configuration parameters 528
11.2.4 Setting registry variables. 533

11.3 Database management . 535
11.3.1 Managing databases. 535
11.3.2 Managing node and database directories 538
11.3.3 Managing database configuration parameters 542
11.3.4 Managing table spaces . 546
11.3.5 Managing buffer pools. 551
11.3.6 Managing database security . 555
11.3.7 Managing database backup and recovery 558

11.4 Automatic database management. 565
11.4.1 Automatic database configuration. 567
11.4.2 Automatic storage . 572
11.4.3 Automated REORG on tables and indexes. 573
11.4.4 Automatic statistics collection . 574
11.4.5 Automatic backup . 575
 Contents ix

11.4.6 Utility throttling. 575
11.4.7 Automatic diagnostics using Health Monitor 576

11.5 Monitoring . 578
11.5.1 Monitoring tools. 578
11.5.2 Monitoring database objects . 581
11.5.3 Applications activity. 589

Appendix A. Data types . 597
A.1 Supported SQL data types in C/C++ . 598
A.2 Supported SQL data types in Java . 602
A.3 Mapping Oracle data types to DB2 data types . 605

Appendix B. Terminology mapping . 607

Appendix C. Function mapping . 611
C.1 Numeric function mapping . 612
C.2 Character function mapping . 615
C.3 Date and time function mapping . 632
C.4 Conversion and cast function mapping. 649
C.5 Aggregate function mapping. 658
C.6 Comparison and NULL-related function mapping. 662
C.7 Encoding, decoding, encryption, and decryption function mapping 663

Appendix D. Oracle Call Interface (OCI) mapping 667

Appendix E. Converter for SQL*Loader . 673
E.1 Converting control files for Oracle SQL*Loader 674
E.2 Generation of additional DB2 commands . 678

Appendix F. Example Oracle database . 683
F.1 Table definition . 683
F.2 View definition . 686
F.3 Procedure and functions . 687
F.4 Packages . 694
F.5 Triggers . 696

Appendix G. Additional material . 701
Locating the Web material . 701
Using the Web material . 701

System requirements for downloading the Web material 703
How to use the Web material . 703

Related publications . 705
IBM Redbooks . 705
Other publications . 705
x Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Online resources . 707
How to get IBM Redbooks . 708
Help from IBM . 708

Index . 709
 Contents xi

xii Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2003, 2007. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
AS/400®
Cloudscape™
DB2 Connect™
DB2 Universal Database™
DB2®
developerWorks®
DRDA®
Informix®

IBM®
IMS™
iSeries®
i5/OS®
Lotus®
OS/390®
PowerPC®
POWER™
pureXML™
QMF™

Rational®
Redbooks®
Redbooks (logo) ®
REXX™
Tivoli®
WebSphere®
z/OS®
zSeries®
1-2-3®

The following terms are trademarks of other companies:

SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Snapshot, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance,
Inc. in the U.S. and other countries.

Enterprise JavaBeans, Java, JavaBeans, JDBC, JRE, J2EE, J2SE, Solaris, and all Java-based trademarks
are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Excel, Microsoft, SQL Server, Visual C++, Visual Studio, Windows NT, Windows Server, Windows, and the
Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xiv Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Preface

IBM® DB2 has long been known for its technology leadership. This IBM
Redbooks® publication, intended for technical staff who are involved in an
Oracle® to DB2 conversion project, is an informative guide that describes how to
migrate the database system from Oracle to DB2 Version 9 on Linux®, UNIX®,
and Microsoft® Windows® platforms.

This book provides conversion methodology and step-by-step instructions for
installing and using IBM Migration Toolkit (MTK) to port the database objects and
data from Oracle to DB2. It illustrates, with examples, how to convert the stored
procedures, functions, and triggers. Application programming and conversion
considerations are discussed, along with the differences in features and
functionality of the two products.

In addition, you can find script conversion samples for data loading, database
administration, and reports that are useful for DBAs. The testing section provides
procedures and tips for conversion testing and database tuning. The laboratory
examples are performed under Oracle 10g and DB2 Version 9. However, the
migration process and examples can be applied to Oracle 7, 8, and 9i.

The team that wrote this book
This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2 system administration.
Whei-Jen is an IBM Certified Solutions Expert in Database Administration and
Application Development, as well as an IBM Certified IT Specialist.

An Na Choi is a Field Technical Sales Specialist with the Information
Management department of SWG in South Korea. After graduating from
university, she worked for a local IT company for two years developing an
encyclopedia application. An Na has supported DB2 and Informix® products
including DB2 Database server, Tools, WebSphere® Information Integrator and
Informix Dynamic Server, and DB2 for SAP® for eight years. As a presales
engineer, An Na has performed benchmark tests and participated in Oracle to
DB2 conversion projects. She has extensive experience in deploying IBM
© Copyright IBM Corp. 2003, 2007. All rights reserved. xv

Information Management solutions to many customers with DB2, Informix
Dynamic Server, DB2 on SAP, WSII and many other tools.

Marina Greenstein is a Senior Certified Consulting IT Software Specialist with
the IBM Database Migration Team. She is an IBM Certified Solutions Expert who
joined IBM in 1995 with experience in database application architecture and
development. During the 11 years Marina has been with the DB2 Migration
Team, she has assisted customers in their migrations from Microsoft SQL
Server™, Sybase, or Oracle databases to DB2. She has presented migration
methodology at numerous DB2 technical conferences and at SHARE. She is
also the author of multiple articles and a white paper about DB2 migration.

Scott J Martin is a DB2 Technology Consultant with the IBM Innovation Center
(IIC) for Business Partners in Waltham, MA, which is part of IBM Developer
Relations. He has 25 years of IT experience with IBM, and is a certified
Advanced Database Administrator for DB2 LUW V8.1, a certified Application
Developer for the UDB Family, and a certified Database Administrator for DB2
for z/OS®. For the past four years with the IIC, Scott has helped business
partners convert their applications from Oracle, SQL Server, and MySQL to DB2
for LUW and DB2 for z/OS. In this role, Scott has also managed DB2
performance enablements and performed a variety of architecture and database
administration tasks supporting business partners. Prior to this, he spent 13
years with IBM Global Services performing Application Development, Database
Administration, and Database Tuning for DB2 mainframe environments.

Fraser McArthur is a DB2 Technical Consultant with the Information
Management Partner Enablement organization at the IBM Toronto Lab, where
he has worked for the last seven years. He focuses on assisting IBM Data
Services Business Partners, performing application migrations and performance
tuning, which can involve anything from low-level and detailed application
development and troubleshooting to high-level database design and
administration. Recently, his focus has been on DB2 pureXML™. Fraser also
conducts DB2 technical workshops and publishes the occasional article to IBM
developerWorks® for the DB2 community.

Carlos Eduardo Abramo Pinto is an IT Specialist for Database Administration
in IBM Global Services in Brazil, supporting IBM local and international
customers. He has more than 11 years of IT experience in a wide range of client
and server platforms, including technical and system support of the Windows
operating system, Oracle, DB2, and Microsoft SQL Server databases in UNIX,
Linux and Windows platforms. He is also specialized in Oracle Real Application
Clusters implementation and support. Carlos is an IBM DB2 Certified Database
Administrator on DB2 UDB V8.1 for Linux, UNIX and Windows, an Oracle
Certified Professional on Oracle 8i, 9i and 10g databases, a Microsoft Certified IT
Professional Database Administrator and Database Developer for Microsoft SQL
xvi Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Server 2005, a Microsoft Certified Database Administrator for Microsoft SQL
Server 7 and 2000, and a Microsoft Certified System Engineer on Windows NT®
4 and 2000.

Arthur V Sammartino is a Certified Consulting I/T Specialist with the IBM
Database Migration Team (also known as SMPO). He is responsible for assisting
customers who are considering a database migration from competitive RDBMS
products (Oracle, Sybase, or Microsoft SQL Server) to IBM DB2 residing on
Linux, UNIX, Windows, or the z/OS platforms. In addition to his conversion
responsibilities, his experience includes supporting clients with application
development environment and setup concerns, as well as migration tool
installation and education. Art is certified as both an IBM Database Administrator
and an IBM Application Developer. He has been a contributing author for the IBM
Redbooks DB2 UDB v7.1 Porting Guide, Oracle to DB2 UDB Conversion Guide,
and DB2 9 pureXML Guide. He also assisted with Microsoft SQL Server to IBM
DB2 UDB Conversion Guide, and was a co-author of the article “Using DB2
routines to ease migration.”

Nora Sokolof is a Certified Consulting Brand Sales IT Specialist with the IBM
DB2 Migration Team (also known as the SMPO). She holds a Master of Science
degree in Software Engineering from Pace University. She has been with IBM for
more than 20 years, and has held positions as a DB2, Informix, Oracle and
PeopleSoft® development DBA. She also designed the first IBM flexible benefits
enrollment database in 1993. Nora is an IBM Certified Database Administrator.
She is also the author of several white papers including “Transitioning from IBM
Informix to DB2 - Database Comparisons and Migration Topics”, and has
co-authored the following IBM Redbooks publications: Planning for a Migration of
PeopleSoft 7.5 from Oracle/UNIX to DB2 for OS/390, Database Transition:
Informix Dynamic Server to DB2 Universal Database, and Database Strategies:
Using XPS and DB2 Universal Database.
 Preface xvii

Figure 1 Left to right: Carlos, An Na, and Fraser. Upper right corner, left to right, row 1:
Art and Nora, row 2: Marina and Scott

Acknowledgments
Thanks to the following people for their contributions to this project:

Deb Jenson
IBM Software Group, Information Management, Competitive Technology

Michael Gao
Sam Poon
IBM Software Group, Information Management Enablement Support

Matthias Nicola
Miso Cilimdzic
George Lapis
Ted Wasserman
Priti Desai
IBM Silicon Valley Laboratory
xviii Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Barry Faust
IBM Software Migration Office

Takashi Tokunaga
Information Management Technical Sales and Services, IBM Japan

Fadel Fiani
Stefan Hummel
Ranjit K. Kalidasan
Ken Leonard
Artur Wronski
Authors of Oracle to DB2® UDB Conversion Guide, SG24-7048

Emma Jacobs, Sangam Racherla
International Technical Support Organization, San Jose Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an E-mail to:

redbooks@us.ibm.com
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xx Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-7048-01
for Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows
as created or updated on August 8, 2007.

August 2007, Second Edition
This revision reflects the addition, deletion, or modification of new and changed
information.

New information
� Migration methodology
� Conversion planning technical consideration
� XML conversion
� Database administration and management

Changed information
� IBM Migration Toolkit
� DB2 product family
� Migration examples
© Copyright IBM Corp. 2003, 2007. All rights reserved. xxi

xxii Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 1. Introduction

Since migrating from Oracle to DB2 for Linux, UNIX, and Windows requires a
certain level of knowledge in both environments, the purpose of this chapter is to
introduce the architectural overview of both Oracle and DB2. This is meant to
facilitate the understanding of both architectures, taking into consideration that
the reader may be an Oracle or a DB2 DBA.

This chapter includes the following topics:

� DB2 9 family of products
� Terminology
� Architectural overview including:

– Processes architecture
– Memory architecture
– Directory structure
– Oracle data dictionary and DB2 catalog
– Database connectivity
– Replicating
– Partitioned database architecture

1

© Copyright IBM Corp. 2003, 2007. All rights reserved. 1

1.1 DB2 family of products
In the era of Information On Demand, IBM Information Management software
offers a wide range of products to accommodate different business needs and
technical requirements in order to provide customers with a robust and scalable
enterprise wide solution.

Beginning with DB2 9, the DB2 Universal Database™ for Linux, UNIX, and
Windows product name has been simplified by removing “Universal Database”
and “UDB”. This change has been implemented on user interfaces, in
documentation, and in packaging materials. Previous versions of DB2 database
products and documentation retain “Universal Database” and “UDB” in the
product naming. Also starting in DB2 9, the term data server is introduced to
describe the product. A data server provides software services for the secure
and efficient management of structured information. DB2 9 is a hybrid relational
and XML data server.

DB2 offers database solutions that run on all platforms including Microsoft
Windows, AIX®, Solaris™, HP-UX, Linux, AS/400®, OS/390® and z/OS.
Furthermore, DB2 technologies support both 32-bit and 64-bit environments,
providing support for 32-bit operating systems on Linux on x86 and Windows,
and 64-bit operating systems on UNIX, Linux and Windows. The DB2 product
family comprises a variety of packages that provide customers with choices
based on business need. The following lists the DB2 product offerings for Linux,
UNIX, and Windows:

� DB2 Enterprise 9
DB2 Enterprise 9 is the ideal data server for the most demanding workload. It
easily scales to handle high-volume transaction processing, multi-terabyte
data warehouses, and mission critical applications from vendors such as
SAP. It is also designed to provide 24x7x365 availability, including: High
Availability Disaster Recovery (HADR), Tivoli® System Automation, Table
Partitioning, Multidimensional Data Clustering (MDC), Materialized Query
Tables (MQTs), Full intra-query parallelism, and the Connection
Concentrator. Platforms supported are Linux, UNIX, and Windows.

� DB2 Workgroup 9
DB2 Workgroup 9 is the ideal data server for deployment in a departmental,
workgroup, or medium-sized business environment, suitable for transaction
processing or complex query workloads on servers with up to four processors
and 16 GB of memory. Platforms supported are Linux, UNIX, and Windows.

� DB2 Express 9
DB2 Express 9 is the ideal entry level data server, which provides very
attractive entry-level pricing. Suitable for transaction processing or complex
query workloads on servers with up to two processors, it can address up to
2 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

four GB of memory. Platforms supported are Linux, Solaris x86, and
Windows.

DB2 Express-C
DB2 Express-C is a version of DB2 Express 9 for the community. It is a
no-charge data server for use in development and deployment of
applications including: XML, C/C++, Java™, .NET, PHP, and more. DB2
Express-C also includes pureXML for free, while it is a purchasable
feature for all other DB2 products. DB2 Express-C can be run on up to two
dual-core CPU servers, with up to 4 GB of memory, any storage system
setup, and with no restrictions on database size or any other artificial
restrictions. Platforms supported are Linux and Windows. DB2 Express-C
can be seamlessly upgraded to any of the other DB2 9 products, without
modifying your database or your application.

� DB2 9 value-added features
While DB2 9 includes capabilities that serve the needs of most deployments,
additional capabilities are required for certain application types, workloads, or
environments that are not needed by every deployment. Rather than build a
one-size-fits-all offering, IBM makes these capabilities available as optional
features to give you the flexibility to purchase only what you need. The
following are the available value-added features, along with the required DB2
product in parentheses:

– pureXML (Enterprise, Workgroup, Express)
The DB2 pureXML feature seamlessly integrates XML and relational data
and unlocks the latent potential of XML by providing simple efficient
access to XML with the same levels of security, integrity, and resiliency
taken for granted with relational data. DB2 9 stores XML data in a
hierarchical structure that naturally reflects the structure of XML. This
structure, along with innovative indexing techniques, allows DB2 to
efficiently manage this data and eliminate the complex and
time-consuming parsing typically required for XML.

– Storage Optimization (Enterprise)
The DB2 Storage Optimization feature gives you the ability to compress
data on disk in order to decrease disk space and storage infrastructure
requirements and can save up to 80% in storage space. Since disk
storage systems can often be the most expensive components of a
database solution, even a small reduction in the storage subsystem can
result in substantial cost savings for the entire database solution.

– Advanced Access Control (Enterprise)
The Advanced Access Control feature increases the control you have over
who can access your data using label-based security. Label Based
Access Control (LBAC) lets you decide exactly who has write access and
who has read access to individual rows and individual columns. LBAC
controls access to table objects by attaching security labels to them. Users
 Chapter 1. Introduction 3

attempting to access an object must have its security label granted to
them. When there's a match, access is permitted; without a match, access
is denied.

– Performance Optimization (Enterprise, Workgroup, Express)
The DB2 Performance Optimization feature includes two critical
components (DB2 Performance Expert and DB2 Query Patroller) that can
significantly improve the overall responsiveness of your data server and
database applications. DB2 Performance Expert and DB2 Query Patroller
are complementary tools to improve data server performance, response
times, and throughput. While DB2 Query Patroller enables you to focus on
queries (with the ability to hold, schedule, cancel, fix, and prioritize
queries), DB2 Performance Expert allows you to focus on overall DB2
system, operating system, and application performance, which can be
monitored and analyzed over time.

– Database Partitioning (Enterprise)
The DB2 Database Partitioning feature (DPF) can be used to manage a
large database better by dividing it into multiple partitions that are
physically placed on one or more servers offering a great deal of flexibility
in scalability. This requires no changes at all from an application's or
user's perspective—everything still looks and acts like a regular database.
Most often, DPF has been used by customers with very large databases
who have partitioned the database across a cluster of multiple inexpensive
servers instead of undertaking the overhead of a large higher-cost server.

– Geodetic Data Management (Enterprise)
The Geodetic Data Management feature provides the ability to store,
access, manage, or analyze location-based round earth information for
weather, defense, intelligence, or natural resource applications for
commercial or government use. It provides the ability to manage and
analyze spatial information with accuracies in distance and area by
treating the earth as a continuous spherical coordinate system.

– Real Time Insight (Enterprise)
The DB2 Real-Time Insight feature is powered by the DB2 Data Stream
Engine, which enables organizations to store and forward high volumes of
data from multiple data streams. The data messages from the feed can be
aggregated, filtered, and enriched in real time before being stored or
forwarded. DB2 Data Stream Engine can load high volumes of data into
the DB2 data server and make that data available to queries in real-time
through SQL.

– Homogenous Federation (Enterprise, Workgroup, Express)
The DB2 Homogeneous Federation feature delivers the ability to easily
manage and access remote DB2 (mainframe and distributed) and Informix
data servers as local tables. Homogeneous federation meets the needs of
4 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

customers that require unified access to data managed by multiple data
servers.

– High Availability (included in Enterprise, available in Workgroup,
Express)
The DB2 High Availability feature provides 24 x 7 availability for your DB2
data server through replicated failover support and data recovery
modules. The three packages that comprise this feature bring a unique
aspect of high availability to the data server environment. This feature
consists of the High Availability Disaster Recovery (HADR), the Online
Reorganization feature, and IBM Tivoli System Automation for
Multiplatforms (TSA MP).

– Workload Management (included in Enterprise, available in
Workgroup, Express)
The DB2 Workload Management feature leverages the Connection
Concentrator in conjunction with either Query Patroller (QP) or the DB2
Governor to provide a more proactive, fail-safe workload environment for
your customers. Connection Concentrator allows for fail-safe operation
and load balancing of a workload, and also allows reallocation of work with
every new transaction. QP is a powerful query workload management
offering that proactively and dynamically controls submission and
execution of queries to better manage DB2 data server workloads to meet
business needs. The DB2 Governor monitors and changes the behavior of
applications that run against the DB2 data server.

� Complimentary DB2 9 software
For application development on DB2 9, the following software is available for
download free of charge:

– DB2 Developer Workbench
The DB2 Developer Workbench is an Eclipse-based tool that replaces the
Development Center in DB2 V8. Developer Workbench is a
comprehensive development environment for creating, editing, debugging,
deploying, and testing DB2 stored procedures and user-defined functions.
You can also use Developer Workbench to develop SQLJ applications,
and to create, edit, and run SQL statements and XML queries.

– DB2 Information Center
The DB2 Information Center is where you can find information that you
need to use the DB2 family of products and features. The DB2 Information
is available as a local installation, or viewable online. The online version
always contains the most up-to-date information.

– DB2 Runtime Client
The DB2 Runtime Client provides a means for applications to connect to
remote DB2 databases. It provides support for common database access
interfaces, such as: JDBC™, ADO.NET, OLE DB, ODBC, and DB2
 Chapter 1. Introduction 5

Command Line Interface (CLI), and includes the drivers and capabilities to
define data sources. The DB2 Runtime client provides base client support
to handle database connections, SQL statements, XQuery statements,
and DB2 commands. It can be freely distributed with your application.

– DB2 Client
The DB2 Client includes all the functionality of the DB2 Runtime Client
plus functionality for client-server configuration, database administration,
and application development.

– DB2 Driver for ODBC and CLI
The DB2 Driver for ODBC and CLI provides runtime support for the DB2
CLI application programming interface (API) and the ODBC API. Though
the DB2 Client and DB2 Runtime Client both support the DB2 CLI and
ODBC APIs, this driver is not a part of either DB2 client. It is available
separately, installed separately, and supports a subset of the functionality
of the DB2 clients. The driver has a much smaller footprint than the DB2
Client and the DB2 Runtime Client and you can have multiple installations
of the driver on a single machine. You can include the driver in your
database application installation package, and redistribute the driver with
your applications.

– DB2 Driver for JDBC and SQLJ
The DB2 Driver for JDBC and SQLJ is a single application driver to
support the most demanding Java applications. This agile driver can be
used in type 4 or type 2 mode (with the appropriate client environment).
The driver is JDBC 3.0 compliant and supports XML and XQuery. You can
include the driver in your database application installation package, and
redistribute the driver with your applications.

– DB2 Net Search Extender (NSE)
The DB2 Net Search Extender is now available at no extra charge. To be
compatible with the new DB2 XML functions, DB2 NSE fully supports the
XML data type, and all text search functions can be used on XML
documents that are stored natively in the database. DB2 NSE continues to
support text search on XML documents stored in BLOB and CLOB data
types.

– DB2 Spatial Extender
The DB2 Spatial Extender allows you to store, manage, and analyze
spatial data (information about the location of geographic features) in DB2
along with traditional data for text and numbers. With this capability, you
can generate, analyze, and exploit spatial information about geographic
features, such as the locations of office buildings or the size of a flood
zone.

– DB2 Runtime Client merge modules (Windows)
Using the DB2 Runtime Client merge modules, you can easily add DB2
6 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Runtime Client functionality to any product that uses the Windows
Installer.

– DB2 9 National Language Pack
National language (NL) users need to download this National Language
Pack in order to receive the NL version of DB2 9 (applies to Data Server,
DB2 Client, DB2 Runtime Client, and the Spatial Extender). If you are
installing a non-English version of DB2 9, you must use one or more
additional CDs called a National Language Package. This package
contains national language support files (product files that are specific to a
language).

� The following DB2 Application Development suite is available for purchase:

DB2 Edition for Application Development Deployment
This edition offers a package for a single application developer to design,
build, and prototype applications for deployment on any of the IBM
Information Management client or server platforms. This comprehensive
developer offering includes DB2 Workgroup 9 and DB2 Enterprise 9, IDS
Enterprise Edition V10.0, Cloudscape™ V10.1, DB2 Connect™ Unlimited
Edition for zSeries®, and all the DB2 V9.1 features, allowing customers to
build solutions that utilize the latest data server technologies. The software in
this package cannot be used for production systems. You must acquire a
separate user license for each authorized user of this product.

IBM also provides federated technologies to extend the functionality of DB2. With
WebSphere Federation Server, you can access objects in many different
databases, such as Oracle, with a single query.

1.1.1 DB2 9 Autonomic computing features

Autonomics were first introduced in DB2 Version 8.2. to help provide a
computing environment that has the ability to sense and dynamically respond to
situations that occur in accordance with business policies and objectives. The
goal is to shift the burden and reduce the complexity of managing computing
environments from people to technology, to help reduce the total cost of
ownership (TCO), and increase business productivity. Simply put, an autonomic
computing environment is self-configuring, self-healing, self-optimizing, and
self-protecting. This initiative is not to replace the DBA, but instead make their
job easier as data being stored, analyzed, and metricized increases.

DB2 Version 8.2 introduced the following autonomic computing features:

� Design Advisor has been enhanced to recommend indexes, materialized
query tables (MQTs), multidimensional clustering tables (MDCs), and
partitions.
 Chapter 1. Introduction 7

� Configure Automatic Maintenance wizard for automating maintenance
activities such as BACKUP, REORG, and RUNSTATS.

� Health Center Recommendation advisor, which monitors the state of the
database environment and can send out notifications if alarm or warning
thresholds are exceeded and can also perform scripted actions.

� Automated log file management.

� Automatic RUNSTATS profiling, which allows DB2 to monitory queries over
time and choose the best statistics collection options for optimal query
performance.

� BACKUP and RUNSTATS throttling to decrease impact on database users.

� BACKUP and RESTORE self-tuning.

� The RECOVER DATABASE command to simplify database recovery for the
DBA.

� The DFT_PREFETCH_SZ configuration parameter now supports an
automatic setting for prefetch size, which allows DB2 to choose an optimal
setting.

Building on the autonomic features and enhancements introduced in DB2
Version 8.2, some of the key DB2 9 features include:

� Adaptive, self-tuning memory allocation
This feature makes the task of DB2 server configuration easier, by
continuously and intelligently updating configuration parameters and buffer
pool sizes.

� Automatic storage support
This feature, which is enabled by default, allows for the size of your database
to automatically grow across disk and file systems and eliminates the need to
manage storage containers. Since automatic storage uses Database
Managed Storage (DMS) for regular and large data, there is improved
performance over that of System Managed Storage (SMS). This feature also
supports DPF database storage.

� Automated statistics collection
This feature, which is enabled by default, enables the automatic collection of
statistics using runstats. The process runs as a background process
whenever DB2 identifies it as being needed for query optimization.

� Automatic configuration of prefetchers and page cleaners
This feature, which is enabled by default, allows the number of prefetchers
and page cleaners to be automatically determined by DB2 based on the
server environment characteristics.
8 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Automatic table and index reorganization enhancements
This feature provides new policy options for automated table and index
reorganization.

1.2 Terminology
Before getting into the conversion process, a clear understanding of the
terminologies used in Oracle and DB2 helps you map each terminology between
Oracle and DB2. This section discusses some of these terminologies, and a
mapping between them is given.

1.2.1 Terminology mapping
Table 1-1 provides a quick reference of commonly used terminologies in Oracle
and DB2. More information about the terminology mapping is provided in
Appendix B, “Terminology mapping” on page 607.

Table 1-1 Mapping of Oracle terminology to DB2

Oracle DB2

Instance Instance

Database Database

Initialization File Database Manager Configuration File

Table spaces Table spaces

Data blocks Pages

Extents Extents

Datafiles DMS containers

Redo Log Files Transaction Log Files

PL/SQL SQL/PL

Data Buffers Buffer Pool

SGA Database Manager and Database shared memory

Data Dictionary Catalog

Library Cache Package Cache

Large Pool Utility heap

Data Dictionary cache Catalog cache
 Chapter 1. Introduction 9

1.3 Architecture overview
It is useful to understand the differences between Oracle’s architecture and that
of DB2 before attempting the Oracle to DB2 migration process. Both products
include their own memory architecture, background processes, database related
files, and different configuration files. Both Oracle and DB2 consist of an instance
and the database(s) attached to that instance. This section provides a general
description of the architectures of each vendor.

Figure 1-1 is an overview of the Oracle architecture. The upper level shows the
memory architecture, the middle level is the process component, and the bottom
level shows the database component.

Figure 1-1 Oracle architecture overview

SYSTEM table space SYSCATSPACE table space

Oracle DB2

 Java
Pool

Database
Buffer
Cache

Data
Dictionary

Cache

Oracle ArchitectureOracle Architecture

Archive
Log
Files

Data
Files

Redo
Log

 Files

Oracle Oracle
DatabaseDatabase

RECO

Oracle Oracle
ProcessesProcesses

Library
Cache

Init.
Ora

Redo
Log

Buffer

SGASGAPP
GG
AA

User
Processes

User
Processes

User
Processes

User
Processes

PMON

Control
Files

ARCnCKPTDBWn LGWRSMON

Shared Pool

Large
Pool

Streams
Pool

InstanceInstance
10 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 1-2 shows the DB2 architecture overview. DB2 implements a dedicated
process architecture. From a client-server view, the client code and the server
code are separated into different address spaces. The application code runs in
the client process, while the server code runs in separate processes. The client
process can run on the same machine as the database server or a different one,
accessing the database server through a programming interface. The memory
units are allocated for database managers, database, and application.

The following section discusses both architectures, detailing memory
components and background processes of both databases.

Figure 1-2 DB2 architecture overview
 Chapter 1. Introduction 11

1.3.1 Memory architecture
This section discusses the memory architecture in Oracle and DB2. Oracle and
DB2 allocate and use memory for instance and database operation. There are
various memory structures used for different processes. This section gives a
broader overview about how memory is allocated and used in a simple Oracle
and DB2 server.

The memory architecture of an Oracle database consists of the memory area
allocated to the Oracle instance and database upon startup. The amount of
memory allocated is controlled by parameters defined in the Oracle configuration
file.

The memory architecture of DB2 is slightly different from Oracle’s. Unlike Oracle,
the DB2 server can run multiple databases under one instance and hence has
configuration files at both the instance level (Database Manager configuration
file) and at the database level (Database configuration file).

Oracle
Oracle uses memory to run the code and share data among users. The two basic
components of the Oracle memory structure are the Program Global Area (PGA)
and the System Global Area (SGA). Figure 1-3 shows the primary memory
architecture of an Oracle server.

Figure 1-3 Oracle memory architecture

The PGA is associated with the server process and contains the data and control
information. For the dedicated server configuration, the primary contents of the

SGA

Data
buffer
Cache

Redo
Log

Buffer

Shared Pool

PGA
Library
Cache

Data dict.
cache

ServerProcess

Instance
12 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

PGA are the sort area, session information, cursor state and stack space. This is
non-sharable memory, which is writable only by the server process. The PGA is
allocated whenever a server process starts. The total size of the PGA is
controlled by the PGA_AGGREGATE_TARGET initialization parameter in
version 10g.

The SGA is the shared memory region allocated for the entire Oracle Instance.
The SGA is a group of shared memory structures in which the basic components
are the shared pool, data buffer cache, and the redo log buffer. The shared pool
contains the library cache, data dictionary cache, along with buffers for parallel
execution messages, and control structures. The library cache holds the SQL
statement text, the parsed SQL statement, and the execution plan. The data
dictionary cache contains reference information about tables, views, object
definitions, and object privileges.

The shared pool size is controlled by the SHARED_POOL_SIZE initialization
parameter. The data buffer cache stores the most recently used Oracle data
blocks. Oracle reads the data blocks from the datafiles and places them in data
buffers before processing the data. The number of buffers allocated is controlled
by DB_CACHE_SIZE. The redo log buffer is a circular buffer that contains redo
entries of the change information made to the database. These redo log buffers
are written into the redo log files and are required for the database recovery. The
sizes of the redo log buffers are controlled by the LOG_BUFFER initialization
parameter. The other memory structures of the SGA include the large pool, used
for backup purposes; the Java pool, used for Java objects; and the streams pool,
used for streams memory. For a shared server configuration in version 10g the
session information and the sort areas are in SGA instead of PGA.

DB2
The three primary memory structures in DB2 are the Instance Shared Memory
(also known as Database Manager Shared Memory), the Database Shared
Memory (also known as Database Global memory), and the Application Shared
Memory (also known as Application Global Memory). Figure 1-4 shows the basic
memory architecture of a DB2 data server.
 Chapter 1. Introduction 13

Figure 1-4 DB2 memory architecture

Instance Shared Memory is allocated when the instance is started. All other
memory is attached or allocated from the Instance Shared Memory, which is
controlled by the INSTANCE_MEMORY database manager (DBM) configuration
parameter. By default, this parameter is set to automatic, which enables the DB2
server to allocate the necessary memory for the instance.

Database Shared Memory is allocated when the database is first activated or
connected to for the first time. This memory is shared by all the applications that
might connect to the database as well as the database Engine Dispatchable
Units (EDUs) or database process that runs within each database. The memory
allocated for the database process includes:

� Buffer pools - equivalent to Data Buffers in Oracle
� Lock list
� Database heap (includes log buffer)
� Utility heap - equivalent to Large Pool in Oracle
� Package cache - equivalent to library cache in Oracle
� Catalog cache - equivalent to data dictionary cache in Oracle

The buffer pools can be compared to the database buffers in Oracle, and the
package cache and catalog cache can be compared to library cache and data
dictionary cache in Oracle, respectively. Database Shared Memory is controlled
by DATABASE_MEMORY database (DB) configuration parameter. By default,
this parameter is set to automatic, which enables DB2 to calculate and allocate
the memory for the database. Table 1-2 shows the DB2 database memory
segments and the associated parameters.

Database Shared
Memory
[numdb]

Instance Shared
Memory

Database Shared
Memory

[1]

Application
Shared Memory

[1]

Application
Shared Memory

[maxappls]

Agent Private
Memory

[1]

Agent Private
Memory

[maxagents]
14 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 1-2 Database memory segments and parameters

Application Shared Memory is allocated when an application connects to a
database. This happens only in partitioned database environments, or in a
non-partitioned database environment where intra-partition is enabled, or if the
connection concentrator is enabled. This memory is used by the connecting
agents to execute the work requested by the clients. The database manager
configuration parameter MAX_CONNECTIONS limits the maximum number of
applications that connect to the database, which in turn sets the upper limit for
the maximum Application Shared Memory allocated.

1.3.2 Process architecture
Any database instance is nothing but a collection of processes and memory
structures. This section discusses the processes in Oracle and DB2.

Oracle
There are two major types of Oracle processes: the user processes and the
background processes (see Figure 1-5).

Database memory Parameter

Buffer pools BUFFPAGE

Lock list LOCKLIST

Database heap (includes log buffer) DBHEAP

Utility heap size UTIL_HEAP_SZ

Package cache PCKCACHESZ

Catalog cache - equivalent to data CATALOGCACHE_SZ

Note: For more information about DB2 Memory Management, refer to
Chapter 11 “Configuring DB2 instances and databases: Configuring DB2
memory allocation” in the Performance Guide, SC10-4222.
 Chapter 1. Introduction 15

Figure 1-5 Oracle process architecture

User processes
Oracle creates a user process when the user or application connects to the
database. For each user process, a server process is created by Oracle to
handle the user process request to an Oracle instance. This architecture works
when the client is on a different machine. When the client and the server are on
the same machine, the user process and server process are combined into a
single process. The function of the server process is to parse the SQL statement,
read the Oracle data blocks from the datafile to the data buffer, and return the
result set to the client.

Oracle background processes
Oracle requires a number of processes to be running in the background, in order
to be operational and open to users. These processes are:

� Database writer (DBWR) - This background process writes all dirty data
blocks from the database buffer cache to the datafiles on disk. The DBA can
configure multiple DBWR processes in order to improve performance.

� Log writer (LGWR) - This is the process that handles writing data from the
redo log buffer cache onto the redo log files.

� System monitor (SMON) - This process has two functions: It performs an
instance recovery when the Oracle instance fails, and it coalesces smaller
fragments of disk space together.

� Process Monitor (PMON) - This process cleans up any remaining Oracle
processes resulting from a failing user process. Furthermore, it rolls back any
uncommitted transactions that were performed by the user.

� Checkpoint (CKPT) - This process writes log sequence numbers to the
database headers and control files.

RECO

PMON

ARCn

CKPT

DBWn

LGWRSMON
User

ProcessesUser
processes

Background
processes

QMNn
16 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Recoverer Process (RECO) - This process automatically resolves failures in
distributed transactions when using the distributed database configuration.

� Archiver Processes (ARCn) - This process is used for ARCHIVELOG mode
when automatic archiving is enabled, to copy redo log files to a designated
storage device after a log switch.

� Queue Monitor Processes (QMNn) - This optional process monitors
message queues when using Oracle Streams Advanced Queing.

DB2
For a DB2 instance to start and run, several processes are created and interact
with each other. These processes maintain the database created on the instance
and the applications connected to the database. There are several background
processes in DB2 that are pre-started, and some start on a need-only basis. This
section explains some of the important background processes.

DB2 background processes
The DB2 server activities are performed by Engine Dispatchable Units (EDUs)
that are defined on a Windows environment as threads and as background
processes on both UNIX and Linux systems.

Like Oracle, there are many background processes dedicated to the operation of
the DB2 instance. As mentioned in the previous paragraph, some DB2
background processes are started with the instance, and others are initialized
when the database is activated by a connection. Figure 1-6 shows the necessary
background processors of the DB2 server at the instance, application, and
database level. In the following sections, we discuss some of the important
processes in each level of DB2.
 Chapter 1. Introduction 17

Figure 1-6 DB2 processor architecture

Instance level processes
The following background processes start as soon as the DB2 server is started
with the db2start command:

� DB2 daemon spawner (db2gds) - This is a global daemon processor started
for each instance. This process starts all the EDUs (process) in UNIX.

� DB2 system controller (db2sysc) - This is the system controller processor.
This is the main process. Without this process, the instance cannot function.

� DB2 watchdog (db2wdog) - This process is required only on UNIX
platforms. This process is the parent process for all the processes.

� DB2 format log (db2fmtlg) - This preallocates log files in the log path when
the LOGRETAIN database configuration parameter is set to ON, and the
USEREXIT parameter is set to OFF. This is similar to the optional Archiver
log (ARCn) process in Oracle and is enabled when the database is set in
ARCHIVELOG mode.

� DB2 system logger (db2syslog) - This is the system logger process
responsible for writing the operating system error log.

db2pclnrdb2pfchr

db2loggr db2loggw

Per Database

db2ipccm

db2tcpcm

db2agent

db2agent

db2agent

Per Application

db2gds db2sysc db2wdog db2fmtlg db2syslog

Per Instance

db2ipccm

db2tcpcm

db2agent

db2agent

db2agent

Per Application

db2dlock

db2pclnrdb2pfchr

db2loggr db2loggw

Per Database

db2dlock
18 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Database level processes
The following background processes are started when an active connection to
the database is established:

� DB2 log reader (db2loggr) - This process reads the log files during
transaction rollback, restart recovery, and rollforward operations. It does part
of the functions that the Oracle PMON process does.

� DB2 log writer (db2loggw) - This is the log writer process that flushes the
database log from the log buffer to the transaction log files on disk. This is
equivalent to the LGWR process in Oracle.

� DB2 page cleaner (db2pclnr) - This process is presented to make room in
the buffer pool before prefetchers read pages on disk storage and move them
into the buffer pool. Page cleaners are independent of the application agents
that look for and write out pages from and to the buffer pool to ensure that
there is room in the buffer pool. This is equivalent to the DBWR process in
Oracle.

� DB2 prefetcher (db2pfchr) - This process retrieves data from disk and
moves it into the buffer pool before the application needs the data. This does
part of the functions of the Oracle server process.

� DB2 deadlock detector (db2dlock) - This is the database deadlock detector
process. This process scans the lock list (the lock information memory
structure of DB2) and looks for deadlocked connections.

Application level processes
These processes are started for each application connecting to the database:

� DB2 communication manager (db2ipccm) - This is the interprocess
communication (IPC) process started for each application connecting locally.
This process communicates with the coordinating agent to perform database
tasks. This can be thought of as an Oracle user process connecting locally.

� DB2 TCP manager(db2tcpcm) - This is the TCP communication manager
process. This process is started when the remote client or application
connects to the database using TCP/IP communication. This process
communicates with the coordinating agent to perform database tasks. This is
equivalent to a user process in Oracle.

� DB2 coordinating agent (db2agent) - This process handles requests from
applications or connections and performs all database requests on behalf of
the application. There will be one db2agent per application unless the
connection concentrator is established. If intra-partition parallelism is
enabled, the db2agent will call DB2 subagents to perform the work.

� DB2 subagent (db2agnta) - This is an idle subagent, which works with the
db2agent process when intra-partition parallelism is enabled.
 Chapter 1. Introduction 19

� Active subagent (db2agntp) - This is the active subagent that is currently
performing work. This process is used when enabling SMP parallelism, which
means having more processes achieving the same task. In order to enable
this feature in DB2, you must set the intra-parallelism database parameter to
true.

The db2agent process, with or without the combination subagents, performs a
similar function to that of the Oracle server process.

1.3.3 Files and directory structure
This section discusses important files and the common directory structure used
in Oracle and DB2. An instance and database requires a number of files such as
datafiles, configuration files, log files, etc. to operate and store data. The
directory structure gives an idea of how a product is installed and how some files
are placed on this structure.

Oracle
Every Oracle instance needs a set of files to comprise itself and operate. These
files include the datafiles, redo log files, control file, parameter file, the alert and
trace log files, and the password file, as shown in the Figure 1-7. The physical
files to mount a table space in Oracle are called datafiles. The datafiles store the
data, index and rollback segments of the Oracle database. Oracle maintains the
database transactions in a transactional log files called redo log files. There
should be at least one set of redo log files created for a database to operate.
Every Oracle database has a control file. The control file contains the entries
that describes the physical structure of the database. Every time a instance is
started, the control file is used to identify the datafiles and redo log files to start
the database.

The parameter file is used by the Oracle instance during startup. The file
contains the values for many initialization parameters used to allocate memory
and start the process for the instance to run. The password file is a security file
used for authenticating which users are permitted to start up or shut down an
instance or perform other privileged maintenance on a database with SYSDBA
or SYSOPER privileges and additionally OSDBA or OSOPER privileges. The
alert and trace log files are the diagnostics files used by the Oracle instance to
record all the dump information of the database such as internal errors, block
corruption errors, and so forth.
20 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 1-7 Oracle database files

Oracle installation follows Optimal Flexible Architecture (OFA) standards in
creating the directories and placing the files. The OFA is a set of file naming and
placement standards. Oracle recommends following OFA standards. Using OFA,
the Oracle installation process places the Oracle software in
$ORACLE_BASE\ORACLE_HOME and database files in the
$ORACLE_BASE\oradata directory. Figure 1-8 shows a sample installation
directory structure on the 10g version of Oracle. The initialization file and the
password file reside under the dbs path in the UNIX server and database
directory in Windows server. The bin directory contains all the executable binary
files.

The $ORACLE_HOME\rdbms\admin directory contains the DDL scripts to create
the data dictionary tables and views, the administration procedures, and package
scripts. These scripts are run when creating the database manually. The
$ORACLE_HOME\network\admin directory contains the listener.ora and
tnsnames.ora files for communication process. Section 1.3.5, “Communication”
on page 27 explains more about these files.

Datafiles
Redo Log

files

Control
file

Parameter file

Password file

Database

Instance
Alert and
Trace Log

files
 Chapter 1. Introduction 21

Figure 1-8 Oracle directory structure using OFA

DB2
The primary files and directories for a DB2 instance and database include the
DMS containers, SMS containers (directory or path), DBM CFG file, DB CFG file,
Transaction log files, and the db2diag.log file. This structure is shown in
Figure 1-9. The DBM CFG file is created per DB2 instance and contains the
configuration parameters and values. This file resides under the sqllib directory
of the instance home named db2systm. This can be related to the initialization
parameter file in Oracle, but unlike Oracle, this is not a text file, but rather a
binary file and can only be updated using the UPDATE DBM CFG command.

The DB CFG file is the configuration file for each database; it stores the database
configuration values. This file is stored with the name SQLDBCON under the
database directory SQLnnnnn, where nnnnn is the database number assigned.
This file is also a binary file and can only be updated using the UPDATE DB CFG
command.

Each database contains the table space containers, which can be either DMS
containers as a physical file or partition, or SMS containers, which is a directory
in Windows and a file system path in the UNIX environment. Under SMS, a
number of different files are created to store the data and the index. The
transactional log files record the database transactions, which is required for
database recovery. The NEWLOGPATH database configuration parameter
identifies the log path if the log files are stored in a location other than the default
log path. The db2diag.log file, which is like the Oracle Alert log file, records the
22 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2 error dump information. The DIAGPATH DBM configuration parameter
identifies the location of the db2diag.log file.

Figure 1-9 DB2 Instance and database files

Figure 1-10 shows the default directory structure for a simple CREATE
DATABASE command with no TABLESPACE options specified. By default, in
DB2 9, the table spaces will be created using automatic storage. You can
optionally specify storage locations for the automatic storage on the CREATE
DATABASE command, however, if no locations are specified, the automatic
storage location uses the value specified in the DBM CFG parameter
DFTDBPATH. The catalog and user table space will then be created as DMS
containers, while the system temporary table space will be created as an SMS
container. The log files will be created in the SQLLOGDIR directory, which can
be changed by updating the NEWLOGPATH DB CFG parameter.

DBM Cfg File
db2diag.log

DB2 Instance

DMS Containers

DB Cfg File

Log Files

Database 1

Table spaces

SMS containers

DMS Containers

DB Cfg File

Log Files

Database 2

Table spaces

SMS containers
 Chapter 1. Introduction 23

Figure 1-10 DB2 directory structure for a simple create database command

The DB2 Installation path depends on the operating system in which it is
installed. On the Windows operating system, the default installation goes under
the C:\Program Files\IBM\SQLLIB directory. This path can also be changed
during the installation. On UNIX systems, the default installation path is
/opt/IBM/db2/V9.1, while on Linux the default installation path is
/opt/ibm/db2/V9.1. On UNIX systems, a sqllib directory is created under the
instance home directory and has symbolic links to actual files under the
installation directory. Figure 1-11 shows some of the installation directory
structure for the Windows environment, and the sqllib directory structure for
UNIX environments.

On UNIX, the adm directory consists of instance administration commands,
license management commands, and other commands. The backup directory
consists of the DBM configuration file backup and node configuration backup.
The bin directory consists of all DB2 command binaries. The bnd directory
contains various database bind files. The db2dump directory holds the

The partition number of the database, 0
for a non-partioned database

The directory for default log files

The SMS container
for default system
temporary tablespace

Drive/Directory

DB2 Instance
Name

Node0000

The database id starts at 1 and increases
for all subsequent databasesSQL00001

DBNAME

C0000000.CAT

SQLOGDIR

T0000000

T0000001

T0000002

C0000000.TMP

C0000000.LRG

The DMS container
for catalog tablespace

The DMS container
for default user tablespace
24 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

db2diag.log file and other trace files. All the external stored procedures and
executable programs are stored under the function directory. The Java directory
contains the JDBC driver files. The samples directory contains all the program
samples that come shipped with DB2 software.

Figure 1-11 DB2 directory structure

Configuration files
Since the Oracle instance can only support one database, its background
processes are enabled as soon as the instance is started. Therefore, Oracle has
one configuration file that is used to configure and tune the database.

The DB2 instance, however, can support multiple databases, and therefore,
consists of an instance level shared memory and a database shared memory,
running on the server side. Starting the DB2 instance will only start the instance
level processes. Database level processes, such as those that control
transactional processing tasks, logging, and writing to containers on disk are only
enabled when the database itself is activated by a user or an application
connection.

Therefore, there are two files controlling the configuration and tuning of the DB2
server and database. The first file is used to configure and tune the DB2 server
at the instance level is called the Database Manager Configuration (DBM CFG)
file. The second is a database level configuration file (DB CFG) used to control
database level parameters.
 Chapter 1. Introduction 25

1.3.4 Data Dictionary and Catalog
Every RDBMS has a form of metadata that describes the database and its
objects. Essentially, the metadata contains information about the logical and
physical structure of the database, integrity constraints, user and schema
information, authorization, privilege information, and so on.

In the Oracle database, this metadata is stored in a set of read-only tables and
views called the Data Dictionary. These tables and views are updated by the
Oracle server. The Data Dictionary is owned by the user SYS and stored in the
SYSTEM table space. The base tables are all normalized and are seldom
accessed directly, hence, user accessible views are created using the
catalog.sql script. The Data Dictionary is organized under three qualifiers: the
USER_xxx views, the ALL_xxx views, and the DBA_xxx views.

The USER_xxx views show the object information owned by the current user; the
ALL_xxx views show all the object information that can be accessed by the
current user; and the DBA_xxx view is the database administrator view and
contains information on all the objects in the database. Apart from the Data
Dictionary, Oracle maintains another set of virtual tables called the dynamic
performance views; the views created on them are prefixed by V$. These views
are called the fixed views, and are available when the instance is started, without
the need of the database to be opened.

In DB2, the metadata is stored in a set of base tables and views called the
Catalog. The Catalog contains information about the logical and physical
structure of the database objects, object privileges, Integrity information, etc.

The DB2 database Catalog is automatically created when the database is
created. The base tables are owned by the SYSIBM schema and stored in the
SYSCATSPACE table space. On top of the base tables, the SYSCAT and
SYSSTAT views are created. SYSCAT views are the read-only views that
contain the object information, and SYSSTAT are the updateable views, which
contain statistical information. Users should view the catalog information through
the SYSCAT views, as the base tables are more complex and not as reader
friendly.

Unlike Oracle, DB2 does not maintain any dynamic performance views, but uses
commands to get the information from the system directory, such as LIST
DATABASE DIRECTORY, LIST TABLESPACES, LIST APPLICATIONS. Table 1-3
shows some of the commonly used views available in the Oracle Data Dictionary
and DB2 Catalog.
26 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 1-3 Data Dictionary and Catalog

The complete list of DB2 Catalog views can be found in SQL Reference,
Volume 1, SC10-4249.

1.3.5 Communication
This section gives an overview of the communication architecture that enables
simple client-server communication in Oracle and DB2 environments and some
of the tools used to communicate from the client.

Database accessing
Both DB2 and Oracle support dynamic and embedded static SQL interfaces.
Oracle provides the SQL*Plus tool for command line access to the database
server. SQL*Plus also comes with a GUI version. DB2 provides the Command
Line Processor (CLP) for command line access to the database server. The GUI
version for this tool is called the Command Editor. The Oracle client installation
installs the SQL*Plus tool, Oracle Net Services software, ODBC drivers, and
other tools. This software provides basic client-server communication to access
the database server. The DB2 client installation provides the DB2 runtime client,
Command Line Processor, Configuration Assistant, Command Editor, ODBC
drivers, etc. for basic client-server communication.

Oracle communication
The client-server communication in Oracle Server is handled by Oracle Net
Services. Oracle Net Services support communications on all major protocols.
The Oracle Net Services provide a communication interface between the client
user process and the Oracle server process, enabling the data transmission and

Oracle Data Dictionary DB2 Catalog

DBA_TABLES SYSCAT.TABLES

DBA_TAB_COLUMNS SYSCAT.COLUMNS

DBA_TABLESPACES SYSCAT.TABLESPACES

DBA_INDEXES SYSCAT.INDEXES

DBA_TAB_PRIVS SYSCAT.TABAUTH

DBA_TRIGGERS SYSCAT.TRIGGERS

DBA_VIEWS SYSCAT.VIEWS

DBA_SEQUENCES SYSCAT.SEQUENCES

DBA_PROCEDURES SYSCAT.ROUTINES
 Chapter 1. Introduction 27

message exchange between Oracle server and client. The Oracle Net Services
use a technology called Transparent Network Substrate (TNS) to perform these
tasks. The TNS enables peer-to-peer application connectivity, where the two
nodes communicate with each other directly.

The Oracle Net Services provides the listener process that resides in the Oracle
server, which listens for incoming client connection requests, and maps it to the
Oracle instance. The listener is configured with one or more protocol addresses;
the client is configured with one of these protocol address and can send
connection requests to listener. A configuration file, listener.ora, is maintained in
the Oracle server that contains the protocol address, database service
information, and listener configuration parameters. The listener process is
controlled by the LSNRCTL utility; the LSNRCTL utility reads the listener.ora file
and starts the listener process. The server services information in the client is
maintained in a file called tnsnames.ora. Oracle Net Configuration Assistant and
Net Manager are graphical utilities used to configure the Oracle Net Services like
listener, service naming, and so on.

DB2 communication
DB2 supports several communication protocols for client-server communication
such as TCP/IP, NPIPE, and so on. Most protocols are automatically detected
and configured during an instance creation. The DB2COMM registry variable
identifies the protocol detected in a server. To enable a specific protocol, use the
db2set DB2COMM command. For TCP/IP, a unique port address has to be
specified in the database manager configuration. This port is registered in the
services file. For example, to reserve port 50000 with the service name
db2c_DB2, the entry in the services file is:

db2c_DB2 50000/tcp

Update this information in the database manager using the command:

db2 UPDATE DBM CFG USING SVCENAME db2c_DB2

These tasks can also be performed using the DB2 Configuration Assistant utility.
At the client, the database information is configured using either the CATALOG
command or using the Configuration Assistant. The database are configured
under a node which describes the host information like protocol and port, etc. To
configure a remote TCP/IP node, the command used is:

db2 CATALOG TCPIP NODE node-name REMOTE host-name SERVER
service-name

The service name registered in the server or the port number can be specified in
the SERVER option. To catalog a database under this node, the command is:

db2 CATALOG DATABASE database-name AS alias-name AT NODE node-name
28 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The Configuration Assistant is the GUI tool used in the client to configure a
database. Figure 1-12 shows how the Configuration Assistant is used to add a
database connection. The option “Search the network” is used to add a database
using the DB2 Discovery Method. Using this option, the DB2 servers installed in
the entire network can be searched and used to add database connection. This
is possible when the DB2 Administration Server (DAS) process is created on the
server and enabled for discovery.

Figure 1-12 Configuring the database connection using Configuration Assistant

Note: The DB2 Discovery method is enabled at the instance level using the
DISCOVER_INST parameter, and at database level using the
DISCOVER_DB parameter.
 Chapter 1. Introduction 29

1.3.6 Data replication
Both Oracle and DB2 provide replication capabilities in their databases. The
main purpose of enabling replication is to have the same set of date records in
more than one location. Having two copies of the same database can be part of a
high availability solution. This section discusses the replication approach by
Oracle and DB2.

Oracle replication
Oracle has the ability to replicate data from one Oracle database to another.
Changes to an Oracle database are replicated to another Oracle database
through the capture and apply processes. Oracle replication uses triggers in
order to capture transactional changes and stores them in a local queue. Oracle
then uses packages in order to apply the replicated changes to the target
database. Oracle Enterprise Manager (OEM) may be used to perform replication
tasks.

DB2 replication
DB2 replication is an asynchronous process. The frequency of replication can be
set to minimize any delay. There are two administration interfaces through which
we can set up replication. The first is the DB2 Replication Center, which are GUI
tools provided by DB2 to define, manage, and monitor replication. The second is
the asnclp tool, which provides command line definition of replication objects.

The replication process in DB2 typically consists of identifying and setting up
three databases:

� Source database - Contains source tables that need to be replicated.

� Target database - A database server where the target tables will reside and
the apply process will take place.

� Control database - Contains the control tables storing the necessary
information for the apply program and which can reside on either the source
or target database.

To replicate data to or from a non-IBM relational database, you use the
replication and federated functions in WebSphere Replication Server for Linux,
UNIX, and Windows. The corresponding source or target replication function can
be provided by DB2 for Linux, UNIX, and Windows, or another WebSphere
Replication Server. WebSphere Replication Server supports replication to and
from the following non-DB2 targets and sources:

� Informix
� Microsoft SQL Server
� Oracle
� Sybase
30 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Teradata (target only)

The three types of replication provided by DB2 are: SQL replication, Q
replication, and Event publishing.

SQL replication
In SQL replication, changes to sources are captured, and the committed
transactional data is stored temporarily in staging tables. The changes are then
read from the staging tables and replicated to corresponding target tables. With
staging tables, data can be captured and staged once for delivery to multiple
targets, in different formats, and at different delivery intervals.

You can use SQL replication to replicate data from DB2 sources to targets by
using the Capture and Apply programs. The Capture program runs on the source
system. The Capture program reads DB2 recovery logs for changed source data
and saves the committed changed data to staging tables. The Apply program
typically runs on the target system. The Apply program retrieves captured data
from staging tables and delivers the data to targets.

Q replication
In Q replication, large volumes of data are replicated at very low levels of latency.
Q replication captures changes to source tables and converts committed
transactional data to messages. This data is sent as soon as it is committed at
the source and read by the Q replication server. The data is not staged in tables.
The messages are sent to the target location through WebSphere MQ message
queues, where the messages are read from the queues and converted back into
transactional data. The transactions are then applied to target tables. There is
one transmission queue for each target.

With Q replication, you can replicate committed transactional data from DB2
sources to targets by using the Q Capture and Q Apply programs. The Q Capture
program runs on the source system. The Q Capture program reads DB2
recovery logs for changed source data and writes the changes to WebSphere
MQ queues. The Q Apply program runs on the target system. The Q Apply
program retrieves captured changes from queues and writes the changes to
targets.

Event publishing
In event publishing, changes to source tables are translated into XML messages
and sent over WebSphere MQ queues to a user application of your choice. Event
publishing uses only the Q Capture program, not the Q Apply program. The Q
Capture program captures changes that you specify when you create an object
called an XML publication. These transactions or row-level changes are then
sent to a queue. You specify which queue to use when you create an object
called a publishing queue map.
 Chapter 1. Introduction 31

Event publishing gives you the flexibility to use transactional data that is
published in XML format for a wide variety of uses. You determine what happens
to the published changes. You can use them to feed data to your web
applications, trigger events, and more. If you want to replicate changes to a
target using the Q Apply program, use Q replication rather than event publishing.

1.4 Parallel database architecture
Both Oracle and IBM offer parallel architecture or clustering environments for
their databases in order to provide customers with the ability to support very
large databases (VLDBs). This is achieved by partitioning the database over
multiple nodes or servers. Oracle offers Real Application Cluster (RAC), formerly
known as Oracle Parallel Server, and IBM offers DB2 Enterprise with the
Database Partitioning Feature (DPF), formerly known as DB2 Extended
Enterprise Edition (EEE).

There are three major architectures used to implement a partitioned
environment: Shared memory, Shared disk, and Shared nothing. This book
briefly discusses both Shared disk (Figure 1-13) and Shared nothing
(Figure 1-14) architectures. Table 1-4 shows the differences between the
technologies.

Table 1-4 Shared disk architecture vs. Shared nothing architecture

1.4.1 Real Application Clusters
Real Application Clusters (RAC) is Oracle 10g’s clustering technology, which
provides an environment capable of supporting large databases. RAC is based
on a shared disk architecture aimed at achieving high availability of a distributed
environment.

 Shared disk architecture Shared nothing architecture

Requires special hardware Does not require special hardware

Non-linear scalability Provides near linear scalability

Balanced CPU or node fail-over Balanced/Unbalanced CPU or node
fail-over

Requires CPU level communication at
disk access

Minimal communication

Non-disruptive maintenance Non-disruptive maintenance
32 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 1-13 Shared disk architecture

RAC is an extension to the Oracle database, which enables building a multi-node
database environment. RAC requires an Oracle database, and the clustering
technology provided by the platform vendor in order to achieve successful
installation and implementation.

RAC consists of three major components: nodes containing CPUs, cluster
interconnect, and storage units. The nodes are processing nodes. Typically,
every node is a symmetric multiprocessing node (SMP). As shown in
Figure 1-13, in a shared disk environment every processing node has access to
every storage unit. However, every node in the cluster has its own memory,
operating system, and database instance. The nodes do not share memory
among each other.

1.4.2 DB2 Enterprise with the Database Partitioning Feature (DPF)
IBM Information Management software extends DB2 to the parallel multi-node
(multi-partition in DB2 terminology) environment in order to provide a scalable
solution capable of supporting large amounts of data.

The database partitioning feature in DB2 is based on a shared nothing
architecture. As shown in Figure 1-14, every partition in the cluster has its own

Node
1

Node
2

Node
3

Storage StorageStorage

ClusterCluster
InterconnectInterconnect
 Chapter 1. Introduction 33

dedicated memory, operating system, and storage units. An application of a
shared nothing architecture is aimed at achieving high scalability and improving
performance. The DPF option of DB2 Enterprise does not require any clustering
technologies to run. However, a high availability solution can be implemented in
conjunction with the clustering technology provided by the platform vendor.

Figure 1-14 Shared nothing architecture

DB2 Enterprise DPF uses two levels of parallelism in order to achieve good
performance:

� Intra-partition parallelism, which is the ability to have multiple processors
process different parts of an SQL query, index creation, or a database load
within a database partition. This level of parallelism can be specified in the
DBM configuration file by setting the INTRA_PARALLEL parameter to ON.

� Inter-partition parallelism, which provides the ability to break up a query
into multiple parts across multiple partitions of a partitioned database, on one
server or multiple database servers. This can be accomplished on both SMP
servers and massively parallel processing (MPP) clustered servers.

Storage

DB2

Partition 1

Storage

DB2

Partition 2

Storage

DB2

Partition 3

High Performance InterconnectHigh Performance Interconnect
34 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 2. Conversion methodology

This chapter describes the IBM migration strategy and the resources that are
available to assist you towards this goal. We also discuss some database
features for which reengineering can be considered during the planning time due
to the implementation differences between Oracle and DB2.

We discuss the following topics:

� IBM conversion strategy
� Additional migration resources
� Conversion planning technical considerations

2

© Copyright IBM Corp. 2003, 2007. All rights reserved. 35

2.1 Pre-conversion tasks

Before undertaking a migration project, there are several planning activities that
should be performed.

The following list summarizes those areas and the type of information that you
need to gather and consider:

� Perform a hardware and software architectural assessment:

– Decide on the target hardware platform for the production system.

– Understand the workload characteristics and requirements.

– Know the number of concurrent users.

– Take an inventory of software and hardware upgrades.

– Decide what machine the migration will be developed and tested on.

� Investigate the scope, duration, and cost of the project:

– Which application areas will be migrated?

– How complex is the migration?

– How many database objects and applications will be migrated?

– What are some of the differences between the source and target
databases?

– How long will the migration take?

– Obtain a ballpark estimate or proposal for work.

� Identify business dependencies:

– Are there timeline or business cycle requirements?

– Do renewal of licensing agreements impact schedules?

� Identify the people resources and skills required:

– Will resources be in-house, outsourced, or a combination of both?

– Do in-house resources have skills for both the source and target
databases?

– Are in-house resources available to perform the migration?

– Are in-house resources available to support an outsourced migration?

� Identify the services and tools that can be used during the migration.
36 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

2.1.1 IBM Software Migration Project Office team

The Software Migration Project Office team (SMPO) at IBM provides free
assistance for many pre-migration tasks. The team consists of technical
specialists whose mission is to facilitate and assist with all phases of a migration
to DB2. The team has assisted hundreds of customers with their migrations and
has database administration and application development skills for the source
databases (Oracle, SQL Server, and Sybase) that will be migrated to DB2.

Some of the tasks that the SMPO provides assistance with are:

� Selection of application areas to migrate

� Assessment of migration complexity

� Ballpark migration estimates delivered in hours

� Sample database and code conversions

� Migration tool selection and demonstrations

� Implementation of DB2 features

� Obtaining technical collateral

� Problem resolution related to the migration

� Selection of migration services

� Database administration and SQL application development comparison
presentations between the source database and DB2

In addition, the SMPO has a direct line of communication to the DB2
development teams. The benefits of this relationship are several: it provides a
conduit that assists in resolving migration related issues; it is used to advise the
developers of features that, if added to DB2, can facilitate future migrations; it
relays customer wish-lists for future DB2 features.

The SMPO ballpark estimate
A type of assistance that is frequently requested from the SMPO is a ballpark
estimate for the conversion of database objects and applications. The SMPO
uses prior experiences to deliver an estimate ranging from the least to the
maximum number of hours of effort expected. To deliver the ballpark, the SMPO
provides a questionnaire and the customer collects and returns metrical
information for the objects to be converted.

The following is an example of the types of metrics collected:

� Number of database objects including tables, indexes, and views
 Chapter 2. Conversion methodology 37

� Number of database application objects including packages, procedures,
triggers and user defined functions; average lines of code and SQL
statements for each

� Number and language of application programs including lines of code and
average number of SQL statements per module

� Volume of production data to be migrated

Although the metrics of a source system are an indicator of the size and
complexity of a migration, there are other activities that are also part of most
migration projects.

Some of these activities are:

� Database physical design
� Testing
� Performance tuning
� Cutover to production
� Project management
� Technical education

If the migration project is outsourced to IBM services, a proposal for work is
delivered along with an estimate in time and dollar amount. The services'
estimate uses the information collected by the SMPO questionnaire as input
(when available) and includes all activities that are part of a migration project.

In addition to metrical information and project tasks, there are additional factors
that influence the size and complexity of a migration.

Some of these factors are:

� Amount and type of proprietary SQL used
� Quality of data
� Existence of system documentation
� Database design requirements such as high availability and replication
� Third party software dependencies
� Operating system and hardware platform change
� Availability of a dedicated machine for migration development
� Extent of code freeze enforcement during migration
� Length of the cutover window
� Skill level of resources performing the migration

These issues are examined more closely and taken into account during the
assessment phase of a migration project.

Note: The SMPO ballpark estimate does not include the hours required to
perform the aforementioned activities.
38 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information about the SMPO, visit the following Web site:

http://www.ibm.com/software/solutions/softwaremigration/

You may also contact your local IBM Sales Representative for information about
the SMPO.

2.2 IBM conversion strategy

The IBM worldwide DB2 Migration Center has developed a “best-practices”
methodology to help customers develop a strategy of how to best migrate their
databases to DB2. You can use this methodology to conduct your own migration
project or can contract the fee-based services of the DB2 Migration Center.

The DB2 Migration Center consists of a team of migration specialists that can
perform the entire migration or partner with your team for a more cost effective
solution. Alternatively, the DB2 Migration Center can also simply provide
direction and advice on an as-needed basis at an hourly rate. The DB2 Migration
Center team can be contacted through your IBM Sales Representative.

If you select the DB2 Migration Center to perform or participate in the migration,
you can expect a team that has completed successful migrations for over twenty
years. The result of these experiences has led to the development of a planned
approach that can minimize the risk and cost of a migration. The Migration
Center takes full advantage of all skills available at IBM including the lab
development teams. In fact, a “lab advocate” is assigned to each project to
ensure success.

IBM's migration methodology consists of the following primary phases:

� Assessment
� Conversion
� Test
� Implementation and cutover

Generally a migration project is an iterative process that consists of multiple
rounds of conversion, testing, and refinement. Each phase has specific
objectives and deliverables and is described in the following sections.

Note: The SMPO differs from the DB2 Migration Center in that the SMPO is a
pre-sales team that offers non-billable migration assistance.
 Chapter 2. Conversion methodology 39

http://www-3.ibm.com/software/solutions/softwaremigration/

2.2.1 Assessment phase

In this phase, it is essential to focus on system architecture analysis and
information gathering to make decisions about how the migration will be
performed. The primary objectives of this phase are to develop an overall
migration strategy, perform initial project planning, and assess the benefits and
risks of various migration options.

Other objectives include:

� Analyze characteristics and size of the source environment

– Inventory the database objects and code to be converted.
– Validate project scope.

� Devise a strategy for key issues

– Coexistence of source and target databases
– Ongoing application development
– Change management
– Performance requirements
– Tool selection
– Naming conventions
– Database physical design
– Define standards
– Data migration strategy
– Security planning
– Cutover strategy

� Project plan development

– Task assignments
– People resources are identified
– Project milestones defined

Note: We recommend that a dedicated machine be used during development
and testing of the migrated system.

Note: If the project is outsourced to the DB2 Migration Center, this phase is
also used to validate the estimates delivered by the Migration Center prior to
starting the project. At the end of this phase, adjustments to the initial
estimates may be made.
40 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

2.2.2 Conversion phase

This phase is the core of the migration project and is divided into three
sub-phases:

� Database conversion and design
� Calibration
� Application migration

Database conversion and design
During this phase, a test database is set up and used for migration development
and functional testing of converted objects.

In addition, in this phase the final DB2 physical database design for the
production system is planned and designed. The physical layout of the DB2
database is critical to the success of the project. It must be implemented
according to best practices to ensure optimal performance. It must be structured
to support future maintenance and to provide maximum flexibility to meet future
requirements—all without compromising existing business processes and
program logic.

A good portion of the database object conversion is automated. The IBM
Migration Toolkit (MTK), an IBM product and free download, is the tool of choice
for converting database objects such as tables, data types, constraints, indexes,
views, triggers, stored procedures, user-defined functions, built-in functions, and
sequences. However, the tool does not migrate database security features such
as user IDs, authorizations or privileges (GRANTs and REVOKEs). In addition,
the creation of table spaces and the placement of tables and indexes within table
spaces along with disk layout is a manual part of the physical design process.

While the MTK is the tool of choice to convert procedures, triggers, and
user-defined functions to DB2, the conversion of these application objects
usually requires a certain amount of manual intervention depending on the SQL
constructs used. The MTK reports those statements that cannot be converted
automatically.

Lastly, during this phase a small amount of test data is loaded in support of
functional testing of the converted objects.

Note: A migration typically does not include logical redesign, although some
amount of reengineering may be done to take advantage of DB2-specific
features.
 Chapter 2. Conversion methodology 41

Calibration
The calibration subphase is designed to validate the planned strategy for the
conversion including quality assurance review, standards compliance, and
performance. During the calibration subphase, a few selected programs are
converted as samples to ensure that the code produced complies with
requirements and possesses characteristics that ensure the future
maintainability of the applications. Typically, 20 to 60 programs of a selected
group are converted.

There are several aspects in defining the system to be used in the calibration.
The primary requirement, however, is that the chosen programs should be
representative of how the whole application portfolio uses the source database
and application languages. They are also expected to provide baseline
performance and data usage that can be easily generalized. The generalized
results will then be used to predict the convertibility of each of the other
application subsystems as well as their likely post-conversion performance
characteristics.

During this phase there is a review of the data transfer requirements and design
of data transfer strategy. The data transfer strategy must ensure that all the
production data can be transferred into the production system within the cutover
window.

In addition, detailed resource and schedule planning is finalized. The test
strategy for user acceptance and parallel testing is also finalized.

Application migration
Insights gained during the calibration phase are incorporated into the migration
strategy. In this phase, conversion of the entire portfolio of objects and
applications is completed.

Depending on the project, the following types of SQL applications may be
converted:

� Embedded SQL programs such as those written in C, C++, COBOL, or Java
� ODBC and JDBC programs
� SQL scripts
� .NET programs

Since this phase is mostly executed using manual techniques, expertise with
both the source and DB2 platform is essential. Not all SQL may need to be
converted because the same SQL syntax often runs on both the source and DB2

Note: If the migration is performed by the DB2 Migration Center, then this
phase may be performed at an IBM location.
42 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

databases. However, all SQL must be examined to determine whether
conversion is needed or not. Besides syntax, the semantics of the SQL needs to
be examined to ensure that the SQL statement behaves the same way and
returns the same results on DB2 as on the source database and performs as well
if not better.

The MTK has an SQL translator, an interactive component, which can be used to
convert a single SQL statement that has been extracted from the source code.
The translator converts the statement into an equivalent statement for DB2.
Before translating an SQL statement, the tables that the statement references
must first be converted by the MTK.

2.2.3 The test phase

The test phase consists of three subphases:

� Conversion refresh
� Data migration
� Testing

Conversion refresh
Since most customers are unable to freeze their application for the duration of a
migration, and since the calibration programs are typically converted early in the
process, a migration refresh is required just prior to customer testing and
production implementation. Based on change control logs, those programs,
applications, and data structures that changed during the conversion phase are
reconverted. This process relies heavily upon the inventory and analysis
activities that took place during the assessment phase as that effort
cross-referenced programs, procedures, functions, data structures, and
application code. Using the baseline as a guide, the migration team reconverts
those converted objects that were impacted by ongoing development.

Data migration
The process of data migration consists of four activities: unload, transform,
cleanse, and reload. This subphase is accomplished by a combination of
automated and manual methods.

In this phase, the MTK can be used to automate the migration of the data or to
generate scripts that can be used to migrate the data manually. The MTK can be
used to unload the data from the source database and load the data into DB2.
However, most importantly, the MTK automates the transformation of the source
data into a format that DB2 will accept during load without errors. For example,
DB2 requires that character data is delimited by double quotation marks and that
date and time values are in a specific format. Tools other than the MTK may be
 Chapter 2. Conversion methodology 43

used to unload the data, however, the format of the data should be examined to
insure that it is in a format that can be loaded into DB2. If it is not, the data will
have to be manipulated by an intermediate process into a format that can be
loaded.

As mentioned previously, several test iterations of data migration are performed
to ensure that all data can be migrated within the cutover window. Data migration
is also needed to support performance testing.

Testing
The next step is the testing of the converted applications. This includes:

� Integration testing
� Parallel testing
� Performance testing
� System testing

In support of this phase, test scenarios need to exist or be developed. In addition,
the production-like database environment is built, configured, tuned, and
populated with a full volume of data. To assist with configuring DB2 parameters
properly, the Configuration Advisor, a tool provided with DB2, should be used.

In this phase, integration, parallel, performance, and system testing are
performed. Parallel testing consists of capturing output from the source
environment for comparison with output and performance from the DB2
environment. The goal of this phase is to identify migration-caused defects and
performance differences and issues.

If performance issues are found, it may be necessary to revisit the physical
database design and implement some changes. The DB2 Design Advisor is a
useful tool to assist with this task. The Design Advisor can recommend indexing
and other physical database structures such as materialized query tables
(MQTs), multidimensional clustering tables (MDC), and database partitioning
features (used with DPF). Of course, any physical design changes may also
result in data movement changes and perhaps even changes to the application
code.

Other DB2 tools packaged with DB2 that can be used to tune performance,
particularly SQL statements, are the Activity Monitor, the Snapshot™ Monitor,
the Event Monitor, and the Explain facility (including Visual Explain).

2.2.4 Implementation and cutover phase

After the testing phase has completed, final testing is performed to validate
implementation of the new production environment and to gain user acceptance.
44 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Upon acceptance of the system, an additional “dry run” of the cutover procedure
is performed, usually over a “dress-rehearsal” weekend prior to the final cutover
weekend. Any issues discovered during the dry run are corrected. On the cutover
weekend, the database is refreshed with production data and the system goes
live.

In preparation of this phase, a backup of the source production system should be
taken in case there is an unexpected need to back out the new system. In
addition, all database maintenance procedures such as backups are put into
production.

In some cases, the final cutover phase does not allow for downtime of the
production system. In these cases, special planning and procedures are
developed to accommodate the phasing in of the new system without impacting
the production environment.

2.2.5 Migration project skills, roles, and responsibilities

During a migration project a variety of skills are required. In order for the
migration to be successful, adequate skill levels within the following areas are
recommended:

� System architect (part-time)

� System administration (part-time)

� Database administrator with source database and DB2 skills (full-time)

� Migration specialists with source database and DB2 application skills
(full-time)

� DB2 tuning expertise (part-time)

� Subject matter expertise (part-time)

� Project management (full time)

� System testing (part-time)

You should carefully assess the skills of in-house staff and determine whether
the above skills are available. If not, then the project should be either entirely or
partially outsourced to fill the gaps.

If the DB2 Migration Center has been contracted to perform the migration, your
team still plays an important role. Starting early in the project, your staff can
“shadow” the IBM team as they perform their tasks. The IBM team also makes
recommendations to your staff on how they can perform their tasks during the
migration project. In this way, your staff can benefit from the expertise of the IBM
team and gain a deep understanding of the migrated objects that you will
 Chapter 2. Conversion methodology 45

ultimately have responsibility for. In addition, during the project your staff takes
primary responsibility for the following tasks:

� Project management

This person manages all tasks that are assigned to your team and reports the
status of the project to your management.

� Management of the physical machine environment

The IBM team will rely on your staff to maintain physical machine resources.

� Testing

Except for functional testing, performed by the IBM team, your staff has the
primary responsibility for the testing phase. It is also your responsibility to
provide test plans, test scripts, and test data.

2.3 Additional migration resources

IBM provides the following additional migration resources:

� IBM Migration Toolkit (MTK)

The IBM Migration Toolkit is a free conversion tool that can be downloaded
from:

http://www.ibm.com/software/data/db2/migration/mtk/

For additional information about the MTK, you can send an e-mail to the
following address:

mtk@us.ibm.com

� IBM DB2 education

The following course is recommended for experienced Oracle DBAs:

Fast Path to DB2 for experienced relational DBAs (CF281)

For information on this course and other IBM education, see:

http://www.ibm.com/services/learning/

� DB2 manuals can be found at:

http://www-306.ibm.com/software/data/db2/udb/support/manualsv9.html

� IBM Redbooks can be found at:

http://ibm.com/redbooks

� IBM Press books on DB2 and other products can be found at:

http://www.redbooks.ibm.com/ibmpress/
46 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/migration/mtk/
http://www-3.ibm.com/services/learning/
http://www-3.ibm.com/services/learning/
http://www-306.ibm.com/software/data/db2/udb/support/manualsv9.html
http://ibm.com/redbooks
http://www.redbooks.ibm.com/ibmpress/
http://www-306.ibm.com/software/data/db2/udb/support/manualsv9.html

� The DB2 Express-C Edition is a free version of DB2 and can be downloaded
from:

http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX
01&S_CMP=HP

� The IBM developerWorks Web site offers white papers and other technical
information on DB2 development:

http://www.ibm.com/developerworks

� The IBM Porting zone Web site offers general porting information:

http://www.ibm.com/developerworks/db2/zones/porting/index.html

� The IBM DB2 MigrateNow Web site offers information on migrations to DB2:

http://www.ibm.com/software/data/db2/migration/dbmigteam.html

� The following Task IDs can be used to contact IBM about migrations to DB2:

– db2mig@us.ibm.com (for United States, Canada, and Latin America only)

– emeadbct@uk.ibm.com (for Europe, Middle East, and Africa only)

– dungj@hk1.ibm.com (for Asia Pacific only)

2.4 Conversion planning technical considerations

Although a migration typically does not include logical database redesign, in the
conversion phase some amount of reengineering can be considered to take
advantage of DB2-specific features.

In this section, we provide a brief discussion of some of the Oracle features
commonly found in Oracle environments that you may want to consider
reengineering during conversion planning or database design phases. We
introduce the DB2 features that provide similar functionality and the resources for
learning these DB2 features and functions.

2.4.1 Task scheduling

In an Oracle environment, tasks can be automated using either a native
operating system tool or a database tool. The common operating system tool
used in UNIX systems is crontab, and in Windows systems is Scheduled Tasks.
Oracle 10g introduces Database Scheduler, a collection of programs using the
DBMS_SCHEDULER package to provide scheduling functionality. In releases
prior to 10g, Oracle has the DBMS_JOBS package to provide similar
functionality.
 Chapter 2. Conversion methodology 47

http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks
http://www-128.ibm.com/developerworks/db2/zones/porting/index.html
http://www-306.ibm.com/software/data/db2/migration/dbmigteam.htm
http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks

DB2 job scheduling capabilities are implemented using four main components:

� Client Tools - the tools used for administration of scheduled tasks.

� Tools Catalog Database - a repository for tasks and related information about
tasks.

� Scheduler - the mechanism that starts the jobs.

� DB2 Administration Server (DAS) - a central point of control for tasks in DB2
instances and databases that controls the Scheduler and the execution of
tasks.

The DB2 Task Center is the Client Tool used to schedule and execute
unattended jobs. The DB2 Journal is used to view historical information about
tasks, database actions and operations, and messages and notifications. These
tools can be directly accessed, or can be accessed from within the DB2 Control
Center. Task Center can run DB2 command scripts as well as OS command
scripts, enable or disable schedules, and send e-mail notification containing
information about the execution of tasks to designated contacts.

Just as for Oracle, operating system tools can also be used to schedule tasks in
DB2 databases.

There is not a direct path to migrate Oracle scheduled tasks to DB2. In order to
achieve the same functionality in a DB2 environment, you must do the following
before the DB2 database goes into production:

� Identify the existing scheduled tasks in your environment.

� Analyze what tasks will be necessary in the new DB2 environment and
discard unnecessary ones.

� Modify, or adapt, the tasks or scripts to work with DB2.

� Implement the tasks using DB2 Task Scheduler or operating system tool.

� Analyze output logs to verify if the conversion is producing desired results.

For more information on DB2 scheduled tasks, refer to chapter 7 “Using the DB2
administration tools” in Administration Guide: Implementation, SC10-4221.

2.4.2 Auditing

Oracle 10g provides audit functionality through the use of standard and
fine-grained auditing options. It allows for system privilege, object privilege, and
SQL statement auditing. Audit trails can be stored in either the operating
system’s audit system or in an internal database table. LogMiner can be used for
analyzing redo log data for suspicious queries.
48 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2’s audit facility is independent of the database server and operates even
when the database instance is stopped. It must be started or stopped explicitly
with the db2audit tool. SYSADMIN authority is required to use this tool. The audit
facility acts at the instance level, recording both instance and database activities.
The audit log file, db2audit.log, is stored in instance’s security subdirectory. This
audit log file has a proprietary format, and security administrators must extract
audit records to a flat file or ASCII delimited files in order to analysis the data.

DB2’s audit facility can monitor different categories of database events, and can
audit successes, failures or both operations for each event. The number of
records generated for a given database operation depends on the number of
categories of events recorded. DB2 can implement synchronous auditing, where
the event generating the audit record will wait until the record is written to disk, or
asynchronous auditing, where the auditing records are buffered and written to
disk when they reach a limit specified by the audit_buf_sz database configuration
parameter.

Oracle audit events cannot be automatically converted to DB2 audit events. It is
necessary to manually implement audit policies in the DB2 database after
database conversion.

Before implementing auditing in a DB2 database, it is good practice to set it up in
a development server to measure how much overhead auditing tasks will cause
and how much storage will be necessary to hold all audit information.

For more information on DB2 audit functionality, refer to chapter 9 “Auditing DB2
database activities” in Administration Guide: Implementation, SC10-4221-00.

2.4.3 National Language support

Oracle provides support for single-byte (SBCS), multi-byte (MBCS), and Unicode
character sets. At the server side, the character set is defined during the
database installation, while at the client side the character set is defined by using
the environment variable. If a client character set is different from a server
character set, Oracle NET automatically converts the data between the two
encoding schemes. Oracle can store Unicode characters either into a CHAR
column created with a UTF-8 database or into an NCHAR data type regardless
of the database character set.

DB2 provides support for single-byte, multi-byte, and Unicode character sets. On
the server side, the code page for a database is specified using CODESET and
TERRITORY clauses of the CREATE DATABASE command, as shown in
Example 2-1. If not specified, DB2 creates the database using the codepage of
the operating system where the database is being created.
 Chapter 2. Conversion methodology 49

Example 2-1 Code set and territory specification during database creation

CREATE DATABASE TESTDB9 ON C:
 USING CODESET UTF-8 TERRITORY US

At the client side, the code set and territory parameters can be specified using
the DB2CODEPAGE and DB2TERRITORY environment variables, as shown in
Example 2-2.

Example 2-2 Client code set and territory specification

db2set DB2CODEPAGE=1208
db2set DB2TERRITORY=1

A DB2 database can only store Unicode data if a Unicode character set has been
specified as the database code set, or if the table is created with the CCSID
clause. To use the CCSID clause, it is necessary to activate the database
configuration parameter ALT_COLLATE. Once set, this parameter cannot be
changed or reset. If you plan to use DB2 XML features, the database codeset
must be a Unicode character set, such as UTF-8.

Choosing the right code set for the database is critical for a successful database
conversion. You must choose a compatible DB2 code set with an existing Oracle
character set to avoid problems during data conversion. If the Unicode character
set is used in an existing Oracle database, or if there are columns of NCHAR
data types, or if XML support is required, the DB2 database code set must be
Unicode compatible.

For more information on DB2 National Language Support, refer to National
Language Support Guide and Reference, SC10-4380-00.

2.4.4 Authentication and authorization

Oracle can authenticate users by four different methods:

� Database authentication - The database performs user authentication and
authorization.

� External authentication - The operating system or a network service performs
authentication.

� Global authentication and authorization - The user is globally authenticated
by an enterprise directory using Secure Sockets Layer (SSL).

� Proxy authentication and authorization - The user is authenticated by a
middle tier server.
50 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The authentication method is specified during the creation of the user, and it is
possible to have different users with different types of authentication on the same
database. Such user information is stored in several Data Dictionary tables.
Administrative connections to the database can be made using either operating
system authentication or a password file.

DB2 authentication security is based on two security levels: Authentication and
Authorization.

� Authentication
Authentication is the verification of user name and password identity. DB2
does not directly authenticate users, it relies on a security facility outside the
database, often part of the operating system or a separate product, or may
not exist at all. DB2 does not keep any login information stored in catalog
tables. DB2 provides authentication both at the server side or at the client
side, and can use or not use encryption for authentication. Also, it is possible
to use Kerberos security protocol for authentication.

There is only one authentication type per instance, which will be used for all
databases under its control.

� Authorization
Authorization is used to determine what authenticated users can perform
inside the database, and what objects they can access. Authorization can be
broken down into two categories: authorities and privileges.

DB2 authorities
An authority in DB2 is defined as a group in the operation system and granting a
specific user this authority simply means that this user is assigned to this group.
DB2 provides administrative authorities to allow administrators to perform
high-level instance and database management tasks and operations. Authority
information is stored in the database configuration manager file. The levels of
authorities in DB2 are classified as follows:

� SYSADM - Administrative authority. System administrators are given full
privileges over the entire DB2 instance. SYSADM cannot be granted with a
SQL statement.

� SYSCTRL - System control authority. System controllers are given full
privileges for managing the system, but are not allowed access to data.
SYSCTRL cannot be granted with a SQL statement.

� SYSMAINT - System maintenance authority. System supports are given a
subset of privileges to manage the system. SYSMAINT cannot be granted
with a SQL statement.

� SYSMON - System monitor authority. System monitors are given authority
required to use the database system monitor. SYSMON cannot be granted
with a SQL statement.
 Chapter 2. Conversion methodology 51

� SECADM - Security administrator. Security administrators are given authority
to perform database security administration. SECADM can be granted with a
SQL statement.

� DBADM - Administrative authority. Database administrators have control over
an individual database. DBADM can be granted with an SQL statement.

� LOAD - The LOAD authority is granted on the database level. Users with
LOAD authority can load data to a table, Quiesce the table space for the
table, perform Runstats and List Tablespaces commands. To load data to a
table, the INSERT privilege on the table is also required. Depending on the
load activity, the UPDATE and DELETE privilege on the table may also be
needed.

DB2 privileges
DB2 privilege concept is similar to Oracle privilege concept. Database privileges
are granted in the database through the SQL command GRANT. Privileges are
stored in the system catalog tables within the database There are three types of
privileges: ownership, individual, and implicit:

� Ownership or CONTROL privileges - In most cases the database user who
creates a database object is automatically granted the CONTROL privilege.
This privilege permits the user to grant other database users certain
privileges on this object. The GRANT privilege can be granted through the
GRANT statement.

� Individual privileges - A classic example of this type of privileges is the
SELECT, INSERT, UPDATE, and DELETE privileges.

� Implicit privilege - This is a sub privilege, which is automatically granted to a
user when this user is granted a high level privilege.

When converting Oracle database users to DB2, you need to create user IDs in
the operating system or in the external product for those users who are
authenticated using the database authentication method. If the existing users are
authenticated by any method other than database authentication, these user
names can be used in the DB2 database. Since DB2 only supports one type of
authentication per instance, it is necessary to properly choose one authentication
type that fits the access requirements to all databases controlled by the instance.

DB2 MTK does not automatically convert Oracle privileges to DB2. During the
conversion planning phase, it is necessary to identify all existing privileges in the
Oracle database, and then map these privileges to DB2. The privileges required
for data and application conversion should be implemented in the DB2 database
first. After all data and application conversions are completed, other users and
privileges can be implemented in DB2 to meet your data security requirements.
52 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information on DB2 Security, refer to chapter 8 “Controlling database
access” in Administration Guide: Implementation, SC10-4221.

2.4.5 Data partitioning

Oracle 10g has the following partitioning methods:

� Range partitioning - Data is partitioned based on ranges of column values.

� Hash partitioning - Data is partitioned evenly across a specified number of
partitions.

� List partitioning - Data is partitioned based on a list of column values.

� Composite Range-Hash partitioning - Data is partitioned using the Range
method and then, within each partition, it is partitioned using the Hash
method.

� Composite Range-List partitioning - Data is partitioned using the Range
method and then, within each partition, it is partitioned using the List method.

Indexes can also be partitioned, and can be of type Global, which allows the
index partitions to be different from the underlying table, or Local, where Oracle
creates a separate index for each partition in the table.

DB2 can partition the data in the following ways:

� Database partitioning
The concept of database partitioning is to spread data among several
database partitions stored on different servers. It is enabled using DB2
Database Partitioning Feature (DPF). It divides the data between database
partitions using hash distribution keys to balance the workload evenly
between all database partitions. The tables are created with a DISTRIBUTED
BY clause to identify database partitioning.

� Table partitioning
Introduced in DB2 9. Data is locally partitioned across multiple storage
objects according to values in one or more rows. The tables are created with
a PARTITIONED BY clause to identify table partitioning. DB2 table
partitioning is similar to Oracle Range partitioning.

� Multidimensional clustering (MDC)
DB2 groups rows with similar values on multiple keys, or dimensions, in the
same table extent. The tables are created with a ORGANIZED BY clause to
identify multidimensional clustering.

None of these partitioning methods are mutually exclusive; all of them can be
combined to provide a tailored solution for business needs, as illustrated in
Figure 2-1.
 Chapter 2. Conversion methodology 53

Figure 2-1 Three DB2 data organization schemes

Choosing the right partitioning method plays a major role during the database
planning stage. Several factors must be analyzed in order to define what
partitioning scheme is right for each situation, such as existing hardware,
application and data design, and database workload. Because Oracle and DB2
have completely different structures, there is not a general rule for Oracle
partitioning migration to DB2 partitioning. The data should be partitioned for
performance reasons, for administrative reasons, or even to expand the capacity
of data storage. For each of these situations, a different partitioning scheme
approach should be necessary.

While complete coverage of DB2 DPF is beyond the scope of this book, the
following Web sites provide resources to learn about DB2 data partitioning
features and the best approach to implement each of them:

� http://www.ibm.com/developerworks/db2/library/techarticle/dm-0608mcine
rney/

� http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605ahuja
2/

Also, Chapter 6 “Designing partitioned databases” in Administration Guide:
Planning, SC10-4223.

2.4.6 Oracle External tables

Oracle External tables are mainly used for data movement between Oracle
databases. Oracle External tables have only metadata stored inside the

Jan

North South

East West

Feb

North South

East West

Jan

North South

East West

Feb

North South

East West

Jan

North South

East West

Feb

North South

East West

T1 Distributed across 3 database partitions

TS1 TS2 TS1 TS2 TS1 TS2

Node 1 Node 2 Node 3

Distribute

Partition

Organize
54 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0605ahuja2/

database dictionary tables, and the data itself resides outside the database in a
proprietary format operating system files. External tables can be accessed using
new ORACLE_DATAPUMP driver for loading and unloading operations. The
command CREATE TABLE AS SELECT with the ORGANIZATION EXTERNAL
clause is used to create and populate an external table, and after the table has
been created and populated, no DML commands will be allowed. In releases
prior to 10g, external tables were created using the ORACLE_LOADER driver,
allowing only loading operations. This driver is still supported in Oracle 10g. The
Oracle Data Pump unloading operation produces a binary, proprietary format file
only readable by Data Pump utilities, so it is not possible to use external tables to
move data extracted on an Oracle 10g database to previous releases or to
heterogeneous databases.

DB2 provides three utilities for data movement:

� EXPORT
Extracts data from a DB2 database or view to a file, using the delimited ASCII
format (DEL), worksheet format (WSF), or PC information exchange format
(IXF).

� IMPORT
Reads data directly from a external file and stores it into a DB2 table. The
DB2 IMPORT utility can read non-delimited ASCII format (ASC), DEL, WSF,
or IXF format. Import performs SQL INSERTs to load data from external files
to a DB2 table and may fire triggers defined on tables being imported to.

� LOAD
LOAD is another utility used to read data directly from an external file and
store into a DB2 table. The LOAD utility is much faster than the IMPORT
utility because instead of performing SQL INSERTs to load the data, it writes
formatted pages directly into the database. The LOAD utility can read files of
format type ASC, DEL, IXF, or CURSOR (a cursor declared against a
SELECT or VALUES statement).

In order to implement Oracle external table functionality in the DB2 database, we
recommend the EXPORT utility for unloading operations, and the LOAD or
IMPORT utility for loading operations.

For more information on DB2 data movement utilities, refer to Data Movement
Utilities Guide and Reference, SC10-4227.

2.4.7 Oracle bigfile table spaces

Oracle 10g introduces the bigfile table space. A bigfile table space is a table
space containing only one very large data file. Its addressing scheme is different
from regular table spaces, now called smallfile table spaces. Bigfile and smallfile
table spaces can coexist within a database.
 Chapter 2. Conversion methodology 55

Converting a bigfile table space to a DB2 table space is not a concern. The
information stored into a bigfile table space can be moved to DB2 table spaces in
the same way as smallfile table spaces.

2.4.8 Table space design

A database table space design is directly related to the type of database
workload, grouping database objects according to their data access pattern in
order to achieve higher performance or easier administration. For example, the
following are some commonly used techniques:

� Separate table spaces for data, indexes, and LOB objects.

� Table spaces should have different block sizes according to objects stored in
them.

� Read-only objects should be placed within the same table space.

� Table space containers should be spread among several disks or file systems
to improve performance.

DB2 provides two storage options: non-automatic storage and automatic
storage. In a non-automatic storage database, you must perform all database
storage allocations and decisions; in an automatic storage database DB2
automatically performs it for you.

When a database is created using automatic storage management, you
associate storage paths within the database using the clause ON in the CREATE
DATABASE command. The containers and space management options are
automatically chosen by the DB2 database manager. If you do not specify the
storage paths, DB2 will use the value of the dftdbpath database manager
configuration parameter. You can also associate database paths to specify
location for various control files for the database. If you do not specify it, DB2 will
use either the value of the ON clause on the CREATE DATABASE command or
the value of the dftdbpath database manager configuration parameter.
Example 2-3 shows examples of how to create an Automatic Storage-managed
database.

Example 2-3 Automatic Storage-managed database examples

CREATE DATABASE DB1
CREATE DATABASE DB2 AUTOMATIC STORAGE YES
CREATE DATABASE DB3 ON /db2/db1/data1 DBPATH ON /db2/db1/control

Note: In DB2 9, if you omit the management clause on the CREATE
DATABASE command, the database will be managed by Automatic Storage.
56 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

A database can only be enabled for automatic storage management during its
creation. You cannot enable or disable automatic storage management for a
database. Automatic storage management supports single-partition and
multi-partition databases.

With automatic storage managed databases, it is not necessary to specify
containers for a table space during its creation; the containers will be created in
the database storage path. Example 2-4 shows a few examples of creating table
spaces.

Example 2-4 Automatic storage management table space creation

CREATE TABLESPACE TBS1
CREATE LONG TABLESPACE LONG_TBS
CREATE TEMPORARY TABLESPACE TBSTMP
CREATE USER TEMPORARY TABLESPACE USERTMP

Although, the first time, table spaces created with automatic storage
management can appear as a new type of table space, DB2 uses System
Managed Space (SMS) table spaces for user and temporary table spaces, and
Database Managed Space (DMS) table spaces for regular and large table
spaces.

SMS and DMS are the two table space management types in DB2. Both types of
table spaces have containers or data files associated with them, and they can
coexist within a database.

SMS table space
This type of table space stores its containers in the form of operating system
directories. Since this type of table space cannot be resized manually, enlarging
the underlying file system would then increase the size of the table space. SMS
table spaces acquire more space only when needed.

There are few advantages associated with creating SMS table spaces, such as
ease of creation and maintenance. The main disadvantage of an SMS table
space is that it cannot separate out table indexes and table data into their own
table spaces.

DMS table space
The containers associated with a DMS table space are either operating system
files or raw devices. A DMS table space can be resized manually with the ALTER
TABLESPACE command using the RESIZE option. The database administrator
decides the location of containers belonging to the table space and when to add
containers. A DMS table space may be defined as regular, large, or temporary.
 Chapter 2. Conversion methodology 57

Table 2-1 shows the differences between DMS and SMS.

Table 2-1 Differences between SMS and DMS table spaces

There are three categories of table space based on the data stored in them:

� Regular table space - can store regular, index, and long data. Nevertheless,
this type of table space is not optimized for long type data.

� Large table space - designed to store long character or LOB type data.

� Temporary table space - designed to store temporary tables. A user cannot
define a permanent table in a temporary table space.

When planning for table spaces, you should consider the table space size, type,
and the placement on the physical drive. Migration time is a good time to
redesign the table spaces of your database if you have been considering it.
Oracle data files are similar to the DB2 DMS table space container. You should
also consider to take advantage of the DB2 automatic storage manager feature
to simplify database storage administration.

For more information on DB2 table space design, refer to chapter 5, “Physical
Database Design” in Administration Guide: Planning, SC10-4223.

2.4.9 Data encryption

Oracle 10g introduces DBMS_CRYPTO API for data encryption of sensitive
data, and keeps the DBMS_OBFUSCATION_TOOLKIT API for backward

Table space type SMS DMS

Can dynamically increase the number of containers in a table
space

No Yes

Can store index data for a table stored in a separate table space No Yes

Can store long data for a table stored in a separate table space No Yes

One data partitioned table can span multiple table spaces Yes Yes

Space allocated only when needed Yes No

Table space can be placed on different disks Yes Yes

Extent size can be changed after creation No No

Note: Only users with SYSADM or SYSCTRL authority can create table
spaces.
58 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

compatibility with previous releases. It provides DES, 3DES and AES
cryptographic algorithms.

In addition to these APIs, Oracle offers, for an additional license fee, the Oracle
Advanced Security option. It provides network encryption, database encryption,
and strong authentication for Oracle databases.

The DB2 database manager configuration parameter AUTHENTICATION
controls not only the encryption of user IDs and passwords during connection
authentication, but also the encryption of communication data transferred
between server and client. In order to enable data communication encryption, the
database configuration manager AUTHENTICATION parameter can be set as
DATA_ENCRYPT, as shown in Example 2-5.

Example 2-5 Enabling data encryption for DB2 communication

db2 => UPDATE DATABASE MANAGER CONFIGURATION USING AUTHENTICATION DATA_ENCRYPT
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.

DB2 also provides built-in functions to enable data encryption: ENCRYPT, which
encrypts the data using a password-base encryption method; DECRYPT_BIN
and DECRYPT_CHAR, which decrypt the encrypted data; and GETHINT, which
returns an encapsulated password hint.

DB2 Migration Tool Kit cannot directly extract data stored in an Oracle-encrypted
column. To convert an Oracle-encrypted column to DB2, data must be manually
decrypted using Oracle APIs, transferred from the Oracle to the DB2 database
using MTK or any other tool, then encrypted in the DB2 database.

For more information on DB2 audit functionality, refer to chapter 9, “Auditing DB2
database activities” in Administration Guide: Implementation, SC10-4221.

2.4.10 Disaster recovery solutions

The Oracle data protection and disaster recovery solution is named Data Guard.
It is included in Enterprise Edition and creates one or more standby databases
transnationally identical to the production (or primary) database to protect data
from errors, failures, disasters, and corruptions. These standby databases can
be located at a recovery site for disaster recovery purposes. The data is
transferred between production and standby databases by applying redo log
data generated in a production database into the standby databases. With Data

Note: After the authentication method is changed, it is necessary to restart
DB2 instance for the change to take effect.
 Chapter 2. Conversion methodology 59

Guard, it is possible to open the standby databases in read-only mode for
reporting operations by temporarily suspending archived log file application on a
secondary server. However, this can lead to a higher failover time because it
might be necessary to apply pending archived log files after a primary server
crash.

Although not designed for disaster recovery, it is possible to use replication
products, such as Oracle Streams and Advanced Replication to protect sensitive
data by storing a copy of them at a remote site.

The DB2 High Availability Disaster Recovery (HADR) feature provides disaster
and recovery capability. HADR is included in all DB2 editions and is used to
ensure database availability in the event of either planned or unplanned
downtime, providing ultra fast failover with simple deployment and management
procedures. HADR replicates data changes from a production (or primary)
database to a standby database directly from the primary database log buffer,
maintaining a fault tolerant replica. DB2 also provides the Automatic Client
Reroute feature that enables client applications to recover from a primary server
failure, automatically reconnecting to the standby server and continuing work
with minimal interruption.

Figure 2-2 shows the HADR concept.

Figure 2-2 HADR concept

new

logs

old

logs

log writer log reader

Tables

Indexes

HADR

new

logs

old

logs

log reader

Replay Master

Shredder

Redo Master

Redo Workers

Tables

Indexes

HADR
TCP/IP

DB2 Engine

(other components)

DB2 Engine

(other components)

Primary Connection

Alternate Connection

(failover, client reroute)

PRIMARY SERVER SECONDARY SERVER
60 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For a demonstration of DB2’s HADR implementation, refer to:

http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_HADR-Jan05.html

If reading data at the standby server is a higher priority, or if you want to use
replication instead of HADR to store sensitive information at a disaster recovery
site, IBM Replication Server provides a Q Replication feature. Using the Q
Replication bidirectional or peer-to-peer replication feature makes it possible to
replicate sensitive data from a production server to a standby server on a remote
site. It is possible also to combine Automatic Client Reroute functionality with Q
Replication to create a warm standby database.

There is no migration tool to convert Data Guard or replication configurations to a
DB2 platform. You must first convert the Oracle database to DB2 and then
implement a DB2 disaster recovery solution. DB2 HADR and IBM Replication
Server solutions can be adopted for this situation, providing similar or superior
disaster recovery protection to the new environment.

For more information about HADR concepts and implementation, refer to
chapter 7, “High Availability disaster recovery (HADR)” in Data Recovery and
High Availability Guide and Reference, SC10-4228.

For more information on Automatic Client Reroute, refer to chapter 1 “Before
creating a database” in Administration Guide: Implementation, SC10-4221.

For more information about IBM Information Server features, refer to:

http://www-306.ibm.com/software/data/integration/

For more information about IBM Replication Server Q Replication, refer to:

� WebSphere Information Integrator Q Replication: Fast Track Implementation
Scenarios, SG24-6487.

� http://www-128.ibm.com/developerworks/db2/roadmaps/qrepl-roadmap-v8.2.
html

2.4.11 Oracle Database Resource Manager

Oracle Database Resource Manager permits database administrators to control
the distribution of resources among database users, ensuring that the necessary
resources will be available to business critical operations.

DB2 Query Patroller can be used for similar functionality. With Query Patroller
you can proactively and dynamically control the flow of queries against the DB2
database, regulating the workload and permitting that small and high-priority
queries have preference over heavy ones. Also, Query Patroller permits
collection of database usage and statistics information for trend analysis.
 Chapter 2. Conversion methodology 61

http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_HADR-Jan05.html
http://www-306.ibm.com/software/data/integration/
http://www-128.ibm.com/developerworks/db2/roadmaps/qrepl-roadmap-v8.2.htm
http://www-128.ibm.com/developerworks/db2/roadmaps/qrepl-roadmap-v8.2.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://www-306.ibm.com/software/data/integration/

For a demonstration of how DB2 Query Patroller can help to control database
resource utilization, refer to

http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_Query_Patroller-Ja
n05.html

For more information on Query Patroller, refer to Query Patroller Administration
and User Guide, GC10-4241.

2.4.12 Replication considerations

There are several factors to be considered for conversion of an Oracle database
involved in a replication topology:

� Existing database environment - Will all databases involved in the
replication be converted? Will it be necessary to support heterogeneous
replication between Oracle and DB2 databases?

� Replication topology - What replication topology will be converted? Will the
replication be unidirectional, where the replicated data is read only at the
target table, or will it be multidirectional, where data can be updated in both
source and target tables?

� Storage requirements - How much additional space and hardware utilization
is necessary to support the new replication topology?

DB2 replication capabilities are provided through the IBM Information Server
platform. This platform is a collection of technologies that combines database
management systems, Web services, replication, federated systems, and
warehousing functions into a common platform. IBM Information Server solution
for replication is IBM Replication Server, which can replicate data to or from
non-IBM databases.

Heterogeneous access between different databases is called federation. The
IBM Information Server solution for federated systems is IBM WebSphere
Federation Server, with which you can integrate heterogeneous distributed
databases, providing a common interface for accessing, replicating, and
manipulating data.

If all databases involved in the replication topology are DB2 databases, you will
use the IBM Replication Server features only. However, if it is necessary to
access any heterogeneous database, such as Oracle, SQL Server, My SQL,
etc., you will need to integrate the WebSphere Federation Server and IBM
Replication Server features to design the topology.
62 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_Query_Patroller-Jan05.html
http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_Query_Patroller-Jan05.html

To convert an Oracle database that is part of a replication topology to DB2, and
configure replication between Oracle and DB2 databases, you should follow
these steps:

1. Stop Oracle replication before database conversion to DB2.

2. Convert the Oracle database to DB2.

3. Install and configure the IBM Information Server tools (IBM WebSphere
Federation Server and IBM Replication Server).

4. Install Oracle client tools into IBM Information Server server machine.

5. Configure replication between Oracle and DB2 through IBM Information
Server products.

While complete coverage of IBM Replication Server features is beyond the
scope of this book, the following Web sites provide a quick start to learn about
these features, and the best approach to implement them:

http://www-306.ibm.com/software/data/integration/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com
.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0505burner
/index.html

2.4.13 Data Warehouse considerations

A conversion of an Oracle Data Warehouse (DW) database to DB2 should be
treated in the same way as an OLTP conversion. As in an OLTP environment,
some topics must be considered before a DW migration:

� Will all Data Warehouse data be converted to DB2 in a single moment, or will
it be broken into smaller pieces of data and migrated separately?

� How much time will be necessary to convert the data? How will business be
affected during the conversion process?

� Are the existing hardware resources adequate for Data Warehouse needs?
Can the existing storage hardware support Oracle and DB2 data, or will it be
necessary to use additional storage hardware during the conversion?

� Will both Data Warehouse and base OLTP databases be migrated to DB2 at
the same time\? Will it be necessary to federate, or replicate, data between
heterogeneous databases?

� How will the extract, load and transform processes (ETL) be converted to
DB2? Are the existing ETL tools compatible with the new environment, or will
it be necessary to migrate these tools during the database conversion
project?
 Chapter 2. Conversion methodology 63

http://www-306.ibm.com/software/data/integration/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0505burner/index.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.product.overview.doc/dochome/iiypohom_wiihome.html

� Is partitioning used? If yes, how should the existing partitioning scheme be
converted to the DB2 scheme?

Due to the fact that Data Warehouse databases usually store terabyte of data,
the physical storage requisites must be carefully designed in order to achieve
high performance levels and easier administration. DB2 Data Partitioning
Feature (DPF) is commonly used in DW databases. Federation of servers is also
commonly used, and can be performed in DB2 databases using the IBM
Information Server product WebSphere Federation Server.

Besides DPF and WebSphere Federation Server, DB2 provides a scalable,
reliable, and robust suite of Data Warehouse tools to help you build, load, and
manage your Data Warehouse environment. DB2 provides tools to easily design
and implement Cubes, OLAP, data mining analysis, reports, and ETL in a DW
environment.

For more information on DB2 Data Warehouse features, refer to:

http://www.ibm.com/software/data/db2/dwe/features.html
64 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/dwe/features.html

Chapter 3. MTK

IBM Migration Toolkit (MTK) is a free tool designed to simplify and improve
migration to DB2 for Linux, UNIX, and Windows (DB2) from other RDBMS. With
MTK, database objects such as tables, views, data types, stored procedures,
triggers, etc. can be automatically converted into equivalent DB2 database
objects. MTK provides database administrators (DBAs) and application
programmers with the tools needed to automate previously inefficient and costly
migration tasks. With MTK, it is possible to reduce downtime, eliminate human
error, and cut back on person-hours and other resources and tasks that are
normally associated with database migration.

In this chapter we introduce some basic information regarding the IBM Migration
Toolkit in these topics:

� MTK overview
� MTK planning
� MTK setup

3

© Copyright IBM Corp. 2003, 2007. All rights reserved. 65

3.1 MTK overview
The IBM Migration Toolkit (MTK) (Figure 3-1) is available free of charge from IBM
at the following Web site:
http://www.ibm.com/software/data/db2/migration/mtk

MTK was developed by the IBM Silicon Valley Laboratory in San Jose, California
with assistance and contributions from the Watson Laboratory in Hawthorne, NY.
MTK is now being maintained and developed by the IBM team in Lenexa, KS.
Some driving factors in creating MTK were:

� The need to develop a tool that is closely linked, and kept pace, with the
technical development of DB2 and the databases with which it interacts.

� The need to address “real world” migration concerns. Because of IBM’s
significant experience in this area, the developers created a tool that meets
the requirements of IBM migration teams while addressing the significant
issues involved in customer migrations.

� The need for a tool that would convert as much, and as accurately, as
possible.

� The need for a tool that would be available, free of charge, to those interested
in doing a migration.

Figure 3-1 The IBM Migration Toolkit
66 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/migration/mtk

3.1.1 MTK facts

In this section, we introduce MTK versions and features.

MTK versions
The latest version of MTK (as of the publication date of this document) is
V1.4.9.0. This is the recommended version for all conversions from Oracle,
Microsoft SQL Server, Sybase, and IDS sources at the time of writing. Since the
MTK development team releases fixes and updates to the product at several
times during the year, check the following Web site to download the latest
version of MTK:

http://www-306.ibm.com/software/data/db2/migration/mtk/

As of the date of this publication, the following operating systems, conversion
sources, and conversion targets are supported by MTK V1.4.9.0:

� Supported operating systems

– Windows 2000 and Windows XP
– Linux RHEL 3
– AIX 5L™ 5.2
– Sun Solaris 2.9/9
– HP HP-UX B.11.11

� Supported databases (as conversion sources)

– Oracle 8i, 9i, 10g
– Microsoft SQL Server, versions 7, 2000, and 2005
– Sybase ASE, Versions 11,12, 12.5, and 15
– Sybase SQL Anywhere version 9
– Informix Dynamic Server 7.3, and 9

� Supported versions of DB2 (as conversion targets)

– DB2 for Linux, UNIX and Windows V8.1 (Fix pack 3 and later), V8.2, and 9
– DB2 for Linux, UNIX and Windows i5/OS®, v5R2, V5R3, V5R4

Important:
In addition to the recommended version of MTK, there is an MTK prototype.
This prototype, version 2.0.1.1 has been extended to support MySQL versions
4 and 5 as the source DBMS, and DB2 and IDS as the target DBMS. The
emphasis of this prototype is to provide MySQL support; support for other
source DBMS in this prototype is not recommended, as the support in MTK
1.4.x is more current for other sources. The 2.0.1.1 release contains a fair
degree of migration support for MySQL, but is not nearly as complete at the
time of the publication of this book. See the release notes for that version to
obtain detailed information about the SQL constructs supported.
 Chapter 3. MTK 67

http://www-306.ibm.com/software/data/db2/migration/mtk/
http://www-306.ibm.com/software/data/db2/migration/mtk/

– DB2 for z/OS Version 8 and later

3.1.2 MTK features
MTK converts the following Oracle source database constructs into equivalent
DB2 database objects:

� Data types
� Tables
� Columns
� Views
� Indexes
� Constraints
� Packages
� Stored procedures
� Functions
� Triggers
� Sequences

MTK enables the following tasks:

� Obtaining source database metadata (DDL) by EXTRACTING information
from the source database system catalogs through JDBC or ODBC

� Obtaining source database metadata (DDL) by IMPORTING DDL scripts
created by SQL*Plus or third-party tools

� Automating the conversion of database object definitions, including stored
procedures, triggers, packages, tables, views, indexes, and sequences

� Deploying SQL and Java compatibility functions that permit the converted
code to “behave” functionally similar to the source code

� “On the fly” conversion of PL/SQL statements using the SQL Translator tool.
This tool is also effective as a DB2 SQL PL learning aid for PL/SQL
developers.

� Viewing conversion information and messages

� Deployment of the converted objects into a new or existing DB2 database

� Generating and running data movement (unload/load) scripts or performing
the data movement online

� Tracking the status of object conversions and data movement, including error
messages, error location, and DDL change reports using the detailed
migration log file and report
68 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

3.1.3 MTK GUI interface

The MTK GUI interface (Figure 3-2 on page 70) consists of five tabs, each of
which represents a specific task in the conversion process. The tabs are
organized from left to right as follows:

� Specify Source
� Convert
� Refine
� Generate Data Transfer Scripts
� Deploy to Target

The menu bar contains Application, Project, Tools, and Help:

� Application - When Application → User Preferences is selected from the
menu bar, such preferences as MTK environment, project, and editor can be
set.

� Project - When Project is selected from the menu bar, a new project can be
created; an existing project can be opened, closed, modified, saved, dropped,
backed up or restored; or an SQL source file can be imported.

� Tools - When Tools is selected from the menu bar, the SQL Translator can be
launched or the Migration reports, Changes Report, or the log file can be
examined.

� Help - When Help is selected from the menu bar, Help Content or About...
can be viewed.
 Chapter 3. MTK 69

Figure 3-2 MTK GUI interface

3.1.4 Migration tasks
The five tabs in the initial pane of the MTK user interface represent the five
phases of the MTK migration process. These are:

� Task 1: Specify source

The SPECIFY SOURCE task (Figure 3-3) focuses on Extracting or Importing
database metadata (DDL) into the tool. The database objects defined in this
DDL will then be used as the source code for conversion to DB2 equivalent
objects. When Extract... is selected, a connection to the source database
through ODBC or JDBC is required. Once the ODBC/JDBC connection is
established, MTK will ‘read’ the system catalogs of the source database and
extract the definitions for use in the conversion process. If Import... is
70 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

selected, an existing file, or files, which contain database object DDL must
exist. The Import task copies the existing DDL file or files from the file system
into the MTK project directory for use in the database structure conversion
process.

Figure 3-3 Specify source

� Task 2: Convert

During the CONVERT task (Figure 3-4 on page 72) several optional tasks
may be completed before the actual conversion of the source code. These
are:

– Selecting format options for the converted code. Examples of options are:
including the source code as comments in the converted code; including
DROP before create object statements, among others.

– Making changes to the default mapping between a source data type and
its target DB2 data type.

Once the optional tasks are completed, Convert may be selected to perform
the conversion of the DDL statements into the corresponding DB2 DDL.

Note: If the source DDL for the MTK project is obtained through the Import
option, the ability of MTK to perform data movement is limited.
 Chapter 3. MTK 71

Each conversion generates two files:

– .db2 - this file contains all of the source code converted to DB2 target
code.

– .rpt - this file can be opened and viewed from this pane. It is best,
however, to examine it during the REFINE task, which succeeds the
Convert task.

Figure 3-4 Overview of the Convert process

� Task 3: Refine

During the REFINE task (Figure 3-5 on page 73) the following are possible:

– The results of the conversion may be examined.
– Various types of messages generated by the tool may be viewed and, if

necessary, specific changes may be made to the converted DDL.

Other tools such as the SQL Translator, Log, and Reports can be used to
assist in the Refine task. Once the Refine process has been completed, it is
possible to move to the “Generate data transfer scripts” step to prepare the
data transfer scripts, or to the “Deploy to Target” step to execute the DB2
DDL statements.

Note: If any changes are made to the converted DDL, the Convert step
must be re-run in order to apply the changes.
72 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 3-5 Refine

� Task 4: Generate data transfer scripts

In the GENERATE DATA TRANSFER task (Figure 3-6), scripts are generated
that will be used to:

– Unload data from the source environment
– Load or Import data into DB2

Before creating the scripts, some advanced options may be selected that will
affect how the IMPORT or LOAD utility operates. This will allow additional
refinement of the Load or Import specifications that may correspond with the
requirements of specific data and environments.

Figure 3-6 Overview of the Generate Data Transfer script task
 Chapter 3. MTK 73

� Task 5: Deploy to Target

The Deploy to Target task (Figure 3-7) is used to install database objects and
Import/Load data into the target DB2 database. In this task, it is possible to:

– Deploy the converted objects into a previously existing database or create
a new database into which the objects may be deployed.

– Execute the DDL to create the database objects.
– Extract data from the source database.
– Load/Import the source data into the target DB2 tables or choose any

combination of the above three.

Figure 3-7 Deploy to Target

An overview of all the tasks in the MTK conversion process is shown in
Figure 3-8.
74 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 3-8 MTK conversion tasks overview

3.1.5 The MTK SQL Translator
The MTK SQL Translator (Figure 3-9 on page 76) enables “on-the-fly” conversion
of individual statements, a series of statements, or stored procedures. The
translator requires that all of the dependent objects for the SQL that you wish to
convert are available to MTK. This may be accomplished in either of two ways:

� The current project already contains all of the converted objects on which the
desired SQL depends (tables, views, etc.).

� The objects on which the SQL statement depends will be created in the SQL
Translator window by placing them before the SQL that is to be converted.
 Chapter 3. MTK 75

Figure 3-9 The MTK SQL Translator

3.2 MTK planning
MTK runs on a variety of operating system platforms including AIX, Linux, Sun
Solaris, HP, and Windows. Before installing MTK, verify the hardware and
software requirements provided in this section.

3.2.1 Operating system and version requirements
MTK runs on the following operating systems and versions:

� Windows 2000 and Windows XP
� Linux RHEL 3
� AIX 5L 5.2
� Sun Solaris 2.9/9
� HP HP-UX B.11.11
76 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

3.2.2 MTK hardware requirements
The hardware requirements for installation of MTK on all platforms are:

� 50 MB of disk space for installation

� 5 MB per project plus space to unload data

� 1 GB of memory is recommended (more memory is required if large source
files will be converted).

3.2.3 MTK software requirements
Installation of MTK is supported on various platforms. The following information
outlines the software requirements for installation of MTK for these platforms:

Windows
In earlier versions of MTK for the Windows environment a Java Runtime
Environment (JRE™) was included as part of the installation package. Currently,
the install of the MTK product no longer includes a JRE. As a result, the following
is now a requirement:

Java Runtime Environment 1.4.2 or greater installed and accessible through the
PATH environment variable.

UNIX and Linux
� Java(TM) Runtime Environment 1.4.2 or greater installed and accessible

through the $PATH environment variable.

� For Linux, increase the message queue number to at least 128:

sysctl -w kernel.msgmni=128

� To view the HTML reports that MTK generates, include the browser directory
in the $PATH variable. If the browser cannot be found, MTK will launch an
internal JAVA web browser, which can display HTML files, but does not
handle frames or format the tables well.

� When extracting DDL from a data source using ODBC or Java, configure the
client connection.

Note: To deploy SQL stored procedures to DB2 Version 8.1 or earlier,
Microsoft Visual C++® version 5 or later is required to compile the procedures.
DB2 Version 8.2 and later and DB2 9 do not require a compiler.
 Chapter 3. MTK 77

3.2.4 MTK requirements for data extraction

The data extraction requirements vary depending on the source RDBMS from
which the data is to be extracted.

General data extraction requirements
The following are required for extracting data from a database in any RDBMS:

� When migrating to a DB2 database on UNIX and Linux platforms, use JDBC
to connect to the source database.

On UNIX and Linux platforms, MTK does not support connecting to the
source using ODBC.

� When migrating to a DB2 database on the Windows platform, you can use
ODBC or JDBC to connect to the source database.

Oracle data extraction requirements
To extract data from an Oracle database, the following are required:

� To connect to an Oracle database, either of the following JDBC drivers can
be used:

– ojdbc14.jar
– classes12.zip

I

� Edit the MTKMain.bat (Windows) or the MTKMain.sh (UNIX and Linux) file to
add the path to either the ojdbc14.jar or the classes12.zip file. Example 3-1
shows the MTKMain.sh file before and after the necessary adjustments have
been made.

Example 3-1 Editing the MTKMain.sh file to include the path to the ojdbc14.jar file

This is the unedited MTKMain.sh file:

#!/bin/sh
java -classpath
".:antlr.jar:common.jar:mtk.jar:ifxjdbc.jar:ifxtools.jar:ifxlang.jar:if

Important: MTK ODBC extraction support will be discontinued on all
platforms in subsequent MTK releases.

Note: To install ojdbc14.jar, refer to the installation instructions at:

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htd
ocs/jdbc_10201.html
78 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

xlsupp.jar:jt400.jar:jlpex11.jar:help.jar:jhall.jar:xmistore.jar:cwm.ja
r:orainfxtUDFs.jar:$CLASSPATH" com.ibm.mtk.MTKMain $1 $2 $3 $4

This is the edited MTKMain.sh file with the path to the ojdbc14.jar
file included:

#!/bin/sh
java -classpath
".:antlr.jar:common.jar:mtk.jar:ifxjdbc.jar:ifxtools.jar:ifxlang.jar:if
xlsupp.jar:jt400.jar:jlpex11.jar:help.jar:jhall.jar:xmistore.jar:cwm.ja
r:orainfxtUDFs.jar:<PATH_TO_OJDBC14_JAR_FILE>/ojdbc14.jar:$CLASSPATH"
com.ibm.mtk.MTKMain $1 $2 $3 $4

� Include the following library in the $CLASSPATH:

${ORACLE_HOME}/jdbc/lib/classes12.zip

� Depending on your OS, include the following entries in the
$LD_LIBRARY_PATH (Linux and Solaris), the $LIBPATH (AIX), or
$SHLIB_PATH (HP-UX):

– ${ORACLE_HOME}/lib
– ${ORACLE_HOME}/lib32

Microsoft SQL Server data extraction requirements
To extract data from a Microsoft SQL Server database, the following are
required:

� MTK supports connections for the JDBC Type 2 and Type 4 drivers. Either of
the following Microsoft SQL Server drivers can be used:

– SQL Server 2000 Driver for JDBC
– Microsoft SQL Server 2005 JDBC Driver 1.0

� Edit the MTKMain.bat (Windows) file to add the path to either the sqljdbc.jar
(MS SQL 2005) or, in the case of MS SQL 2000, the msbase.jar, msutil.jar,

Tip: When migrating from Oracle databases, run statistics on the
SYS.DEPENDENCY$, SYS.OBJ$, and SYS.USER$ tables before
extracting. You can use the Oracle DBA Studio or the DBMS_STAT
package to run statistics.

Note: These drivers are available for download at:

http://msdn2.microsoft.com/en-us/data/aa937724.aspx

Refer to the accompanying instructions in the download to install the driver.
 Chapter 3. MTK 79

http://msdn2.microsoft.com/en-us/data/aa937724.aspx
http://msdn2.microsoft.com/en-us/data/aa937724.aspx

and the mssqlserver.jar files. Example 3-2 shows the MTKMain.bat file before
and after the necessary adjustments have been made.

Example 3-2 Editing the MTKMain.bat file to include the path to the sqljdbc.jar file

This is the unedited MTKMain.bat file:

@echo off
java -classpath
".;antlr.jar;common.jar;mtk.jar;ifxjdbc.jar;ifxtools.jar;ifxlang.jar;if
xlsupp.jar;jt400.jar;jlpex11.jar;help.jar;jhall.jar;xmistore.jar;cwm.ja
r;orainfxtUDFs.jar;%CLASSPATH%" com.ibm.mtk.MTKMain %1 %2 %3 %4

This is the edited MTKMain.bat file with the path to the sqljdbc.jar
file included:

@echo off
java -classpath
".;antlr.jar;common.jar;mtk.jar;ifxjdbc.jar;ifxtools.jar;ifxlang.jar;if
xlsupp.jar;jt400.jar;jlpex11.jar;help.jar;jhall.jar;xmistore.jar;cwm.ja
r;orainfxtUDFs.jar;<PATH_TO_sqljdbc_JAR_FILE>\sqljdbc.jar;%CLASSPATH%"
com.ibm.mtk.MTKMain %1 %2 %3 %4

Sybase and Sybase SQL Anywhere data extraction
requirements
To extract data from a database in Sybase or Sybase SQL Anywhere, the
following are required:

� JConnect 5_2 or later must be installed and accessible through the system
$PATH and $CLASSPATH.

� Edit the MTKMain.bat (Windows) or MTKMain.sh (UNIX and Linux) file(s) to
add the path to either the jconn2.jar or the jconn3.jar files. Example 3-3
shows the MTKMain.bat file before, and after, the necessary adjustments
have been made.

Example 3-3 Editing the MTKMain.bat file to include the required path

This is the unedited MTKMain.bat file:

@echo off
java -classpath
".;antlr.jar;common.jar;mtk.jar;ifxjdbc.jar;ifxtools.jar;ifxlang.jar;if
xlsupp.jar;jt400.jar;jlpex11.jar;help.jar;jhall.jar;xmistore.jar;cwm.ja
r;orainfxtUDFs.jar;%CLASSPATH%" com.ibm.mtk.MTKMain %1 %2 %3 %4
80 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

This is the edited MTKMain.bat file with the path to the sqljdbc.jar
file included:

@echo off
java -classpath
".;antlr.jar;common.jar;mtk.jar;ifxjdbc.jar;ifxtools.jar;ifxlang.jar;if
xlsupp.jar;jt400.jar;jlpex11.jar;help.jar;jhall.jar;xmistore.jar;cwm.ja
r;orainfxtUDFs.jar;<PATH_TO_jconn2_or_jconn3_JAR_FILE>\jconnX.jar;%CLAS
SPATH%" com.ibm.mtk.MTKMain %1 %2 %3 %4

3.2.5 Where to install MTK

MTK can be installed on the source database server, target database server, or
at a client on which connectivity to both source and target database server has
been established. Deciding where to install MTK depends on the data to be
migrated.

MTK places the extracted data on the server where the MTK is installed. Hence,
there is a performance advantage to installing MTK where the target database
resides, since it is faster to load data locally than across a network. Also, DB2
requires that LOB data files reside on the local machine. MTK, therefore, cannot
load data into LOB columns unless MTK is running on the target database
server.

For example, if the Oracle database is located on an AIX system and the DB2
target will be deployed onto a Linux system, and there is no data to be migrated
to LOB columns, MTK should be installed on the local AIX system.

3.3 MTK installation
MTK installation is simple and requires minimum preparation. This section
provides MTK installation procedures and the preparation tasks for Windows and
UNIX and Linux platforms.

Important: The client code does not support the Sybase LC_ALL system
variable. If the variable has been defined, remove it before running the Sybase
client.
 Chapter 3. MTK 81

3.3.1 Windows installation
To install MTK on Windows:

1. Ensure that you have the necessary hardware and software requirements, as
outlined in the sections “MTK hardware requirements” and “MTK software
requirements”.

2. Download MTK from the MTK Download page into any directory.

3. Unzip and extract the package contents.

4. Run the InstallShield wizard and follow the instructions.

– The installation will default to the C:\MTK directory.

5. Add the path for the JRE to the MTKMain.bat file, as follows:

a. Go to the directory where MTK is installed.

b. Open the MTKMain.bat file.

c. Add PATH=\bin;%PATH.

6. To launch the MTK, select:

Start → Programs → IBM Migration Toolkit 1.4.0 → Toolkit

3.3.2 UNIX and Linux Installation

To install MTK on UNIX and Linux platforms:

1. Ensure that you have the necessary hardware and software requirements, as
outlined in the sections “MTK hardware requirements” and “MTK software
requirements”.

2. Log in with the user ID under which MTK will be installed.

3. Download or copy MTK into a newly created directory.

4. Use a standard tar utility to untar and extract Mtk.tar.gz files. Execute the
following command to unpack this file into the current MTK directory or
directories specified:

tar -xzf mtk.tar.gz

5. Verify Java access and that Java is, at least, at level 1.4.2 or greater. Execute
the following from the shell to verify the installed version:

java -version

Important: Do not install MTK as root. Install MTK with a user ID that has
authority in the db2admin group.
82 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

6. Verify that the DB2 $INSTHOME environment variable is set to your DB2
instance directory and that it is properly exported when you start a new
environment. For example, in the Korn shell type this command:

echo $INSTHOME

The result should be equivalent to:

/home/db2inst1

7. Launch the MTK from the directory in which it was installed by typing:

MTKMain.sh

or

./MTKMain

3.3.3 Verifying the environment for creating MTK Java UDFs

During the Deploy to Target stage of a conversion, MTK creates Java and SQL
user-defined functions (UDFs). In order to ensure a successful conversion, it is
highly recommended that the ability to create and execute a Java UDF—outside
of MTK—be tested in the target environment. Before attempting to build and
execute a Java UDF, refer to the following IBM Redbooks publications for
instructions on setting up the application development environment and building
Java routines:

� Getting Started with Database Application Development, SC10-4252
� Developing Java Applications, SC10-4233

The process of building and executing DB2 Java UDFs, outside of MTK, is
demonstrated in the following steps. Example 3-4 contains the source code for
the process.

1. Compile the Java modules TestUdf.java (Example 3-4) and TestUdfCli.java
(Example 3-5) by executing the following commands:

> javac TestUdf.java

Note: MTK uses the Korn shell for deployment. If your environment has the
Korn shell installed in an unusual place, make a symbolic link to it from
/usr/bin/ksh, which is where MTK expects it to be located as follows:

ln -s `which ksh` /usr/bin/ksh

Important: Do not attempt to install and run MTK in a shared environment (for
example, /usr/local/mtk). If multiple users will run MTK on the same system,
they should install and run their own copies, using projects and files local to
their home directory. Sharing projects and logs can result in conflicts and
overwritten files.
 Chapter 3. MTK 83

> javac TestUdfCli.java

Example 3-4 Source code for TestUdf.java

// Source code for TestUdf.java
import COM.ibm.db2.app.*;
import COM.ibm.db2.jdbc.app.*;

///////
// Java user-defined functions are in this class
///////
class TestUdf extends UDF
{
 // Find-the-vowel vowel example.
 // Return position of first vowel, or signal SQL error.
 public void findvwl (String a, int result) throws Exception
 {
 for (int i = 0; i < a.length (); i++)
 {
 char x = a.charAt (i);
 char y = Character.toUpperCase (x);
 if (y == 'A' || y == 'E' || y == 'I' ||
 y == 'O' || y == 'U' || y == 'Y')
 {
 set (2, i + 1);// SQL indexing begins at 1
 return;
 }
 }

 // return failure message
 setSQLstate ("38700");
 setSQLmessage ("findvwl: No Vowel");
 }

} // end of source for TestUdf.java

Example 3-5 Source code for TestUdfCli.java

// Source code for TestUdfCli.java

import COM.ibm.db2.jdbc.app.*;
import java.sql.*;

public class TestUdfCli {
 static boolean testDL = false;
84 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 public static void main (String argv[]) {
 Connection con = null;
 // URL is jdbc:db2:dbname
 // ** EDIT dbname to YOUR Database Name if you are NOT connecting

// the SAMPLE database.
 String url = "jdbc:db2:sample";

 try {
 System.out.println ("Java User-defined Function Sample");

 // Load DB2 JDBC application driver
 Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();

 // Connect to database
 if (argv.length == 0) {
 // connect with default id/password
 con = DriverManager.getConnection(url);
 }
 else if (argv.length == 2) {
 String userid = argv[0];
 String passwd = argv[1];
 // connect with user-provided username and password
 con = DriverManager.getConnection(url, userid, passwd);
 }
 else {
 System.out.println("\nUsage: java TestUdfCli [username
password]\n");
 System.exit(0);
 }

 System.out.println ("Connected to the database");

 // Execute DECLARE FUNCTION calls to register Java UDFs
 System.out.println ("Declaring the Java UDFs");
 declareUDFs (con, false);// use NOT FENCED mode

 }
 catch (Throwable x)
 {
 try { con.close (); } catch (Throwable y) {}
 System.err.println ("Aborted due to exception.");
 x.printStackTrace ();
 }
 }
 Chapter 3. MTK 85

 // Run DECLARE FUNCTION to register JAVA UDFs
 static void
 declareUDFs (Connection con,
 boolean fenced) throws Exception
 {
 declareUDF (con, "findvwl", "varchar(500)", "int",

fenced, false, "TestUdf!findvwl");

 }

 // Build and run just one CREATE FUNCTION statement.
 static void
 declareUDF (Connection con,
 String name,
 String argumentTypes,
 String returnType,
 boolean fenced,
 boolean scratchpad,
 String externalName) throws Exception
 {
 Statement s = con.createStatement ();
 String sqlClean = "drop function " + name;
 try { s.executeUpdate (sqlClean); } catch (SQLException x) { }
 String sql = "create function " + name +
 " (" + argumentTypes + ") " +
 " returns " + returnType +
 (fenced ? " fenced" : " not fenced") +
 (scratchpad ? " scratchpad" : "") +
 " variant no sql no external action " +
 " language java parameter style db2general " +
 " final call disallow parallel dbinfo " +
 " external name '" + externalName + "'";
 s.executeUpdate (sql);
 System.out.println ("Registered Java UDF " + name);
 System.out.println(sql);
 s.close ();
 }

 } //End of source code for TestUdfCli.java
86 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

2. Execute the following command:

> java TestUdfCli

This will connect to the SAMPLE database and register the UDF. If the
connection string designates a database other than SAMPLE, then the UDF will
be registered to that database.

3. Move the TestUdf.class that is created by a successful compile to the
SQLLIB/function directory.

4. Execute the following to connect to the database:

> db2 connect to Sample

(or your database)

5. When the UDF is executed with the following command, the results following
it should be seen:

> db2 "values findvwl('qwerty')”
1

 3

 1 record(s) selected.
 Chapter 3. MTK 87

88 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 4. Porting with MTK

In this chapter we discuss and demonstrate the conversion of database objects
and the extraction and loading of data into a DB2 database using the IBM
Migration Toolkit (MTK).

The following items are discussed:

� Preparation for porting
� Running MTK
� Extracting or importing metadata into MTK
� The Convert task
� The Refine task
� The Generate Data Transfer Scripts task
� Deploy to Target considerations
� Next steps
� Converting the remaining objects
� Deployment of stored procedures, functions, packages, and triggers
� MTK conversion conclusion

4

© Copyright IBM Corp. 2003, 2007. All rights reserved. 89

4.1 Preparation for porting
Before beginning a conversion using MTK, the DB2 target environment must be
prepared. This section outlines some documentation that is useful in determining
prerequisites and requirements that should be in place for the operating system
and the database—before installing MTK.

4.2 Overview of available documentation

Regardless of the platform on which DB2 9 will be installed, it is imperative that
hardware and software requirements be considered, and satisfied, before
beginning the installation. The following list is an overview of topics that should
be investigated and prepared before the installation of DB2:

� Database installation
� Instance and database creation
� Table space planning
� Security consideration
� Creating DB2 database users

For detailed information about these and other relevant topics, consult the
following documents:

� Getting started with DB2 installation and administration on Linux and
Windows, GC10-4247.

� Quick Beginnings for DB2 Servers; GC10-4246

� Quick Beginnings for DB2 Clients; GC10-4242

Multiple partition installation
The DB2 9 manual Quick Beginnings for DB2 Servers, GC10-4246 contains the
procedures for setting up multi-partitioned databases. The following IBM
Redbooks also provide detailed information on installing and configuring DB2
multi-partitioned databases:

� Scaling DB2 UDB on Windows Server 2003, SG24-7019
� Up and Running with DB2 for Linux, SG24-6899

Important: For the most recent information on software requirements, refer
to:

http://www.ibm.com/software/data/db2/udb/sysreqs.html
90 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/udb/sysreqs.htm

4.3 Running MTK
MTK is an efficient and time-saving tool for porting database objects and loading
data from Oracle to DB2. In the following sections we demonstrate the
step-by-step use of MTK in such a conversion.

4.3.1 Migration details
This section describes the lab environment and database structure used for the
MTK conversion example.

Environment
Prior to elaborating on the details of the sample conversion from Oracle 10g to
DB2 9 using MTK V1.4.9, here is some information about the source and target
environments in our laboratory:

� Oracle source operating system:
AIX 5L for POWER™, Version 5.3

� MTK source O/S:
AIX 5L for POWER, Version 5.3

� MTK version:
1.4.9.0

� DB2 target O/S:
Linux - Red Hat Enterprise Linux AS release 4 (Nahant Update 4); Kernel
2.6.9-42ELsmp

� Oracle Version:
10.2.0.1.0 64 bit

� DB2:
Version 9 Fixpack 1; 32 bit

MTK is installed on the Linux platform because that is where the DB2 target
database will reside. Based on our experience it is most effective to install the
tool on the operating system where the target system resides. The primary reason
for this is due to concerns about loading data. If the data to be loaded already
resides on the local file system, the concerns of loading data across a network
(bandwidth, network traffic, etc.) go away.

Oracle source database
The Oracle source database consists of the following types and numbers of
objects:

� Eleven tables
� Two views
 Chapter 4. Porting with MTK 91

� Five indexes
� Six foreign keys
� Four functions
� Five stored procedures
� Two packages
� One package body
� Seven triggers
� Two sequences

Appendix F, “Example Oracle database” on page 683 lists the definition of these
objects. You can also download the code from the IBM Redbook Web site
documented there.

4.3.2 Creating and opening an MTK project
When starting MTK, the Project management panel opens asking you to enter
required and optional information for a new project, or to open a previously
created object. When creating a new project the following information can be
entered:

� Project Name - Required. If a project name is not entered, it will default to
Unknown. When a project is created with the Project Name designated here,
a subdirectory with the same name is created on the operating system under
the install directory of MTK. For this reason, the Project Name has to conform
to the operating system naming standards that MTK is installed on.

� Source database - Required. Choices include Sybase Enterprise, Microsoft
SQL Server, Oracle, Informix Dynamic Server, and Sybase SQL Anywhere.

� IBM target database - Required. Choices are DB2 9 for Linux, UNIX, and
Windows; DB2 UDB V8.2 for Linux, UNIX, and Windows; DB2 UDB V8.1 for
Linux, UNIX, and Windows; DB2 UDB i5/OS V5R4; DB2 UDB i5/OS V5R3;
DB2 UDB iSeries® v5R2; DB2 V8 for z-series; and Informix Dynamic Server
10.

� Project description - Optional.

Figure 4-1 shows the Project management screen after the information for the
sample Oracle migration project has been entered.
92 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-1 MTK Project management screen

4.4 Extracting or importing metadata into MTK
Once the project is created, the Specify Source window opens. During this task
the following is accomplished:

� The method of obtaining the metadata (DDL) is designated.
� The DDL is obtained.

Figure 4-2 on page 94 shows the Specify Source tab. Take note of the Import
and Export buttons on the left side of the panel.

� Import
If a metadata file already exists—for example, a script from SQL*Plus, or a
 Chapter 4. Porting with MTK 93

third-party tool—no data movement by MTK is required. In this case Import
should be selected. Selecting this option permits single or multiple DDL files
from your file system to be selected and imported into MTK as the conversion
source.

Figure 4-2 The Specify Source tab

Note: When importing objects for conversion, be aware that some objects
will not convert unless all of the objects on which it depends are also
available within the project. For example, when importing the source for an
individual procedure, you must take care that all of the underlying
definitions for tables, views, and so on, that are referenced within that
procedure are also included.

Also, make sure that the definitions for all dependent objects precede the
objects that rely on them. For example, definitions for tables that are
referenced in stored procedures must precede the definition of the stored
procedure itself.
94 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Extract
For our sample conversion, we choose Extract. Choosing this option
signifies:

– That a client connection to the Oracle source system will be made.
– The Oracle metadata (DDL) will be extracted using this connection.

The extraction is accomplished by “reading” the system catalogs and then
creating a file that will be imported into the tool.

After Extract is chosen, the Connect to Database screen opens. The following
information must be entered:

� Service Name - The service name for the local/remote Oracle database
� User ID - The user ID for the schema that owns the Oracle source
� Password - The password for the schema that owns the Oracle source

Figure 4-3 shows the Connect to Database screen completed for the service
name ora10g, the user ID ora_usr, and the corresponding password for the
ora_usr schema.

Note1: The Oracle source system to which MTK connects can either be on a
local or a remote server. For a valid connection, it is required that the Oracle
Client be installed and configured in the CLASSPATH on the local machine.
On Windows systems ODBC drivers may be used.

Note2: MTK will store the files from the extracted DDL, converted DDL, in a
subdirectory of the MTK installation directory. The structure is:

MTK Installation directory

Project directory

YOUR_PROJECT_NAME directory
DDL files
 Chapter 4. Porting with MTK 95

Figure 4-3 Detail of the Connect to Database screen

4.4.1 Choosing objects to extract
After a successful connection to the database, the Extract screen is displayed.
This screen shows schemas and objects that are available to be extracted from
that schema. Once a schema is chosen, the available objects expand to show six
categories of objects (Figure 4-4). The categories are displayed even if the
current database does not contain any objects of that category. The categories
are:

� Sequences
� Tables
� Views
� Procedures/functions
� Triggers
� Packages
96 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-4 The Extract screen showing the objects that are available from the ORA_USR
schema.

Once a category is selected, choosing the plus sign (+) expands the category to
show the individual objects that exist for that category. It is now possible to make
selections of various objects to be extracted from each category. For example, it
is possible to choose any of the following combinations for extraction:

� Individual objects from a single category (a single table, view, sequence, etc.)

� Individual objects from multiple categories (a table, a view, a sequence, etc.)

� All objects from single categories (all tables, all views, all sequences, etc.)

� All objects from multiple categories (all tables and all views, all sequences
and all triggers, etc.)

� All objects from all categories (the entire database schema)

Figure 4-5 shows the Extract screen after multiple categories (tables, views, and
sequences) have been selected.
 Chapter 4. Porting with MTK 97

Figure 4-5 The Extract screen with tables, views, and sequences selected

Figure 4-6 on page 99 shows the Extract screen with the ORA_USR schema
selected. In this example the categories have been expanded to show individual
objects that have been selected.
98 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-6 The Extract screen with tables, views, and sequences selected

4.4.2 Import or extract strategies
As previously stated, it is possible to choose one single object or the entire
database for extraction. Although it may seem initially attractive to choose the
entire database, we recommend that the extraction strategy be dictated by the
size of the source database.

Note: When extracting objects for conversion, be aware that some objects
will not convert correctly (or at all) unless all depending objects are also
extracted. For example, when selecting an individual procedure for
conversion, all of the underlying definitions for tables that are referenced by
that procedure must also be extracted. This process will be done
automatically if, under the Include other needed objects? section of the
Extract screen, either in main file (full) or in context file (minimum) is
selected (refer to Figure 4-6 highlighted in the red box). When either of
these options is chosen, MTK will automatically include all the relevant
definitions to correctly convert the selected objects. Also, MTK will extract
the objects in correct dependent order.
 Chapter 4. Porting with MTK 99

Some aspects of database sizing in regard to MTK should be briefly mentioned
here. The accurate sizing of a database, from a migration point of view, should
entail a thorough analysis on several different levels. This investigation should
include information such as: the number of lines of code; the complexity of the
code; the conformance or non-conformance of the code to ANSI standards; the
number of objects; and the types of objects—just to name a few.

One of the best uses of MTK is as an aid in doing this type of analysis. MTK can
be used to find, in detail, much of the information that is required to successfully
analyze the database.

With that said, a general and simplistic approach to sizing the database may be
used in the initial stages of analysis. In this early stage, for example, there might
be little, or no, information about complexity or conformance to ANSI standards.
In order to gather that information we would have to develop some guidelines for
beginning the analysis. The guidelines at this stage are usually along these lines:

� Large database

More than 200 stored procedures and functions (stand-alone or in Oracle
Packages), and triggers.

� Small database

Less than 200 stored procedures and functions (stand-alone or in Oracle
Packages), and triggers.

Large databases
For large databases, the extraction strategy should focus on creating separate
files for each individual category. For example, a separate extraction file should
be created for all tables, sequences, views, triggers, procedures, packages, and
functions. This strategy facilitates “tracking down,” analyzing, and perhaps
“fixing” possible issues that may arise in the conversion of a particular object
category. This is usually easier than trying to understand several complex issues
that may arise across a spectrum of interrelated categories.

Small databases
For smaller databases, it is recommended that the extraction files be grouped
according to dependencies and dependents. For example, one file may consist of
all tables, views, and sequences; and another file of procedures, functions,
packages, and triggers. In this strategy, the first file will allow the objects on
which the second file depends to be created and analyzed before converting the
second file. In this way, we are also able to contain the messages and the
interrelated issues that may occur.
100 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Sample conversion
Considering the size of our sample database, we adhere to the recommendation
for small databases. For our extraction, the first file contains all tables, views,
and sequences; a second file contains all procedures, functions, packages, and
triggers.

For the first file, all objects in the categories Tables, Views, and Sequences are
selected. For File name, we chose and entered tables_views_seqs (Figure 4-6
on page 99).

Once this is completed, Extract is clicked, and the metadata extraction begins.

After the first file is created, we repeat the process, this time selecting all
procedures, functions, packages, and triggers. For this file we choose and enter
the name procs_pkgs_trigs (Figure 4-7).

Figure 4-7 Selecting the Procedures, Packages, and Trigger objects for extraction

Note: MTK will add the suffix .src to the File name entered on the Extract
screen. In our example, for example, MTK generates tables_views_seqs.src
for the file name tables_views_seqs that was entered.
 Chapter 4. Porting with MTK 101

4.4.3 Viewing extracted files
Once the extraction has completed, the Extract screen closes and Specify
Source tab remains, as shown in Figure 4-8. Note that on the right side of the
panel the files that were created during the extraction of tables_views_seqs.src
and procs_pkgs_trgs.src are now visible.

Figure 4-8 The Specify Source tab after all the metadata files have been extracted.

The extracted files can be examined by highlighting the file name and then
clicking View (located on the lower right side of the panel). In our example, when
tabs_views_seqs.src is selected and then viewed, we see the screen displayed
in Figure 4-9 on page 103.
102 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-9 Viewing extracted files in the Text Editor

You can edit and save this file when it is viewed from this panel. This is
sometimes useful for making changes to source code before it is to be converted.

The file was imported. The edited file is a copy in the project directory, and the
original file will neither be changed nor damaged, and it can be reimported in
case of user errors during editing.

You can specify a preset or external editor by selecting Applications → User
Preferences on the MTK menu bar, as shown in Figure 4-10.

Figure 4-10 Selecting User Preferences on the MTK menu bar
 Chapter 4. Porting with MTK 103

4.5 The Convert task

Once the extraction files have been created we proceed to the next task,
Convert. On the Convert tab there are a few requirements that need to be
completed:

1. Select the files in the left-hand pane to be converted.

2. Enter a prefix for the generated files (that is, a name for the file that will be
generated from the conversion).

3. Select Convert to begin the conversion.

For our example we have retained the name of the source file
(tables_views_seqs) as the prefix for generated files; as a result, the full name of
the conversion file will be tables_views_seqs.db2 as shown in Figure 4-11 on
page 104.

Figure 4-11 The Convert tab after the tables, views, and sequences have been converted
104 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

In addition to the required fields, there are several options that may be chosen
that will affect the content of the generated conversion file:

� Global Type Mapping
� Advanced Options
� Set Context

Global Type Mapping
If Global Type Mapping is selected, a screen opens (Figure 4-12) that allows
some of the default MTK data type mappings to be changed. Only fields that have
the “pad and pencil” icon are available to be edited. For example, the Date field
in Oracle is typically mapped to Timestamp in DB2; in this screen it is possible to
replace TIMESTAMP with DATE or TIME as the default mapping. It is important
to remember that whatever data type mappings are altered will be applied to all
objects in the entire project. It is not possible, from this screen, to set a different
data type for each individual object.

Figure 4-12 The Global Type Mapping screen
 Chapter 4. Porting with MTK 105

Advanced options
If Advanced Options is selected, a screen opens (Figure 4-13) that shows
several features that will affect the content of the generated conversion file. The
features are grouped into three categories:

� General converter options
� Converter options for tables, views, indexes
� Converter options for procedures, functions, triggers

Figure 4-13 The Advanced Options screen

Most of the options pertain to whether the converted code will contain the Oracle
source code, as comments, in the generated file. On this screen, the following
options are checked by default:

� Copy inter-statement source comments to the translated code.
� Copy source (as comments) to the translated code.
� Pad strings with spaces during comparisons.
� Copy full source for procedures before their translation.
� Copy source separately for statements in procedures.
106 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For our example, we retain all the defaults, but we also add the Translate
tablespaces to DB2 option. Choosing this option causes the converter to
include table space names that retain the names from the Oracle source code.
The create table space statements are also added at the beginning of the script
file. This is important for our sample porting project because we intend to deploy
the converted objects into a DB2 database that will contain tables, indexes, and
blob/clob data in table spaces that have been created using these names. In the
case where the table space mapping from Oracle to DB2 is different, the table
space reference can easily be modified.

Once the options have been entered, we do the following required steps:

1. Choose the file to be converted. For our example, we choose
tables_views_seqs.src.

2. Choose and enter a Prefix for generated files. For our example, we allow
it to default to the name of the currently selected file.

3. Click Convert.

The conversion process now begins. During the conversion, the message
Please wait…Converting files… is displayed along with the elapsed time.
Eventually the message will change to Please wait…Initializing Refine as
the conversion completes.

Set Context
The context of a conversion indicates the source files that MTK uses when it
executes a conversion. If Set Context is chosen, source DDL files that contain
other objects MTK needs for conversion are made available to MTK. Details of
this option are discussed in 4.10, “Converting the remaining objects” on
page 138.

4.6 The Refine task
Once the Conversion task has completed, the next task is executed using the
Refine tab (Figure 4-14 on page 109). The Refine tab is subdivided, on the lower

Note: Leaving the options as-is generates a conversion file that contains all of
the Oracle source code (as comments) along with the converted DB2 code.
When first using the tool, it is recommended to leave the defaults as-is. This
will allow examination and comparison between the Oracle source and the
DB2 target within the same file. Also, in many cases, the comparison serves
as an excellent teaching tool for those who may not be familiar with the syntax
of the DB2 SQL Procedure Language.
 Chapter 4. Porting with MTK 107

left side of the pane, into four separate subtabs titled Oracle, DB2, Report, and
Messages.

� Oracle
This tab displays all of the objects from Oracle source script.

� DB2
This tab displays all of the corresponding objects that have converted in DB2.

� Report
The Report view displays the message, sorted by database object. When you
click the Report tab, the right panel displays the messages, grouped by
message number, in decreasing order of importance. You can expand the
source file in a tree view to display objects that contain messages. Often the
same message will occur in many places. You can filter the messages that
appear in the tree by clicking Hide message in the tree for each message
you do not want to see. Click the button again to have the message reappear.

� Messages
The Messages view displays the messages, sorted by message category and
number. When you click the Messages tab, the right panel displays the
messages, grouped by message number in decreasing order of importance.
You can expand a message category in a tree view to display the list of
messages that occurred in the file.
108 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-14 The Refine tab

4.6.1 Message categories and migration impact
As previously stated, the Messages view displays the messages sorted by
message category. The message categories are:

� Input Script Error
� Translator Information
� Translator Warning
� Translator Error

Input Script Error
This message category occurs when the input script or set of objects to be
converted is incomplete. Most frequently, messages in this category occur when
an object is missing the definition for an object on which it depends, for example
a stored procedure, which refers to a table for which the definition is missing.
Sometimes an object definition does exist, but its use may require qualification
with a database or owner name. Other errors in this category include PL/SQL
syntax errors.
 Chapter 4. Porting with MTK 109

Migration impact - low
Since this type of message is easily understood and corrected (usually by
including the missing definition in the source file), the migration impact is low and
has little bearing on the final product or on the level-of-effort to achieve that
product.

This type of message occurs most frequently when files are taken into the tool
through IMPORT. As can be expected, it is more likely that due to human error,
an incomplete DDL may be gathered as the conversion source.

Translator information
This category occurs when a correct DB2 translation exists, but when more
information is necessary to describe some unusual or exceptional property of the
translation. For example, messages in this category are used to highlight the fact
that the name of a PL/SQL object or identifier has been changed to satisfy the
DB2 restrictions on identifier formation (such a change might be relevant to client
programs that refer to the object by name).

Migration impact - low/medium
This type of message should be examined to understand the scope of the
message. If the message indicates that an object name has been changed to
conform to a DB2 specification, this may have little or no impact on the migration
effort. If, however, the changes generated by the converter require alterations to
the client code, the effort may be more extensive.

Translator Warning
This category occurs when the translation of the PL/SQL code to which the
message refers might be incomplete or incorrect in certain unusual or
exceptional cases. The message typically describes the circumstances in which
the translation will not be correct.

Migration impact - medium
This type of message needs to be examined to determine if the circumstances
described are relevant to your application. If so, manual intervention may be
required to successfully convert and deploy the object.

Translator Error
This category is used for PL/SQL statements for which no translation is possible.
Most frequently, this message category is used when no equivalent DB2
functionality exists. It is also used in cases where a correct translation requires
application-specific information. It also occurs for certain complex or rarely used
constructs.
110 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Migration impact - high
This type of error usually indicates that some degree of manual intervention will
most likely be required. It is important that the analyst review the code to
understand for which objects, and to what degree, the manual intervention will be
necessary.

4.6.2 The Messages sub-tab
The Messages sub-tab, Figure 4-15 on page 112, is divided into left- and
right-hand panes. From these panes it is possible to perform the following
actions:

� View Translator Messages by message number

� View the corresponding location in the Oracle source code to which a
message pertains

� View the corresponding location in the DB2 converted code to which a
message pertains

� Obtain additional information regarding a particular message

� Search the source or converted code for a word or phrase

� Go to a specified line number in the source or converted code
 Chapter 4. Porting with MTK 111

Figure 4-15 The Messages sub-tab

View Translator Messages by message number
Figure 4-15 shows the Messages tab for our example. In this example, the
messages are grouped into two categories:

� Translator Warning
� Translator Information

For each category we can drill down to a specific instance of a particular
message. To accomplish this, follow these steps:

1. Expand the category.
2. Expand the message number.
3. Expand the message description.
112 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

View the source or converted code
Once the message description is expanded, highlighting a specific instance of a
particular message will open the right-hand pane to the corresponding line in the
Oracle source code to which the message refers. In our example (Figure 4-15 on
page 112), when highlighting the object pertaining to message number 20 in the
left-hand pane, the right-hand pane opens to the relevant line in the Oracle
source code (line #155) to which the message pertains.

It is possible to toggle from the Oracle source code to the converted DB2 code by
choosing the tabs:

� Source file: <your_source_file_name.src> tab to examine the Oracle source
code

� Target file: <your_conversion_file_name.db2> tab to examine the DB2
converted code

The following example (Figure 4-16) shows the view of the converted DB2 file
when the Target file: tables_views_seqs.db2 tab is selected.
 Chapter 4. Porting with MTK 113

Figure 4-16 Viewing the converted DB2 code that pertains to message 20

Additional message information
If Message Help in the upper right-hand corner of the Message sub-tab is
clicked, a screen containing additional context-sensitive information about the
message number in question will open. In our example, the Message Help
screen shows additional information regarding message 20. See Figure 4-17.
114 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-17 Message Help screen displayed for message 20

4.6.3 Translator Messages
The following section contains information regarding the messages that were
generated for each category during our example migration. In our example, we
received messages in the following categories:

� Translator Warning
� Translator Information

Translator Warning messages
The following Translator Warning messages occurred:

Msg number 20: object name has been changed to <new name>
Msg number 59: Input ignored, not translated.
Msg number 105: CREATE TABLESPACE generated with minimal default
parameters

� Message number 20

There are four occurrences of message 20 in this category. The message
descriptions state:

Object name has been changed to M_DEPT_CODE_ACCT_1
Object name has been changed to EMP_RESUME_UK11051
Object name has been changed to EMP_PHOTO_PK110581
Object name has been changed to ACCOUNTS_DEPT_COD1
 Chapter 4. Porting with MTK 115

Message Help indicates:

Object names that are too long for DB2 are truncated. Names that are
reserved words in the target server are enclosed in double quotes. Names
that conflict with other names in the target server (because the name is
already in use) are renamed.

After examining the source code, it is found that the names for the
corresponding objects in Oracle, all of which are constraints, were:

M_DEPT_CODE_ACCT_ID
EMP_RESUME_UK11058551798461
EMP_PHOTO_PK11058611148823
ACCOUNTS_DEPT_CODE_ACCT_ID

For these objects, MTK truncated the constraint names to conform to the DB2
limit of 18 characters for constraints.

� Message number 59

There are five occurrences of message 34 in this category. The message
description states:

Msg number 59: Input ignored - not translated

Message Help indicates:

This input is ignored, since it is not supported in the target server. This
omission should not cause the target server code to produce different
results from the corresponding Oracle code.

The Oracle source indicates that the following statements contain references
for creation in particular table spaces:

ALTER TABLE ACCOUNTS ADD CONSTRAINT
CREATE INDEX IND_DEPT_NAME
ALTER TABLE EMPLOYEES ADD CONSTRAINT
CREATE INDEX IND_LOG_CODE
CREATE INDEX IND_OFFICE_BLD

 Specifying table spaces for index and constraint creation, outside of the
create table statement is not allowed in DB2. As indicated by the converter
message, however:

This input is ignored, since it is not supported in the target server. This
omission should not cause the target server to produce different results
from the corresponding Oracle code

� Message number 105

There is one occurrence of message 105 in this category. The message
description states:

Msg number 105: CREATE TABLESPACE generated with a minimal default
parameters.
116 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Message Help indicates:

The “TABLESPACE” option of the translator is turned on. For each TABLESPACE
clause found, a “CREATE TABLESPACE” statement is generated at the beginning
of the output file. This warning indicates that minimal default parameters
have been used and, therefore, you must change or enhance these, depending
on the physical properties that are required.

The converted DB2 source code shows the handling of the CREATE
TABLESPACE command:

CREATE REGULAR TABLESPACE USER_DATA_TBS
MANAGED BY SYSTEM
USING ('USER_DATA_TBS')!

Translator Information messages
In the Translator Information category the following messages occurred:

Message number 0
Message number 34
Message number 108

� Message number 0:

There is one occurrence of this message in this category. The message
description states:

Msg 0: MTK Oracle Converter. Version: <mtk version>

Message Help indicates:

Specifies the version of the Oracle converter.

This is a General Message displaying the MTK Oracle converter version.

� Message number 34

There is one occurrence of message 34 in this category. The message
description states:

No translation available, but statement has been taken into account

Message Help indicates:

There is no DB2 translation available, but the converter will use the
information in the statement in translating the statements that follow.

The Oracle source indicates that the message refers to the connection
statement:

CONNECT ORA_USR;

The conversion indicates that although the connection statement is not
expressly converted, the implications of the connection statement will be
handled by DB2.
 Chapter 4. Porting with MTK 117

� Message number 108:

There is one occurrence of this message in this category. The message
description states:

Translation Ratio: % (statements were translated successfully)

Message Help indicates:

This provides an assessment of the provided translation by giving the ratio
of Oracle statements translated without producing any error message out of
the total number of statements. This number is provides a general
indication regarding the success of the automated translation and does not
intend to give an exact and accurate measure.

Statement here designates Oracle SQL and PL/SQL statements. For instance,
in a CREATE PROCEDURE, the whole SQL statement is counted as 1 (one) and
each PL/SQL statement inside the body of the procedure is also counted as
one.

This is a General Message displaying a ratio of Oracle statements translated
without producing an error message. In the example the ratio is 100%.

Sub-tabs on the Refine tab
When examining messages on the Refine tab it is possible to switch to any of
four sub-tabs (located in the lower left of the Refine screen (Figure 4-18 on
page 118). In our example the sub-tabs are:

� Messages
� Report
� DB2
� Oracle

Figure 4-18 Sub-tabs on the Refine tab

The sub-tabs enable the information to be viewed and grouped in several
different ways. For example, when viewing the information in the Messages
sub-tab, the information is grouped by message type; changing to the Report
sub-tab enables examination of the same information grouped by object type.
Selecting the Oracle sub-tab permits the source code for a particular object to be
viewed or edited. Choosing the DB2 sub-tab allows the converted DB2 source to
be viewed. A particular object can be viewed through all these perspectives by
selecting it on any sub-tab and then changing to another sub-tab.
118 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

4.6.4 Refining the metadata conversion
In addition to viewing the results of the conversion, the Refine step affords the
opportunity to make changes in the source code. It is possible, for example, to
change table, column, stored procedure, or function names or make changes to
any DDL. To apply any changes made during the refine process, however, you
must return to the Convert step to apply these changes. After reconverting, the
converter merges the refinement changes with the original extracted source to
produce updated target DB2 code. The original source code is not changed. This
convert-refine process may be repeated until the results are satisfactory.

If issues still remain after the refine-convert process, consider the following: First,
see if any further changes can be made to the source metadata. If this approach
does not achieve the desired results, it is also possible to alter the converted DB2
code.

Before making any DB2 changes, prepare a backup copy of the .db2 file you
intend to change, and rename the backup. We recommend that you make your
changes to DB2 after leaving the Refine step. Do not return to the Convert step
after making any manual DB2 SQL changes. Conversion of the source metadata
replaces the existing DB2 file, destroying any manual changes.

Once the DB2 source has been successfully generated, it is possible to proceed
to either the Generate Data Transfer Scripts tab to prepare the scripts for data
transfer, or to the Deploy to DB2 tab to deploy the DB2 metadata to the target
server.

Making changes to the DB2 source
In our example, we made a change to the definition of the Employees table by
altering the DB2 target code. This alteration involves changing the EMP_ID
column to an IDENTITY column. Here is our reasoning:

In the Oracle source the EMP_ID column is defined as INTEGER NOT NULL; the
values for this column are automatically generated by a sequence
(Employee_Sequence) that is activated by a trigger, CreateEmployeeID. We
intend to replace this functionality by creating the EMP_ID column as an
IDENTITY column; this will allow the table to automatically generate values for
the EMP_ID without the need for a sequence or a trigger.

Important: If you choose to go directly from the Refine tab to the Deploy tab,
skipping the Generate Data Transfer Scripts, then moving data—online or
offline—will not be an option.
 Chapter 4. Porting with MTK 119

Identity columns
Here is some information on IDENTITY columns from the Application
Development Guide: Building and Running Applications V8, SC09-4825:

� Rather than using cumbersome insert and update triggers, DB2 enables you
to include generated columns in your tables using the GENERATED
ALWAYS AS clause. Generated columns provide automatically updated
values derived from an SQL expression.

� DB2 application developers often need to create a primary key for every row
in a table. If you create a table that uses an identity column for the primary
key, DB2 automatically inserts a unique value. When you use identity
columns, your applications can benefit from increased performance due to a
reduction in lock contention.

Identity column considerations
Since the Employees table will be loaded with data that includes EMP_ID values
that were already generated by an Oracle sequence, we need to take care to:

� Preserve the original values of EMP_ID currently in the Employees table.

� Preserve the increment of the original sequence.

� Generate new values that will not conflict with the current values in the
column.

Identity Column syntax
Here is a brief explanation of the syntax for creating an IDENTITY column.
Syntax:

GENERATED BY DEFAULT START WITH numeric-constant, INCREMENT BY
numeric-constant

Where:

� GENERATED BY DEFAULT
Indicates that DB2 will generate a value for the column when a row is inserted
into the table, or updated, specifying DEFAULT for the column, unless an
explicit value is specified. BY DEFAULT is the recommended value when
using data propagation or doing unload or reload.

� START WITH numeric-constant
Specifies the first value for the identity column.

� INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column.

The Oracle definition of the EMP_ID column in the Employees table is as follows:

CREATE TABLE EMPLOYEES (EMP_ID INTEGER NOT NULL, …
120 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Here is the column definition we will create for the DB2 target:

CREATE TABLE EMPLOYEES (EMP_ID INTEGER NOT NULL GENERATED BY DEFAULT AS
IDENTITY (START WITH ???, INCREMENT BY ???), …

To complete the column definition we need only:

� Supply a starting value that will be greater than the current maximum EMP_ID
value that is currently in the table. The best and easiest way of doing this is to:

– Execute Select MAX(EMP_ID) from Employees

– Retrieve the result and set the START WITH VALUE equal to that value
plus one. In our example the result of that process is 10011.

� Duplicate the increment value (increment by 1) from the Oracle
Employee_Sequence.

The completed definition for the EMP_ID column in the Employees table is:

CREATE TABLE EMPLOYEES (EMP_ID INTEGER NOT NULL GENERATED BY DEFAULT AS
IDENTITY (START WITH 10011, INCREMENT BY 1), …

Editing the DB2 target code
To edit the DB2 code, do the following:

1. Open the Convert tab

2. Select tabs_views_seqs.db2 in the right-hand pane

3. Click View Output File.

4. When the Text Editor opens (Figure 4-19 on page 122), enter the changes as
shown in Example 4-1.

Example 4-1 Editing the DB2 code to create an Identity column

CREATE TABLE EMPLOYEES(
EMP_ID INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (START WITH 10011,
INCREMENT BY 1,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(20),
 DEPARTMENT VARCHAR(30),
 CURRENT_PROJECTS SMALLINT,
 EMP_MGR_ID INTEGER,
 DEPT_CODE CHAR(3) NOT NULL,
 ACCT_ID SMALLINT NOT NULL,
 OFFICE_ID INTEGER,
 BAND CHAR(1)
)
IN USER_DATA_TBS!

5. Save the changes.
 Chapter 4. Porting with MTK 121

The edited definition will be used when the table is created in DB2 during the
Deployment phase of the conversion.

Figure 4-19 Viewing the EMPLOYEES table in the Text Editor

4.7 The Generate Data Transfer Scripts task
The next task in our conversion is the Generate Data Transfer Scripts tab. From
this tab it is possible to:

� Generate scripts to unload data from the Oracle database

� Generate scripts to Import or Load data into DB2

This tab is divided into three panes. When initially opened, the left pane shows all
the tables in the Oracle schema that are being converted; the right pane shows
the file that contains all of the converted DB2 code; the middle pane contains
options that may be specified when IMPORT or LOAD is selected (Figure 4-20
on page 123).
122 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-20 The Generate Data Transfer Scripts task

Choosing Data Import or Load
The choice of whether to IMPORT or LOAD data into DB2 is usually influenced
by the amount of data.

For small amounts of data, IMPORT is usually sufficient. This method inserts
data into a database table from an external file—one row at a time. During the
import of data, the table remains accessible to other applications. All applicable
constraints and triggers remain in effect, and are activated in the usual way as
rows are inserted.

For large amounts of data, LOAD is usually preferable. The LOAD utility
constructs page images containing many rows and inserts them into the
database one page at a time. It requires exclusive access to the table space
being loaded. During the loading of data, the table space that contains the table
is not accessible to other applications. Applicable constraints and triggers are
deactivated for the duration of the load. Applicable check constraints and foreign
key constraints are enforced at the end of the load process. The enforcement of
business rules that are implemented by triggers are not guaranteed after the
LOAD completes.
 Chapter 4. Porting with MTK 123

During LOAD and IMPORT, MTK disables the referential integrity. MTK deletes
the foreign keys before load and import, and recreates them after the process is
complete.

IMPORT or LOAD options
The following options are available for IMPORT or LOAD:

� MODE

– INSERT: IMPORT inserts new rows without affecting the existing content.

– REPLACE: IMPORT deletes all existing data and replaces it with the
imported data.

� File formats

– DEL: delimited ASCII format

DEL specifies that the data is represented in delimited text files. These
files contain streams of data values, ordered by row, and then by column.
Column delimiters separate the values (a comma is the default), and new
line characters separate the rows. Character strings are enclosed in string
delimiters (a double-quote is the default). NULL values are represented by
nothing between the column delimiters for a particular column.

If DEL is selected, some advanced options are automatically set by the
MTK:

• Character delimiter first: The character delimiter is given the highest
priority, so that a special character between two character delimiters
will be read as just another character.

• Column delimiter: Set to a comma (,).

• Character string delimiter: Set to a double quote (").

� ASC: non-delimited ASCII format

This format specifies that the data is represented in non-delimited text files,
which are characterized by columns of data in fixed positions. No delimiters
are needed. Nulls are identified by a table of null value indicators at the end of
a row.

If ASC is chosen, MTK sets the record length advanced option. Instead of
new line characters marking the end of each record, the length of the data is
used to set the number of characters read for each row.

Note: During extraction, MTK doubles any string delimiter found
within a string. This allows the use of any string delimiter without a
problem. There is no need to search the database for a character
never used in the data.
124 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Advanced IMPORT or LOAD options
Whether IMPORT or LOAD is chosen, clicking Advanced Options opens a
panel that displays additional options for data movement. Figure 4-21 on
page 125 shows the panel opened to the options available for LOAD. Take note
of the messages file parameter. It is recommended that this parameter be
completed, since the generated file may prove useful if it is necessary to “debug”
the execution of an IMPORT or LOAD. When this parameter is specified, MTK
writes the output of IMPORT and LOAD to the message file specified here.

Figure 4-21 Advanced Options screen for LOAD

4.7.1 Creating unload and load scripts
For our example we LOAD the data into DB2; all the defaults will be taken:

� MODE: insert
� File format: ASC non-delimited ASCII format
� Directory for data extraction: MTK default

Note: For complete information about IMPORT or LOAD options, refer to
DB2 version 9 Data Movement Utilities Guide and Reference,
SC10-4227.
 Chapter 4. Porting with MTK 125

On the Advanced Options screen the following is chosen:

� Advanced Options: the messages file parameter indicates that messages will
be written to /home/db2inst1/messages.txt.

Figure 4-22 shows a screen clip after Create Scripts is selected, and scripts
have been generated.

Figure 4-22 The Generate Data Transfer Scripts screen after script generated

4.7.2 Files generated by the Generate Data Transfer Script task
After Create Scripts is clicked on the Generate Data Transfer Scripts task, the
following files are created:

� DataMove_your_file_name_data.bat
� DataMove_your_file_name_data.sh

The files ending in _data.bat, or _data.sh contain statements to extract data
from the source database.

� DataMove_your_file_name.qry
The file ending in .qry contains examples of statements generated for
selecting and converting the data from the source database.
126 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� DataMove_your_file_name_db2.bat
� DataMove_your_file_name_db2.sh

The files ending in _db2.bat, or _db2.sh contain statements to execute the
load data into DB2.

� DataMove_your_file_name.bat
� DataMove_your_file_name.sh

The files ending in .bat, or .sh contain DB2 load scripts.

� DataMove_your_file_name_pipe.sh
This file may be used to load data through a pipe.

� your_file_name.db2
This file contains the script for the converted DB2 source code that will be
executed during the deployment.

For our example, the following scripts were created:

� DataMove_tabs_views_seqs_data.bat
� DataMove_ tabs_views_seqs _data.sh
� DataMove_ tabs_views_seqs.qry
� DataMove_ tabs_views_seqs _db2.bat
� DataMove_ tabs_views_seqs _db2.sh
� DataMove_ tabs_views_seqs.bat
� DataMove_ tabs_views_seqs.sh
� tabs_views_seqs.db2
� DataMove_ tabs_views_pipe.sh

4.8 Deploy to Target
From the Deploy to Target tab, it is possible for MTK to perform the following
actions:

� Create (or recreate) a local DB2 database
� Deploy the converted objects into a local or remote DB2 database
� Extract and store data from the source database

Note: In cases where there may not be enough resources available on one
machine, it is possible to convert and refine the metadata in one location, such
as your desktop workstation, and later go to the server system to migrate the
large amount of data. For these reasons, it is also possible to manually extract
the data from the source, and load/import the data into DB2 using the scripts
created in this task. Read the MTK documentation for more information on this
topic.
 Chapter 4. Porting with MTK 127

Figure 4-23 shows the Deploy to Target panel.

Figure 4-23 The MTK Deploy to Target task screen

Before executing a deployment, it is recommended that the subsequent sections
“Considerations” and “Deployment strategy” be read and understood.

4.8.1 Considerations
Before you start the DB2 deployment, consider the following:

� Database creation: Manual or MTK?
� Object deployment strategy
� Database access

MTK database creation
When deploying objects to a database that is remote to the system on which
MTK is running, be aware that creating a new database during deployment is not
an option. In this case, the database must first be created on the remote system
and then registered in the local catalog. Refer to the CATALOG DATABASE
command in the DB2 Command Reference, SC10-4226 for more information.
128 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

When deploying to a database that will be created by MTK on the server where
the toolkit is running (local), be aware of the following criteria:

� When MTK creates the database, a buffer pool with a page of size 32 KB and
three table spaces of the same size are created.

These provide enough space for the deployment of tables with any row
length. Before launching the database into production, do some performance
tuning and adjust the size of the bufferpool as necessary.

� When choosing MTK to create your database, only System Managed
Tablespaces (SMS) can be created. If your database design requires that
tables, indexes, or BLOB data be deployed into their own table spaces, then
you must use Database Managed Tablespaces (DMS). In this case, the
database should be created (either locally or remotely) before the objects are
deployed into it.

Deploying objects - extracting and deploying data
There are a few considerations for deploying objects and data depending on your
environment and requirements:

� When deploying to a local system, (Re)create must be selected unless you
want to add the objects and data to an already existing database.

� Converted objects and data can be deployed to DB2 at the same time or
separately. For example, you might want to deploy the DDL and load some
sample data to test your procedures during the day. Then, at night, when
network usage is low and the database has been tested, the remainder of the
data can be loaded.

� The database can be deployed to a local or a remote system. No
prerequisites exist for deploying the database locally. If you choose to deploy
to a remote system, you can:

– Specify that the IBM Migration Toolkit access the remote database
directly. See “Considerations for remote database access” on page 130.

– Copy the IBM Migration Toolkit and the project directory to the system
running DB2 and then deploy the database locally.

� If you are familiar with DB2 on operating systems other than Windows, the
batch files generated by MTK can be modified to accommodate deployments
on those systems. Ensure that the correct version of Java is installed on the
target system, copy the mtk.jar file and the batch files, and run the batch files.

� If there are many large objects (BLOBS, CLOBs), special consideration
should be taken. When LOBs are extracted, each individual LOB data type is
put into its own file. Tables with many LOBs can create thousands of external
files and supporting subdirectories for them. That means a file system can run
out of directory space long before running out of actual mount point space.
 Chapter 4. Porting with MTK 129

So, space planning for temporary data files during data movement of tables
with these large objects should be carefully considered.

� The Import and Load utilities use the memory area controlled by database
parameter util_heap_sz. Medium to large table processing could benefit from
an increase in memory space if it is available on your server.

Considerations for remote database access
If you need to access the database remotely during migration, consider the
following:

� Make sure that the data types of the data extracted from the source database
are consistent with the target DB2 database that is deployed in this step. Do
not attempt to load the data into a database created by other means.

� Ensure that you have not modified the conversion since the last time the data
was extracted. Data should be extracted and deployed only after all desired
changes have been made to the final conversion.

� Make certain that any data that is being deployed is first extracted to the file
system where the IBM Migration Toolkit is installed before it is loaded into
DB2. If the table contains millions of rows, ensure the filesystem can
accommodate the size of the largest object in the source database. On UNIX
file systems, you can modify the file size limit with the ulimit command.

� If you choose to deploy to a system that is remote to the system on which the
toolkit is running, then you cannot choose to create a new database during
deployment. The database must first be created on the remote system and
registered in the local catalog. See CATALOG DATABASE in the DB2
Command Reference, SC10-4226 for more information.

� Data cannot be loaded into LOB columns during remote deployment. The
LOBPATH parameter in the LOAD or IMPORT command must refer to a
directory on the DB2 server. You can load data into LOB columns by moving
the generated scripts to the target machine and running them on the desired
DB2 server (see Chapter 6, “Data conversion” on page 265).

� During deployment, the connection to DB2 uses a Java native driver, not
ODBC. If you encounter problems when connecting remotely (such as a “no
suitable SQL driver” error), ensure the following directory and files are in the
Java CLASSPATH:

– %DB2PATH%/java/db2java.zip;
– %DB2PATH%/java/runtime.zip;
– %DB2PATH%/java/sqlj.zip;
– %DB2PATH%/bin
130 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

4.8.2 Deployment strategy
The deployment information for the objects that were just converted is as follows:

� The target database has been created and resides on a local Linux server.

The database is designed with SMS table spaces. The tables will be stored in
a specified table space. The indexes and BLOB data will be stored in the table
space where the associated table is placed.

� The Oracle data will be extracted onto the LINUX machine where DB2 and
MTK are installed.

� All of the currently converted objects will be created on the target DB2
database.

� The Oracle data will be extracted from the Oracle source and stored on the
target DB2 file system

� The Oracle data, stored on the DB2 file system, will be loaded into DB2.

To execute the plan outlined above, the appropriate information must be entered
on the Deployment screen:

� DB2 database name
db2_emp

� Use local database
Selected

� Use your system current user ID and password
Unselected

� User ID
db2inst1

� Password
Enter your password

� Launch tabs_views_seq.db2 in the database
Checked

� Extract and store data on this system
Checked

� Load data to target database using generated scripts
Checked

Figure 4-24 on page 132 shows the Deploy to Target screen after all the
pertinent information has been entered.
 Chapter 4. Porting with MTK 131

Figure 4-24 The Deploy to Target screen with relevant information entered

Once the deployment options are completed, clicking Deploy will begin the task.

Recommendations for Deploy to Target Advanced Options
When executing a deployment it is possible to specify advanced options that will
influence actions that are taken during the deployment. When selecting
Advanced Options on the Deploy to Target panel, another panel opens that lets
you specify the following:

� Territory
� Code Set
� Collating Sequence
� Deploy MTK UDFs
� Execute Runstats on the DB2 catalog
� Execute Runstats on the DB2 data after load/import

Of these options, Territory, Code Set, and Collating Sequence will directly affect
database creation. As a result, when creating databases using MTK, it may be
132 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

important to alter these parameters to create the appropriate repository for your
data. When creating a UNICODE database, for example, it would be necessary
to specify TERRITORY US and Code Set UTF-8. For our example, since the
database will be created outside of MTK, these options are irrelevant.

The Deploy MTK UDFs option need only be specified once, when the initial
objects are created in the target server. Subsequent executions of this option are
usually unnecessary unless the DDL for these objects has changed. For this
reason, we recommend that this option be unchecked during subsequent object
or data deployment.

The Execute Runstats options are recommended when LOADing or IMPORTing
data; they are unnecessary when the deployment only involves objects.

Figure 4-25 shows the Advanced Options panel of the Deploy to Target task.

Figure 4-25 The Advance Options panel of the Deploy to Target task

Deployment of Java and SQL User-Defined Functions
During deployment, MTK will automatically install Java and SQL User-Defined
Functions (UDFs). During installment, a schema named ORA is created to
contain these functions.

Note: The Java and SQL UDFs are provided to simulate Oracle functions that
do not have exact DB2 equivalents. This implementation strives to guarantee
that the results of executing the code in the source environment will yield the
same results as when executed in the target environment.

The UDFs are programmed in SQL where possible but, when necessary, they
are implemented in Java.
 Chapter 4. Porting with MTK 133

The installation of these functions in a database involves one to two files for
every Oracle MTK target:

� A script file (mtkora.udf): containing a template for SQL UDF’s source code
� A .jar file (oraUDFs.jar): containing the source code for Java UDFs

These files are found in the directory where MTK was installed. Should it be
necessary to drop the functions created by the mtkora.udf script, this directory
will also contain a script (mtkoradrop.udf) to drop them.

During deployment, the following takes place with these .jar and script files:

1. In the mtkora.udf file:

The Java CREATE FUNCTION statements are altered to specify the
database under which the jar will be installed. See Example 4-2.

Example 4-2 Examples of changes made to the mtkora.udf file

...
CREATE FUNCTION ORA.TO_DATE(dateStr VARCHAR(60))
 RETURNS TIMESTAMP
 EXTERNAL NAME 'ora.udfjar:com.ibm.mtk.udf.oracle.OraDB2UDFsv2.to_date'
 LANGUAGE java
 PARAMETER STYLE JAVA
 DETERMINISTIC
 FENCED
 NO EXTERNAL ACTION
 NO SCRATCHPAD
 NO FINAL CALL
 NO SQL
 NO DBINFO
...
After alteration:
...
CREATE FUNCTION ORA.TO_DATE(dateStr VARCHAR(60))
 RETURNS TIMESTAMP
 EXTERNAL NAME 'ora.db2_emp:com.ibm.mtk.udf.oracle.OraDB2UDFsv2.to_date'
 LANGUAGE java
 PARAMETER STYLE JAVA
 DETERMINISTIC
 FENCED
 NO EXTERNAL ACTION
 NO SCRATCHPAD
 NO FINAL CALL
 NO SQL
 NO DBINFO
...
134 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Note that the line ‘ora.udfjar:com... was changed to specify the name of the
database under which the UDFs will be installed: ora.db2_emp:com.

MTK saves the altered version of this file in the PROJECTS directory under a
subdirectory corresponding to your project name, for example:

 PROJECTS/<MY_MTK_PROJECT_NAME>/mtkora.udf

2. During deployment, if Deploy MTK UDFs is selected, MTK installs the
oraUDFs.jar file in the database. This is achieved with the following command
executed by an MTK script:

CALL
SQLJ.INSTALL_JAR('file:/home/db2inst1/mtk/oraUDFs.jar','ora.db2_emp')

Once the jar file is installed on UNIX, it can be found in the following directory:

$DB2INSTHOME/sqllib/function/jar/ORA/

The DEPLOY_YourProjectName_Udf.log file contains all the information
regarding the success or failure of UDF deployment in your environment. It is
recommended that this be examined to determine whether the UDFs have been
successfully deployed. In our example, a successful deployment returned the
following message:

Creation of MTK UDFs...
CALL SQLJ.INSTALL_JAR('file:/home/db2inst1/mtk/oraUDFs.jar','ora.db2_emp')
DB20000I The CALL command completed successfully.

If any other message is returned, your DB2 Java environment may be installed
incorrectly. In these cases refer to either IBM Migration Toolkit Users Guide and
Reference, which is included with the product download, or Developing Java
Applications, SC10-4233 for Java setup assistance.

4.8.3 Deployment results
When the deployment process has completed, the Verification report opens. This
report will give a clear indication of the status of your conversion project. It
shows:

� The number of objects in the source file

� The number of objects successfully deployed into DB2

� The number of objects missing from DB2

– Objects missing from DB2 appear in red. This usually indicates some
problem during the deployment stage.

– Warning messages are presented in purple.

– Successfully deployed item are shown in black.

� The number of foreign keys found in DB2
 Chapter 4. Porting with MTK 135

� Information about Unique, Primary, and Check constraints

� The name of an object in the source database, and the name as it appears in
the DB2 database

� The DB2 schema into which the object or data was deployed

� The type of object

� Whether a specific object was successfully deployed into DB2

� Whether data was successfully extracted from the source

� Whether data was successfully loaded into DB2

Figure 4-26 shows a portion of the Verification report for our conversion example.

Figure 4-26 The Verification report

Additional information about the conversion may be found by viewing:

� The Deploy_your_file_name.log from the left panel of the Deploy to Target
panel.

� Choosing Other reports for this conversion from the Verification report
panel.
136 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Selecting Tools → Migration reports on the MTK menu bar. You can
navigate to the reports from current or previous migrations using the contents
listing in the left frame of the browser window.

The name and information for each report are as follows:

� Conversion summary report

The conversion summary report presents details on a particular conversion.
You will most likely have many conversions during your migration of each
database. You can view each of the conversion reports and compare the
objects that were successfully converted, as well as various errors reported
each time.

� Translation error message reports

The Translation error message report details specific error messages found
during each translation. These reports present the information in two ways: 1)
error messages grouped by object type and 2) error messages grouped by
message type. These reports can be useful when determining how to
prioritize your work, for example, if errors with the same message number
exist for many objects, it might be wise to solve the problem associated with
that error before continuing. Or, when viewing the messages by category, you
might choose delay solving issues related to the translator information
category until errors related to more significant categories have been
resolved.

� Estimate of table size report

This report presents an estimate of table sizes. This is useful in determining
correct table space size during database creation or adjustments that might
need to be made to a table space that will ensure a correct deployment.

� Large statement warnings report

During conversion some SQL statements are too long to be converted. The
large statement warnings report lists each of the statements that cannot be
converted for this reason.

� Verification report and deployment log

The verification report and deployment log generate messages relating to the
overall status of the deployment. These messages may regard either
information or problems that might have occurred during deployment.

If in-context files have been specified, which contain objects that have not yet
been deployed into DB2, both the report and log will show that the in-context
files failed to deploy. By design, objects contained within in-context files are
not deployed.
 Chapter 4. Porting with MTK 137

4.9 Next steps
The first part of our migration example, that is, converting all of the objects upon
which the other objects (stored procedures, functions, packages, and triggers)
depend, is now completed. Based on information produced in the Verification
report, it is determined that all tables, views, and sequence objects from the
original Oracle database were converted correctly, and more importantly,
deployed into DB2. Additionally, the report verifies that data was extracted from
Oracle, and that the same number of rows were loaded into DB2. At this juncture,
the process of converting the stored procedures, functions, packages, and
triggers may begin.

Strategy
The strategy for the remainder of the project is:

� Convert the remaining objects.
� Examine and evaluate the messages from the translator.
� Deploy the remaining objects into DB2.
� Manually convert objects that are not automatically converted by MTK.

4.10 Converting the remaining objects
To convert the remaining objects, return to the Convert tab. It is significant to
remember that the converter needs to “know” the definitions for the previously
converted tables, sequences, and views to correctly convert the remaining
objects. To accomplish this, these files will be designated as context files for the
next part of the conversion. To specify objects as context files, complete the
following:

� Click Set Context on the Convert tab.

� The Set Context screen opens, displaying two panels. The left panel is
labeled Source Files. Under Source Files all of the .src files that have been
extracted from the source are shown. The right pane is labeled “Selected
context files.” When first opened, there will be no files indicated under this
heading.

� To designate context files, choose one (or several) files in the right-hand
panel and then click >. This will bring the selected file(s) into the Selected
context files panel. Figure 4-27 on page 139 shows the Set Context screen
after tabs_views_seqs.src has been selected as a context file.
138 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-27 The Set Context screen after a file has been selected as Context

Once the context selections have been made, clicking OK returns the Convert
tab.

On the Convert tab, the tabs_views_seqs.src file has the indication (context)
beside it. This specifies that the file is now a context file; it will be used as a
dependent file for the conversion, but it will not be reconverted.

To begin conversion, complete the required steps:

1. Select the files in the left-hand panel that will be converted. We choose the
procs_pkgs_trgs.src file.

2. Enter a prefix for the generated files (that is, enter a name for the file that will
be generated from the conversion). We accept the default.

3. Click Convert to begin the conversion.

Figure 4-28 shows the Convert tab, before conversion, with the context file
designated and all required steps completed.
 Chapter 4. Porting with MTK 139

Figure 4-28 The Convert tab - with context files and the source file procs_pkgs_trgs selected

4.10.1 Translator Messages
In this section, we discuss the messages for the conversion of stored
procedures, functions, packages, and triggers. Although messages from the
previous conversion file will still be available for viewing, our discussion will not
include them. When examining the messages, items that need to be converted
manually will be noted as such. These items will then be discussed at a later
point in this chapter.
140 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-29 on page 141 shows the Refine tab after the conversion of the
procs_pkgs_trigs.src file. Messages in the following categories were received
after this portion of the conversion:

� Input script error
� Translator error
� Translator Warning
� Translator information

Figure 4-29 The Refine tab after the conversion of procs_pkgs_trigs.src

Input script error messages
There are two input script error messages

� Message 11
 Chapter 4. Porting with MTK 141

This message occurs once, and it refers to the stored procedure Selectrow.

Msg 11: Reference to unknown cursor: pRow

Message Help indicates:

The translator is not aware of the definition of this object.
Ensure that the definition exists in the file being translated or in one of
the files used as context for this translation. Also, ensure that the
schema name is specified as indicated.

When the statement is investigated, we recognize that pRow is an Oracle
Reference Cursor. Oracle Reference Cursors have to be converted manually
to the corresponding DB2 functionality. This is marked as manually
converted, and will be discussed later in this chapter.

� Message 42

This message occurs once; it refers to the stored procedure Selectrow.

Msg 42: unrecognized data type: REFPKG.RCT1

Message Help indicates:

This data type is not recognized by the translator. The reason might
be that:
– It is not a valid Oracle data type.
– It is a user-defined type, not yet handled by the translator (for example,

collections and object types).
If the data type is encountered as a parameter to a procedure, a
suggested translation is provided, but it is commented out because
it will probably require manual editing.

Upon investigation it is recognized that the data type REFPKG.RCT1 is an
Oracle Reference Cursor. This is marked to be manually converted, and will
be discussed later in this chapter.

Translator error messages
We have three translator error messages:

� Message 21

Fourteen instances of Message 21 occurred in the translator error category:

Msg 21: Call to Procedure DBMS_SQL.PARSE is not supported
Msg 21: Call to Procedure DBMS_SQL.DEFINE_COLUMN is not supported
Msg 21: Call to Procedure DBMS_SQL.COLUMN_VALUE is not supported
Msg 21: Call to Procedure DBMS_SQL.CLOSE_CURSOR is not supported
Msg 21: Call to Procedure DBMS_SQL.BIND_VARIABLE is not supported
Msg 21: Call to Procedure DBMS_SQL.OPEN_CURSOR is not supported
Msg 21: Call to Procedure DBMS_SQL.FETCH_ROWS is not supported
Msg 21: Call to Procedure DBMS_SQL.EXECUTE is not supported
142 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The fourteen instances of this message all refer to the same object, the
stored procedure EmployeeDynamicQuery.

Message Help indicates:

This Oracle function or procedure call is not translated to the target
server.

When the procedure is analyzed, the syntax is recognized as Dynamic SQL,
which is implemented through the Oracle DBMS_SQL package. Dynamic
SQL can be easily converted into DB2 functionality, but the conversion will
have to be done manually. We mark this procedure for manual conversion
and continue.

� Message 50

Two occurrences of Message 50 are found in this category:

Msg 50: This statement is not supported in the target server
dynamic compound statement

The two occurrences of this message are both in regard to a cursor created in
the trigger UpdateDepartments.

Message Help indicates:

This statement is not supported in the target server dynamic
compound statement. Dynamic compound statements are used as
bodies for top-level anonymous blocks, user-defined functions,
and triggers. Procedures use the target server compound
statements as bodies that are less restrictive. Some statements
that are not allowed inside target server dynamic compound
statement are:
— Nested blocks
— Statements containing CASE expressions
— GOTO
— Procedure calls
— Cursors
— COMMIT
— Exception handlers
If the compound statement is found in an Oracle function,
depending on the use of the function, changing it to a procedure
might be a better approach.

Since this type of cursor statement is not allowed inside a DB2 trigger, the
cursor logic will need to be manually converted. The object is marked for
manual conversion and the conversion continues.

� Message 75

One instance of Message 75 occurs in the translator error category:
 Chapter 4. Porting with MTK 143

Msg 75: This statement is not supported in the target server
Before Trigger
The message occurs in relation to the trigger InsertEmployee.

Message Help indicates:

This statement is not supported in a target server Before
Trigger.
The following statements are not supported in this context:
• INSERT
• DELETE
• UPDATE

After examining the trigger, it is seen that it includes DML statements
(INSERT, UPDATE, DELETE). DML statements are restricted in Before
triggers in DB2. The conversion, although not complicated, will also have to
be done manually.

� Message 80

This message occurs once in the translator error category:

Msg 80: This package item is not translated.

This message occurs in relation to the Package object REFPKG.

Message Help indicates:

Only the following items are supported inside a package: function
specifications, functions, procedure specifications, procedures, and
constants. Variable declarations, cursor declarations and type
definitions are not translated.

After examining the source code it is determined that, although this package
item will not be converted, it will not be necessary in our conversion. This
occurs for two reasons:

– MTK converts Oracle schema in the recommended manner, that is, by
converting the Oracle Package name to a DB2 Schema name.

– The package item, a reference cursor, will be handled when the procedure
SelectRow is converted manually.

Translator Warning messages
The following Translator Warning messages were generated:

� Message 20

15 instances of Message 20 occurred in the Translator Warning category:

Message 20: Object name has been changed to <new name>.

This message pertains to the objects shown in Table 4-1.
144 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 4-1 Message 20 objects

Message Help indicates:

Object names that are too long for the target server are
truncated. Names that are reserved words in the target server are
enclosed in double quotes. Names that conflict with other names
in the target server (because the name is already in use) are
renamed.

Upon examination of the source code, we observed that names were altered
for three types of objects:

– Triggers

Reason:
Trigger names were changed in two cases. First, because the trigger
name exceeded the maximum number of characters (18) allowed, as in
the case of EmployeesOfficesInsert and office_summary_delete. In this
case, the names were truncated to conform to DB2 standards. Secondly,
because additional triggers needed to be created. This occurs when an
Oracle trigger specifies more than one operation (INSERT, UPDATE,

Source object name Conversion name Object type

ACCT_ID ACCT_ID1 Correlation name

BAND BAND1 Correlation name

c_RegisteredEmployees c_RegisteredEmplo1 Cursor name

DEPT_CODE DEPT_CODE1 Correlation name

EMP_MGR_ID EMP_MGR_ID1 Correlation name

EmployeesOfficesInsert EmployeesOfficesI1 Trigger (insert)

ManagersChange ManagersChange_FO1 Trigger (insert)

ManagersChange_FO2 Trigger (delete)

ManagersChange_FO3 Trigger (update)

office_summary_delete office_summary_de1 Trigger

UpdateDepartments UpdateDepartments1 Trigger (insert)

UpdateDepartments2 Trigger (delete)

UpdateDepartments3 Trigger (update)

UpdateEmployees UpdateEmployees_F1 Trigger (insert)

UpdateEmployees_F2 Trigger (update)
 Chapter 4. Porting with MTK 145

DELETE) for the source trigger. In these circumstances, DB2 requires
(and MTK creates) an individual trigger for each operation.

– Cursors

Reason:
DB2 specifies that cursor names cannot exceed 18 characters.

– Correlation names

Reason:
Renaming these variables is related to a message that is best explained
by the Message Help from message 71:

The target server does not accept references to OLD from an
inserting trigger or references to NEW from a deleting
trigger. In the WHEN clause of the trigger these references
are translated to NULL. In the body of the trigger they are
translated to a variable generated for this purpose.

� Message 61

Two instances of Message 61 were generated in the Translator Warning
category:

Msg 61: Parameter defaults are not supported in the target server
procedure definitions. Calls to the procedure are adjusted
accordingly.

The two instances occur in the procedure EmployeeDynamicQuery.

Message Help indicates:

In procedure and function declarations, the optional DEFAULT
value of a parameter is not translated, but the translator will
use the value as necessary through the remainder of the
translation.

After examining the source code we understand that the Oracle procedure
employs default parameters that may be used when the procedure is invoked.
Although this behavior is not supported in DB2, MTK accounts for it when the
procedure is called from other stored procedures.

Additional information adds the following explanation:

...Default values for parameters are not translated in the
parameter list, but the converter remembers them and adds them to
each procedure call when the corresponding argument is missing.

� Message 71

Eight instances of Message 71 occur in the Translator Warning category:

Msg 71: Reference to OLD or NEW column translated to <NULL or Variable>
146 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The eight instances occur in the ManagersChange trigger.

Message Help indicates:

The target server does not accept references to OLD from an
inserting trigger or references to NEW from a deleting trigger.
In the WHEN clause of the trigger, these references are
translated to NULL. In the body of the trigger, they are
translated to a variable generated for this purpose.

� Message 94

There are two occurrences of Message 94 in this category:

Msg 94: The function <function_name> is translated to the target
server as a Procedure.

This message refers to the functions MaxProjects, CountProjects, and
AverageBand.

Message Help indicates:

This Oracle user-defined function is translated to the target
server as a procedure. This happens with functions with
parameters in OUT mode. Since this feature is not available in
the target server, the translator uses a target server procedure
instead. The calls to the Oracle function will be translated into
procedure calls.

� Message 135

There is one occurrence of Message 135 in the Translator Warning category.
This arises in the trigger ManagersChange.

Msg 135: BEFORE trigger was translated to AFTER trigger.

Message Help indicates:

BEFORE triggers are usually translated to NO CASCADE BEFORE
triggers in DB2. Unfortunately this kind of trigger does not
allow DML statements (INSERT, UPDATE and DELETE) and the FOR EACH
STATEMENT clause.
If the source trigger does use one of the features, the
translator will try to translate the BEFORE trigger to an AFTER
trigger, which does not have those restrictions.
This special translation is not possible if the body of the
trigger refers to the table as the object of the trigger, or if a
column of the NEW table is assigned.
 Chapter 4. Porting with MTK 147

Translator Information
The Translator Information messages received in our conversion example are:

� Message 0

There is one occurrence of this message in this category:

Msg 0: MTK Oracle Converter. Version: <mtk version>

Message Help indicates:

Specifies the version of the Oracle converter.

The version number of the converter is specified.

� Message 34

Four instances of Message 34 occurred in the Translator Information
category:

Msg 34: No DB2 translation available, but statement has been
taken into account

The four instances occurred in relation to the following statements:

– CONNECT ORA_USR

– In the Create Package AccountPackage statement for:

• Create Procedure AddEmployee
• Create Procedure RemoveEmployee
• Create Procedure AccountList

Message Help indicates:

There is no DB2 translation available, but the information in the
statement will be used by the converter in translating the
statements that follow.

After examining the source we understand that:

– Regarding CONNECT ORA_USR, the message indicates that although
the connection statement is not expressly converted, the implications of
the connection statement will be handled by DB2. ORA_USR will be used
as the default schema for unqualified database object names.

– Regarding the Create Procedure statements, we recognize that Oracle
packages will be converted to objects within a specified schema. This
schema name will be the same as the original Oracle Package name.

� Message 108

There is one occurrence of this message in this category:

Msg 108: Translation Ratio: <percentage>% (<absolute ratio>
statements were translated successfully)
148 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Message Help indicates:

This provides an assessment of the provided translation by giving
the ratio of Oracle statements translated without producing any
error message out of the total number of statements. This number
is provides a general indication regarding the success of the
automated translation and does not intend to give an exact and
accurate measure.
Statement here designates Oracle SQL and PL/SQL statements. For
instance, in a CREATE PROCEDURE, the whole SQL statement is
counted as 1 and each PL/SQL statement inside the body of the
procedure are also counted as one.

The translation ratio is reported as 84.67%—116 of 137 statements were
translated successfully.

4.10.2 Status
We recommend that the collected information be evaluated at this juncture in the
conversion. First, it must be established that for each Translator Message
category all of the messages and implications of the messages are understood
and accounted for. This evaluation will assist in obtaining a reasonable
expectation as to the number and type of objects that will convert automatically.
Likewise, it will assist in ascertaining the number and type of, and reason why,
objects will need to be converted manually.

Given the information already gathered about the objects from our conversion, it
is expected that most of the objects will deploy successfully. It is also expected,
however, that after the completion of deployment several objects will not deploy
successfully. We anticipate that the following objects will be in that category, and
that manual intervention will be required before they can be successfully
deployed:

� Stored procedures

– SelectRow
– EmployeeDynamicQuery

� Triggers

– InsertEmployee
– UpdateDepartments

4.11 Deployment of the remaining objects
The Generate Data Transfer Scripts task will be bypassed because scripts for
extracting and loading data into DB2 were already created in an earlier part of
 Chapter 4. Porting with MTK 149

our conversion (refer to 4.7.1, “Creating unload and load scripts” on page 125”).
The focus of the next set of tasks will center on deploying stored procedures,
functions, packages, and triggers into the DB2 database.

During this phase, the procs_pkgs_trgs.db2 file will be deployed. To begin this,
the procs_pkgs_trgs.db2 file is selected on the Generate Data Transfer screen
and the following required information is completed:

� DB2 database name:
db2_emp

� Use a local database:
Selected

� User ID
db2inst1

� Password
Enter db2inst1 password

� Launch procs_pkgs_trgs.db2 in the database
Selected
150 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-30 The deployment screen viewed before deploying procedures, packages, and triggers

4.11.1 Verification report
After deployment has completed, MTK returns to the Verification Report. It is
important to remember that the information shown by the Verification Report is
cumulative, that is, the total number of items includes objects from all parts of a
conversion. In our example this includes objects from the conversion of tables,
views, and sequences as well as procedures, packages, and triggers.

The information at the top of the Verification Report indicates that of the 57 total
objects in the conversion, 50 were successfully deployed (see Figure 4-31).
 Chapter 4. Porting with MTK 151

Figure 4-31 The Verification Report showing the tally of deployed objects

The report also indicates that 7 objects are missing from DB2, that is, were not
successfully deployed. If the hyperlink 7 objects missing from DB2 is clicked,
another report opens that shows that the seven missing objects are:

� Procedures:

– EmployeeDynamicQuery
– SelectRow

� Triggers:

– CreateEmployeeID
– InsertEmployee
– UpdateDepartments:

Three triggers were created, one each for INSERT, UPDATE, and
DELETE.

It was expected that most of the items on this list would fail deployment for
reasons that were previously described. The only unforeseen event is the failure
of the creation of the trigger CreateEmployeeID, see Figure 4-32.
152 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 4-32 The Verification Report showing objects missing from DB2

Because the generation of the Employee IDs (the EMP_ID) column in the
Employees table is now being implemented through an IDENTITY column, the
failure of the deployment of CreateEmployeeID is actually irrelevant; see
“Identity columns” on page 120. The creation of an IDENTITY column replaces
the necessity for the creation of the CreateEmployeeID trigger.

4.12 Manual conversion for ORA_EMP database objects
At this point, the conversion of all objects that can be successfully converted and
deployed automatically into DB2 by the MTK is completed. Indeed, the majority
of the object and data conversions have been accomplished. Yet, there are still
some “loose ends” such as objects that we noted for manual conversion that
must be dealt with.

The triggers and procedures from the sample ORA_EMP database that will be
converted manually are:

� Triggers:

– InsertEmployee
 Chapter 4. Porting with MTK 153

– UpdateDepartments

� Procedures:

– SelectRow
– EmployeeDynamicQuery

The objects in the preceding list of triggers and procedures use Oracle features
that require a different implementation in DB2, or are not supported by DB2.
Some of these objects can be converted by using equivalent DB2 features,
others by changing the source code logic. In this section feature differences, as
well as potential ways of converting and deploying triggers and procedures that
implement these features from Oracle to DB2, are shown.

Both Oracle and DB2 have triggers. There are, however, some differences in the
implementation of triggers in these databases. Because of these differences
manual conversion is required. In this section, conversion and deployment of
triggers are shown using two trigger examples from our database:

� InsertEmployees
� UpdateDepartments

Example 1: InsertEmployee
When the deployment log created by MTK (Deploy_procs_pkgs_trgs.log) is
opened, the following error message, generated by DB2 during the object
deployment, is seen:

DB21034E The command was processed as an SQL statement because it
was not a valid Command Line Processor command. During SQL
processing it returned:
SQL0797N The trigger "DB2INST1.INSERTEMPLOYEE" is defined with an
unsupported triggered SQL statement. LINE NUMBER=38. SQLSTATE=42987

In this example, the unsupported triggered SQL statement refers to an UPDATE
that DB2 does not permit in a BEFORE trigger. The correct conversion of the
InsertEmployee trigger requires that the BEFORE trigger be converted to an
AFTER trigger.

Example 4-3 shows the Oracle source code for trigger InsertEmployee.

Example 4-3 Trigger InsertEmployee Oracle source code

CREATE TRIGGER InsertEmployee
 BEFORE INSERT ON employees
 FOR EACH ROW
DECLARE
 v_num_projects accounts.num_projects%TYPE;
BEGIN
 SELECT num_projects
154 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 INTO v_num_projects
 FROM accounts
 WHERE dept_code = :new.dept_code
 AND acct_id = :new.acct_id;
 UPDATE accounts
 SET current_employees = current_employees + 1
 WHERE dept_code = :new.dept_code
 AND acct_id = :new.acct_id;
END InsertEmployees;

Example 4-4 shows the converted DB2 code of trigger InsertEmployee.

Example 4-4 Trigger InsertEmployee DB2 conversion code

CREATE TRIGGER InsertEmployee
AFTER INSERT ON employees
REFERENCING NEW AS new
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
 DECLARE v_num_projects SMALLINT;
 SET (v_num_projects) = (SELECT "NUM_PROJECTS"
 FROM ACCOUNTS
 WHERE "DEPT_CODE" = NEW."DEPT_CODE"
 AND "ACCT_ID" = NEW."ACCT_ID");
 UPDATE ACCOUNTS
 SET "CURRENT_EMPLOYEES" = "CURRENT_EMPLOYEES" + 1
 WHERE "DEPT_CODE" = NEW."DEPT_CODE"
 AND "ACCT_ID" = NEW."ACCT_ID";
END

Example 2: UpdateDepartments
This trigger employs an explicit CURSOR declaration, which is not permitted in a
DB2 trigger. This example demonstrates how to change the explicit cursor
(c_projects) to an implicit cursor using a FOR loop. This is accomplished by
putting the cursor’s SELECT statement directly into the FOR loop statement; this
is shown in Example 4-6.

Example 4-5 shows the Oracle source code of trigger UpdateDepartments.

Important: Note that in some cases you cannot change a BEFORE trigger to
an AFTER trigger. For example, if an application inserts a row in table A that
needs a parent row in table B and the parent row in B has to be
created/generated by the trigger, then a BEFORE trigger is needed. In this
case the solution will need to be implemented through application logic.
 Chapter 4. Porting with MTK 155

Example 4-5 Trigger UpdateDepartments Oracle source code

CREATE TRIGGER UpdateDepartments
AFTER INSERT OR DELETE OR UPDATE ON employees
DECLARE
 CURSOR c_projects IS
 SELECT dept_code
 ,COUNT(*) AS total_employees
 ,SUM(current_projects) AS total_projects
 FROM employees
 GROUP BY dept_code;
BEGIN
 FOR v_project_rec in c_projects LOOP
 UPDATE departments
 SET total_projects = v_project_rec.total_projects
 ,total_employees = v_project_rec.total_employees
 WHERE dept_code = v_project_rec.dept_code;
 END LOOP;
END UpdateDepartments;

The DB2 conversion of trigger UpdateDepartments is shown in Example 4-6.

Example 4-6 DB2 conversion of trigger UpdateDepartments

CREATE TRIGGER UpdateDepartments1
AFTER INSERT ON EMPLOYEES
REFERENCING NEW_TABLE AS new
FOR EACH STATEMENT
MODE DB2SQL
BEGIN ATOMIC
 X: -- [1]
 for ROW as -- [2]
 SELECT dept_code -- [3]
 ,COUNT(*) AS total_employees
 ,SUM(current_projects) AS total_projects
 FROM employees group by dept_code
 DO
 UPDATE departments -- [4]
 SET total_projects = row.total_projects
 ,total_employees = row.total_employees
 WHERE dept_code = row.dept_code;
 END FOR X;
END

Notes
� [1]: “X” is the specified label for the FOR statement.
156 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� [2]: The for-loop-name (ROW) is used to qualify the column names returned
by the specified SELECT statement.

� [3]: In a trigger, function, method, or dynamic compound statement, the
SELECT statement must consist of only a FULL SELECT with optional
common table expressions.

� [4]: This section specifies a statement (or statements) that will be invoked for
each row of the table.

Manual deployment of triggers
The triggers InsertEmployee, and UpdateDepartments are deployed into DB2
from a command window. Here is the process:

1. After creating the trigger, save the script file on your file system.

In order to execute multiple commands, your script file must end with a
terminating character other than the default semi-colon (;). Some typical
termination character choices are !, or @. MTK uses !.

2. Open a DB2 Command Window in the directory where the converted
procedure source resides:

– To open a DB2 Command Window on Windows:

Click Start and select Programs → IBM DB2 → Command Window.

– To open a DB2 Command Window on UNIX:

Open any operating system Command Window.

3. Connect to the database:

db2 connect to your_database_name

or

db2 connect to your_database_name USER your_userid USING
your_password

4. Execute the following from the Command Window. The termination character
must be specified:

db2 –td! –vf your_script_file_name
5. We recommend to pipe the output to another file so that any messages

generated during the creation may be viewed at a later time. This may be
done as follows:

db2 –td! –vf your_script file_name > your_output_file_name

Note: For complete information regarding FOR loop syntax and usage
consult the DB2 manual SQL Reference Volume 2, SC10-4250.
 Chapter 4. Porting with MTK 157

Here are the steps as they would be executed for the trigger InsertEmployee.
Although not shown here, the steps will be the same (except for file names) for
the remaining triggers UpdateDepartments1/2/3.

1. The source code is saved as InsertEmployee.db2; see Example 4-7.

Example 4-7 InsertEmployee.db2

CREATE TRIGGER InsertEmployee
 AFTER INSERT ON employees
 REFERENCING NEW AS new
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 DECLARE v_num_projects SMALLINT;
 SET (v_num_projects) = (SELECT "NUM_PROJECTS"
 FROM ACCOUNTS
 WHERE "DEPT_CODE" = NEW."DEPT_CODE"
 AND "ACCT_ID" = NEW."ACCT_ID");
 UPDATE ACCOUNTS
 SET "CURRENT_EMPLOYEES" = "CURRENT_EMPLOYEES" + 1
 WHERE "DEPT_CODE" = NEW."DEPT_CODE"
 AND "ACCT_ID" = NEW."ACCT_ID";
 END ! --** the exclamation point (!) is the termination character

2. Open a DB2 Command Window.

3. Connect to the database:

db2 connect to db2_emp

or

db2 connect to your_database USER your_userid USING your_password

4. Once the following command is executed, the results are piped to the
message.out file:

db2 –td! –vf InsertEmployee.db2 > message.out

5. DB2 responds with the message:

DB20000I The SQL command completed successfully.

The message.out file should be viewed for messages, especially if any other
message than The SQL command completed successfully is returned.

4.12.1 Stored procedures
In our example Oracle database there are five stored procedures (not including
stored procedures that reside in packages). MTK has converted three of these
stored procedures automatically and encountered conversion issues that
prohibited the automatic conversion of the procedures of the remaining two,
158 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

EmployeeDynamicQuery and SelectRow. When the Migration Reports and the
log file were examined, it was determined that these two procedures use Oracle
features that require manual intervention to convert them to the format that can
be accepted by DB2.

Example 1: EmployeeDynamicQuery
This example shows how to convert Oracle Dynamic SQL, implemented through
the DBMS_SQL package to equivalent DB2 code. In the example the Oracle
source is shown first, and the corresponding DB2 conversion follows. The
converted source code is accompanied by some explanatory notes.

Example 4-8 shows the Oracle source code for the procedure
EmployeeDynamicQuery.

Example 4-8 EmployeeDynamicQuery Oracle source code

CREATE PROCEDURE EmployeeDynamicQuery (
 p_department1 IN employees.department%TYPE DEFAULT NULL,
 p_department2 IN employees.department%TYPE DEFAULT NULL) AS
 v_CursorID INTEGER;
 v_SelectStmt VARCHAR2(500);
 v_FirstName employees.first_name%TYPE;
 v_LastName employees.last_name%TYPE;
 v_Department employees.department%TYPE;
 v_Dummy INTEGER;
BEGIN
 v_CursorID := DBMS_SQL.OPEN_CURSOR;
 v_SelectStmt := 'SELECT first_name, last_name, department
 FROM employees
 WHERE department IN (:d1, :d2)
 ORDER BY department, last_name';
 -- Parse the query.
 DBMS_SQL.PARSE(v_CursorID, v_SelectStmt, DBMS_SQL.NATIVE);
 -- Bind the input variables.
 DBMS_SQL.BIND_VARIABLE(v_CursorID, ':d1', p_department1);
 DBMS_SQL.BIND_VARIABLE(v_CursorID, ':d2', p_department2);
 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 1, v_FirstName, 20);
 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 2, v_LastName, 20);
 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 3, v_Department, 30);
 v_Dummy := DBMS_SQL.EXECUTE(v_CursorID);
 LOOP
 IF DBMS_SQL.FETCH_ROWS(v_CursorID) = 0 THEN
 EXIT;
 END IF;
 DBMS_SQL.COLUMN_VALUE(v_CursorID, 1, v_FirstName);
 DBMS_SQL.COLUMN_VALUE(v_CursorID, 2, v_LastName);
 DBMS_SQL.COLUMN_VALUE(v_CursorID, 3, v_Department);
 INSERT INTO temp_table (char_col)
 Chapter 4. Porting with MTK 159

 VALUES (v_FirstName || ' ' || v_LastName || ' is a ' ||
 v_Department || ' department.');
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(v_CursorID);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_SQL.CLOSE_CURSOR(v_CursorID);
 RAISE;
END EmployeeDynamicQuery;

Example 4-9 shows the procedure EmployeeDynamicQuery after it has been
converted into a format acceptable to DB2. Some of the statements have been
numbered in order to provide a more complete explanation of the solution.

Example 4-9 Converted DB2 code of Procedure EmployeeDynamicQuery

CREATE PROCEDURE EmployeeDynamicQuery (IN p_department1 VARCHAR(30),
 IN p_department2 VARCHAR(30)) --[1]
 LANGUAGE SQL
 BEGIN
 DECLARE v_FirstName VARCHAR(20);
 DECLARE v_LastName VARCHAR(20);
 DECLARE v_Department VARCHAR(30);
 DECLARE at_end SMALLINT DEFAULT 0; --[2]
 DECLARE v_SelectStmt VARCHAR(500); --[3]
 DECLARE v_Cursor_stmt STATEMENT; --[4]
 DECLARE v_Cursor cursor for v_Cursor_stmt;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION, SQLWARNING, NOT FOUND --[5]
 BEGIN
 set at_end =1; --[6]
 RESIGNAL;
 END;
 SET v_SelectStmt = 'SELECT first_name, last_name, department
 FROM employees
 WHERE department IN (?, ?)
 ORDER BY department, last_name'; --[7]
 PREPARE v_Cursor_stmt FROM v_SelectStmt; --[8]
 OPEN v_Cursor USING p_department1, p_department2; --[9]
 WHILE (at_end = 0) DO --[10]
 FETCH v_cursor into v_FirstName,v_lastName, v_Department; --[11]
 INSERT INTO TEMP_TABLE ("CHAR_COL")
 VALUES (COALESCE(v_FirstName, '') ||' ' ||
 COALESCE(v_LastName, '') || ' is in the ' ||
 COALESCE(v_Department, '') || ' department.');
 END WHILE;
 COMMIT;
END
160 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Notes
� [1]: The Oracle %TYPE variables are converted to the base data types from

the corresponding DB2 tables.

� [2]: The variable at_end is declared to hold a value that will be set when the
EXIT Handler is executed at [5].

� [3]: The v_SelectStmt variable is declared as varchar(500) so that it will be
large enough to hold the SQL statement for the declared cursor at [7].

� [4]: A statement object is declared to hold the prepared form of v_SelectStmt
at [8].

� [5]: An Exit Handler is declared. This will execute when NO DATA FOUND
during the Fetch statement at [11].

� [6]: When it executes, the Exit Handler sets the value of at_end to 1. This
value will be checked to determine if the WHILE loop at [10] should
continue.

� [7]: Before opening the cursor at [9] the v_CursorStmt object is prepared.

Example 2: SelectRow
The conversion of SelectRow presents the issue of converting Oracle cursor
variables. When the cursor variable is an OUT parameter, it can usually be
converted to DB2 using a Dynamic Result Set. In general, although manual, this
is a very simple conversion.

Example 4-10 shows the Oracle source code of procedure SelectRow.

Example 4-10 SelectRow Oracle source

CREATE PROCEDURE SELECTROW
 (pEmp_ID IN EMPLOYEES.EMP_ID%TYPE,
 pRow OUT REFPKG.RCT1)
 IS
 BEGIN
 OPEN pRow FOR
 SELECT FIRST_NAME, LAST_NAME, DEPARTMENT, BAND
 FROM EMPLOYEES
 WHERE Emp_ID = pEmp_ID;
 END;

Example 4-11 shows the DB2 conversion of the procedure SelectRow. Following
the example is an explanatory note.

Example 4-11 SelectRow DB2 conversion

CREATE PROCEDURE SELECTROW (IN pEmp_ID INTEGER)
 Chapter 4. Porting with MTK 161

 LANGUAGE SQL
 DYNAMIC RESULT SETS 1 -- [1]
 BEGIN
 DECLARE v_Cursor cursor WITH RETURN -- [2]
 TO CALLER for -- [3]
 SELECT first_anme,
 last_name,
 department,
 band
 FROM employees
 WHERE emp_id = pEmpID;

 OPEN v_Cursor ; --[4]
 END

Notes
� [1] DYNAMIC RESULT SETS: This clause specifies the maximum number of

result to be returned.

� [2] WITH RETURN: This clause indicates that the cursor is intended for use
as a result set from a stored procedure.

� [3] TO CALLER: Specifies that the cursor can return a result set to the caller.
For example, if the caller is another stored procedure, the result set is
returned to that stored procedure. If the caller is a client application, the result
set is returned to the client application.

� [4] The cursor v_Cursor is opened, and stays open, to return the Result set.

4.12.2 Manual deployment of stored procedures
The stored procedures EmployeeDynamicQuery and SelectRow are deployed
into DB2 from a Command Window. Here is the process:

� After creating the procedure, save the script file on your file system:

In order to execute multiple commands, as in a stored procedure, your script
file must end with a terminating character other than the default semi-colon
(;). Some typical termination character choices are !, or @.

� Open a DB2 Command Window in the directory where the converted
procedure source resides:

– To open the DB2 Command Window on Windows:

Click Start and select Programs → IBM DB2 → Command Window.

– To open the DB2 Command Window on UNIX, open any operating system
Command Window.
162 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Connect to the database using the command:

db2 connect to your_database_name

or

db2 connect to your_database_name USER your_userid USING
your_password

� Execute the following from the Command Window (termination character
must be specified):

db2 –td! –vf your_script_file_name

� We recommend to pipe the output to another file so that any messages
generated during the creation may be viewed at a later time. This may be
done as follows:

db2 –td! –vf your_script file_name > your_output_file_name

Here are the steps implemented for the procedure SelectRow. Although not
shown here, the steps are the same (except for the file names) for the procedure
EmployeeDynamicQuery:

� The script shown in Example 4-12 is created and saved as SelectRow.db2.

Example 4-12 DB2 stored procedure SelectRow

CREATE PROCEDURE SELECTROW (IN pEmp_ID INTEGER)
 LANGUAGE SQL
 DYNAMIC RESULT SETS 1
 BEGIN
 DECLARE v_sqlStmt VARCHAR (200);
 DECLARE v_stmt STATEMENT;
 DECLARE v_Cursor CURSOR WITH RETURN for v_stmt;
 SET v_sqlStmt = 'SELECT FIRST_NAME, LAST_NAME, DEPARTMENT, BAND
 FROM EMPLOYEES
 WHERE Emp_ID = ?';
 PREPARE v_stmt FROM v_sqlStmt;
 OPEN v_Cursor USING pEmp_ID;
 END ! ** the exclamation point (!) is the termination character.

� Open a DB2 Command Window.

� Connect to the database:

db2 connect to db2_emp

Execute the following command to pipe the output to the message.out file:

db2 –td! –vf Selectrow.db2 > message.out

� DB2 responds with the message:

DB20000I The SQL command completed successfully.
 Chapter 4. Porting with MTK 163

The message.out file should be viewed for messages, especially if any
message other than The SQL command completed successfully is returned.

All the objects in our example Oracle database ORA_EMP have now been
successfully converted and deployed into our DB2 database.
164 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 5. Conversion reference

In the previous chapter, we demonstrate how the IBM Migration Toolkit (MTK) is
able to automate the conversion of most Oracle database objects and proprietary
SQL to DB2. However, if your database uses many Oracle proprietary features,
there may be some SQL that the MTK cannot automate. In this chapter, we show
examples of how to perform conversions manually, with a focus on converting
Oracle objects and features that are not automated by the MTK.

We start by exploring tools and methods for building DB2 triggers, functions, and
procedures. Through examples, we look at techniques for converting frequently
used PL/SQL features to DB2 SQL PL code. We also discuss how to build
external procedures and functions using C/C++ and Java.

Although we start this chapter by demonstrating basic syntax for creating
procedures, triggers, and functions in both Oracle and DB2, the intent is to
demonstrate how to convert these objects manually when needed - not to be a
complete reference for developing DB2 SQL PL (other books are available for
that purpose). The reader is expected to have some prior application
development experience in both Oracle PL/SQL and DB2 SQL PL in order to
fully understand the examples used in this chapter.

5

© Copyright IBM Corp. 2003, 2007. All rights reserved. 165

5.1 Tools
There are two tools commonly used for manually creating or converting stored
procedures, triggers, and functions:

� The Developer Workbench (DWB)
� The DB2 Command Window.

This section provides a brief explanation of each tool.

5.1.1 Developer Workbench

The Developer Workbench (DWB) is available as a free download in DB2 9. It is
a visual tool that aids in the rapid development of DB2 business objects. This
newly designed tool is based on the Eclipse framework and replaces the
Development Center from previous versions of DB2.

The following tasks can be executed with DWB:

� Create, view, and edit database objects (such as tables and schemas).

� Explore and edit data in tables and rows.

� Visually build SQL and XQuery statements.

� Develop and deploy stored procedures, user defined functions (UDFs),
routines, and scripts.

� Debug SQL and Java stored procedures.

� Develop SQLJ applications.

� Develop queries and routines for XML data.

� Perform data movement (such as load and extract).

� Collaborate and share projects with team members.

� Migrate projects from the DB2 version 8 DB2 Development Center.

Thorough examination of the capabilities of DWB is beyond the scope of this IBM
Redbooks publication. Detailed information about this tool and its capabilities can
be found in the tutorials:

� DB2 Developer Workbench, Part 1: DW Concepts and Basic Tasks.

� DB2 Developer Workbench, Part 2: Developer Workbench and stored
procedures

� DB2 Developer Workbench, Part 3: Developer Workbench and XML
166 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

These tutorials may be downloaded from DeveloperWorks at the following Web
site:

http://www.ibm.com/developerworks/views/db2/libraryview.jsp?search_b
y=DB2+developer+workbench+(DWB)

Figure 5-1 shows the Developer Workbench interface.

Figure 5-1 The Developer Workbench

5.1.2 The DB2 Command Window

The DB2 Command Window behaves like a command window from your
operating system. From the DB2 Command Window. you can execute operating
 Chapter 5. Conversion reference 167

http://www-128.ibm.com/developerworks/views/db2/libraryview.jsp?search_by=DB2+developer+workbench+(DWB)

system commands, DB2 commands, or SQL statements, and then view the
output.

In this book, the DB2 Command Window is used for the deployment of manually
converted procedures and triggers.

Figure 5-2 shows the DB2 Command Window on AIX.

Figure 5-2 The DB2 Command Window on AIX

Figure 5-3 shows the DB2 Command Window on Windows.

Figure 5-3 The DB2 Command Window on Windows
168 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

A complete discussion about the DB2 Command Window can be found in the
following IBM Redbooks publications:

� The Exploitation of DB2 on the Windows Environment, SG24-6893
� DB2 Evaluation Guide for Linux and Windows, SG24-6934

5.1.3 Control Center

The Control Center is used to manage and administer systems, DB2 Database
instances, DB2 Database for OS/390 and z/OS subsystems, databases, and
database objects such as tables and views. From the Control Center, you can
access other centers and tools which may assist in optimizing queries; creating
and scheduling jobs and scripts; performing data warehousing tasks; creating
database objects; and working with DB2 and IMS™ commands.

To open the Control Center:

� In Windows, click Start → Programs → IBM DB2 → General
Administration Tools → Control Center.

� In Linux, open the IBM DB2 folder on the desktop and click Control Center.

� In UNIX, enter the db2cc command from a console window.

Tasks from the Control Center
Some of the key tasks that can be performed using the Control Center are:

� Add DB2 systems, federated systems, DB2 for z/OS and OS/390 systems,
IMSysplexes, instances, databases, and database objects to the object tree.

� Manage database objects. You can create, alter, and drop databases, table
spaces, tables, views, indexes, triggers, and schemas. You can also manage
users.

� Manage data. You can load, import, export, and reorganize data. You can
also gather statistics.

� Perform preventive maintenance by backing up and restoring databases or
table spaces.

� Configure and tune instances and databases.

� Manage database connections, such as DB2 Connect servers and
subsystems.

� Manage IMS systems.

� Manage DB2 for z/OS and OS/390 subsystems.

� Manage applications.

� Analyze queries using Visual Explain to look at access plans.
 Chapter 5. Conversion reference 169

� Launch other tools such as the Command Editor and the Health Center.

In many cases, advisors, launchpads, and wizards are available to help you
perform these tasks quickly and easily.

The Control Center interface
The Control Center interface (Figure 5-4) is available in three different views:

� Basic
This view provides core DB2 functionality, which includes the essential
objects, such as databases, tables, and stored procedures.

� Advanced
This view displays all objects and actions available in the Control Center.
Select this view if you are working in an enterprise environment and want to
connect to DB2 for z/OS or IMS.

� Custom
This view gives you the ability to tailor the object tree and the object actions to
your specific needs.

Figure 5-4 The DB2 Control Center Interface
170 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.1.4 Recommended reading materials

Reading DB2 SQL PL: Essential Guide for DB2 UDB on Linux, UNIX, Windows,
i5/OS, and z/OS, ISBN 0131477005, is recommended for learning DB2 SQL PL.
This book provides full coverage of SQL procedures, functions, and triggers.
Paul Yip, a co-author of the book, provided technical consultation and some of
the material for this chapter.

The following DB2 9 manuals are also good sources of information:

� SQL Reference Volume 1, SC10-4249
� SQL Reference Volume 2, SC10-4250
� Getting Started with Database Application Development, SC10-4252
� Quick Beginnings for DB2 Servers, GC10-4246
� Quick Beginnings for DB2 Clients, GC10-4242

5.2 Comparing SQL PL and inline SQL PL
DB2 SQL procedures are created using a high level language known as DB2
SQL Procedural Language (often called SQL PL), which has many direct
equivalents and mappings to Oracle’s PL/SQL language. Therefore, converting
Oracle stored procedures to DB2 stored procedures is usually straightforward.
For triggers, functions, and dynamic compound statements, DB2 uses a subset
language called inline SQL PL. Before looking at code samples here, it is
important to clarify the difference between SQL PL and inline SQL PL.

SQL procedures are processed natively but compiled into a package. SQL
functions and triggers are inlined into the query/SQL statement. This
implementation difference results in some SQL PL elements that are supported
in SQL procedures, but not in triggers and UDFs. SQL PL support in triggers and
UDFs is a subset of that in stored procedures and includes support for the
following SQL PL elements:

� DECLARE <variable>
� FOR
� GET DIAGNOSTICS
� IF
� ITERATE
� LEAVE
� SIGNAL
� WHILE
� SET

The following subsections discuss the basics of creating DB2 stored procedures,
triggers, and user-defined functions. We also compare variable declaration,
 Chapter 5. Conversion reference 171

conditional statements, and flow of control statements between Oracle PL/SQL
and DB2 SQL PL. This chapter (from 5.2, “Comparing SQL PL and inline SQL
PL” onward) is organized to serve as a convenient quick reference for you when
converting specific features of Oracle PL/SQL to DB2 SQL PL.

For the full documentation of SQL PL features, refer to IBM DB2 SQL Reference,
Volume 1, SC09-4844; Volume 2, SC09-4845; or DB2 SQL Procedural
Language for Linux, UNIX, and Windows.

Delimiter
In DB2, statements in trigger, function, and procedure are separated by a
semi-colon (;) which also is the default statement terminator when running a
group of SQL statements in DB2 CLP. Therefore, in trigger, procedure, or
function, a semi-colon (;) cannot be used as the terminator. You can choose
other characters such as @ or ! as the termination character. All the DB2
examples in this chapter use ! as the termination character. To execute the file
which contains the function, trigger, or procedure to create the object in DB2, use
the following command:

db2 -td<termination_character> -f file-name

Where termination_character = @ or ! etc. For example, if the termination
character is ! and file-name is testproc.db2, the command will be:

db2 -td! -f testproc.db2

5.2.1 Create procedure
Oracle uses the following syntax to create a stored procedure:

CREATE OR REPLACE PROCEDURE process_withdrawal(Account_Id VARCHAR2
 ,Cheque_No VARCHAR2
 ,Amount NUMBER
, RetValue OUT NUMBER)
IS
...

DB2 uses slightly different syntax:

CREATE PROCEDURE process_withdrawal (IN Account_Id VARCHAR(10)
 ,IN Cheque_No VARCHAR(10)
 ,IN Amount DECIMAL(10,2),
,OUT RetValue INTEGER)
...
172 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.2.2 Create trigger
This section presents a high-level overview of the differences in trigger
definitions between Oracle and DB2. For a detailed description of triggers, refer
to the following IBM Redbooks publications:

� Developing SQL and External Routines, SC10-4373
� SQL Reference Volume 2, SC10-4250

Example 5-1 shows a simple Oracle trigger, which has set a value to a table
column before inserting a row.

Example 5-1 Simple Oracle trigger

CREATE OR REPLACE TRIGGER connect_audit_trg
 BEFORE INSERT ON connect_audit
 FOR EACH ROW
BEGIN
 :new.timestamp := SYSDATE;
END;

Example 5-2 shows how to define the corresponding trigger in DB2.

Example 5-2 Simple DB2 trigger

CREATE TRIGGER connect_audit_trg
 NO CASCADE BEFORE INSERT ON connect_audit
 REFERENCING NEW AS n
 FOR EACH ROW
 MODE DB2SQL
BEGIN ATOMIC
 SET n.timestamp = CURRENT TIMESTAMP;
END!

Notes:
� DB2 does not support the REPLACE clause in the create procedure

statement, so you may want to drop the procedure before creating one.
When developing procedures using the Developer Workbench, the tool
may be configured so that procedures are automatically dropped if you
choose to rebuild a procedure.

� DB2 does not allow a character data type to be specified without length. As
a result, the declaration for a %TYPE column (to which a parameter
corresponds) must be checked for proper declaration. If converting with the
MTK, this is done for you automatically.

� Output parameters of mode OUT or INOUT must be identified as such
because mode IN is the default
 Chapter 5. Conversion reference 173

Example 5-3 is an Oracle trigger that inserts some values of a deleted row into a
history table.

Example 5-3 Oracle trigger with DML command

CREATE TRIGGER emp_history_trg
 AFTER DELETE ON employees
 FOR EACH ROW
BEGIN
 INSERT INTO emp_history(emp_id
 ,first_name
 ,last_name)
 VALUES (:old.emp_id
 ,:old.first_name
 ,:old.last_name);
END;

Example 5-4 shows how to define the corresponding trigger in DB2.

Example 5-4 DB2 trigger with DML command

CREATE TRIGGER emp_history_trg
 AFTER DELETE ON EMPLOYEES
 REFERENCING OLD AS d
 FOR EACH ROW
BEGIN ATOMIC
 INSERT INTO emp_history (emp_id
 ,first_name
 ,last_name)
 VALUES (d.emp_id
 ,d.first_name
 ,d.last_name);
END!

Notes:

� DB2 does not support the REPLACE clause in the create trigger
statement, so you may want to drop the trigger before creating one.

� The NO CASCADE statement is an option for BEFORE triggers. It
specifies that the triggered action of the trigger will not cause other triggers
to be activated.

� With the REFERENCING NEW AS n clause, you can associate a
qualifier n to the new values provided by the initiated insert statement.

� DB2 supports BEFORE and AFTER triggers for UPDATE and DELETE for
each row changed. For each statement changed, only AFTER triggers are
supported.
174 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Note that DB2 does not allow a DML statement in BEFORE triggers. This means
that the Oracle BEFORE trigger that contains UPDATE, INSERT or DELETE
statements will be converted to a DB2 AFTER trigger—and thus, this trigger will
be activated after the statement is executed.

MERGE statement and triggers
The MERGE statement can execute update, delete, and insert operations. The
applicable UPDATE, DELETE, or INSERT triggers are activated for the MERGE
statement when an update, delete, or insert operation is executed.

5.2.3 Create function
A function that is created by a user that is not one of the built-in functions in DB2
is called a user-defined function (UDF). DB2 supports five different kinds of
functions:

� SQL scalar, table, or row function
� Sourced or template function
� OLE DB function
� External table function
� External scalar function

In this chapter, we discuss only SQL functions. For a description of the other
function types, refer to SQL Reference, Volume 2, SC10-4250.

The most common UDF definition for SQL functions looks like the one shown in
Example 5-5.

Example 5-5 Common UDF definition

CREATE FUNCTION function_name (parameters)
RETURNS return_type
LANGUAGE SQL
READS SQL DATA
RETURN statement

Example 5-6 illustrates a DB2 UDF that duplicates an Oracle built-in function
WIDTH_BUCKET:

Example 5-6 DB2 UDF of Oracle function WIDTH_BUCKET

CREATE FUNCTION DB2ADMIN.width_bucket(col_val double, low_val double,
high_val double, num_of_buck int)
 RETURNS integer
 Chapter 5. Conversion reference 175

-
-- SQL UDF (Scalar)

-
F1: BEGIN ATOMIC

 declare v_each_buck double default 0.00;
 declare result int default 0;

 if col_val < low_val then return 0;
 end if;
 if col_val > high_val then return num_of_buck + 1;
 end if;
 set v_each_buck = (high_val - low_val)/num_of_buck;
 set result = ((col_val - low_val)/v_each_buck)+ 1;
 return result;

 END

Notes
� Input parameters are optional. However, the parentheses () are mandatory.

� The mandatory return type is one of the following kinds:

– Scalar
A scalar function returns a single value each time it is invoked, and is
generally valid wherever an SQL expression is valid. A scalar function
cannot contain a DML statement (UPDATE, INSERT, and DELETE).

When converting an Oracle function that contains those statements, you
can convert it to DB2 stored procedure or user-defined table function,
because those functions allow the MODIFY SQL clause, and can contain
a DML statement.

– Table
A table function may be used in a FROM clause and returns a table.
Example 5-7 shows a table function that contains a DML statement and
allows you to MODIFY SQL DATA.

Example 5-7

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
 RETURNS TABLE (EMPNO CHAR(6),
 LASTNAME VARCHAR(15),
 FIRSTNAME VARCHAR(12))
 LANGUAGE SQL
 MODIFIES SQL DATA
176 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 NO EXTERNAL ACTION
 DETERMINISTIC
 BEGIN ATOMIC
 INSERT INTO AUDIT
 VALUES (USER,
 'Table: EMPLOYEE Prd: DEPTNO = ' CONCAT DEPTNO);
 RETURN
 SELECT EMPNO, LASTNAME, FIRSTNME
 FROM EMPLOYEE
 WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO
 END

– Row
A row function may be used as a transform function and returns a row.

� LANGUAGE SQL is an optional statement.

� READS SQL DATA is optional and is implied by default for the SQL function.

� Following to the RETURN keyword, you have to specify the SQL function
body.

5.2.4 Variables declaration and assignment
Oracle PL/SQL permits declaring variables in four different places:

� In a parameter list of a stored procedure or function
� Within the body of a stored procedure, function, or trigger
� Within a package declaration
� Within a package body declaration

In DB2, the notion of package is unrelated to Oracle’s concept of a package as a
logical grouping of functions and procedures. In DB2, schemas are used as the
means of logically grouping procedures and functions. For this reason, variables
can be declared:

� In a parameter list of a stored procedure or function
� In the body of a stored procedure, function, or trigger

DB2 SQL PL supports native data types and user-defined distinct types for the
variable declaration. It requires the DECLARE clause, and uses the optional
DEFAULT clause to initialize variables. For example, here is a PL/SQL
declaration:

l_balance NUMBER(10,2) :=0.0;

This is converted to SQL PL as:

DECLARE l_balance NUMERIC(10,2) DEFAULT 0.0;
 Chapter 5. Conversion reference 177

SQL PL uses a SET statement to assign values to variables. Here, for example,
is a PL/SQL assignment:

l_balance := 19.99;

This will be converted as:

SET l_balance = 19.99;

Oracle supports defaults for parameters in the parameters list of a procedure or
function. DB2 does not support such defaults; that requires the addition of the
logic to duplicate the same behavior. The following is an Oracle parameters
assignment example:

CRETAE procedure create_dept (
new_dept IN CHAR DEFAULT ‘TEMP’
dept_numb IN NUMBER DEFAULT 0)

This can be converted to DB2 as follows:

CREATE PROCEDURE create_dept (new_dept char(5), dept_numb INT)
BEGIN

IF new_dept = NULL THEN
SET new_dept = ‘TEMP’;

END IF;
IF dept_numb = NULL THEN

SET dept_numb = 0;
END IF;

Note: Variable declarations in a DB2 SQL procedure have to be placed in the
BEGIN ... END block.

Note: The SET statement also can be used to assign a local variable with a
table column value:

SET l_balance =(SELECT balance from account_info where account_no =
actNo);

The SELECT statement should return one row only. An error will be returned if
more then one row is selected. You can use a FETCH FIRST n ROWS in the
SELECT statement to control the number of rows returned.
178 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.2.5 Conditional statements and flow control
SQL PL and PL/SQL provide similar functionality and syntax for conditional
statements and a variety of LOOP statements to provide flow control. Table 5-1
maps Oracle PL/SQL statements to DB2 SQL PL.

Table 5-1 Mapping of conditional statements

Oracle PL/SQL DB2 SQL PL

IF - THEN - END IF;
IF - THEN - ELSE - END IF;
IF - THEN - ELSIF - END IF;

IF - THEN - END IF;
IF - THEN - ELSE - END IF;
IF - THEN - ELSEIF - END IF;

LOOP
statements;

END LOOP;

[L1:] LOOP
statements;
LEAVE L1;

END LOOP [L1];

WHILE condition LOOP
statements;

END LOOP;

WHILE condition DO
statements;

END WHILE;

LOOP
statements;

EXIT WHEN condition;
END LOOP;

REPEAT
statements;

UNTIL condition;
END REPEAT;

OPEN cursor_variable FOR
select_statement;

FOR variable AS cursor_name
CURSOR FOR select_statement DO

statements;
END FOR;
Note: If cursor_variable is a REF
cursor, DB2 would define the
cursor and open it with RETURN TO
CLIENT/CALLER.

FOR l_count IN
lower_bound ..upper_bound
LOOP
 statements;
END LOOP;

No corresponding statements, but the
MTK will convert it as:

SET l_count = lower_bound;
WHILE l_count <= upper_bound DO
statements;
 SET l_count = l_count + 1;
END WHILE ;
 Chapter 5. Conversion reference 179

5.3 Dynamic SQL
In Chapter 4, “Porting with MTK” on page 89, we provide a conversion example
of the Oracle DBMS_SQL package, which the MTK does not support.
DBMS_SQL can be converted using dynamic SQL in DB2.

In this section, we provide additional examples that show how to convert
dynamic SQL

Example 1 - get_emp_name
Example 5-8 and Example 5-9 are two Oracle stored procedures that use
dynamic SQL. Example 5-8 uses the DBMS_SQL package.

Example 5-8 PL/SQL procedure with usage of DBMS_SQL

CREATE PROCEDURE get_emp_name_v1(emp_id NUMBER) AS
 cursor_name INTEGER;
 rows_processed INTEGER;
 sql_stmt VARCHAR2(1000);
BEGIN
 cursor_name := dbms_sql.open_cursor;
 sql_stmt := 'SELECT last_name FROM employees WHERE emp_id = :x';
 DBMS_SQL.PARSE(cursor_name, sql_stmt, dbms_sql.native);
 DBMS_SQL.BIND_VARIABLE(cursor_name, ':x', emp_id);
 rows_processed := dbms_sql.execute(cursor_name);
 DBMS_SQL.close_cursor(cursor_name);
EXCEPTION
WHEN OTHERS THEN
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
END;

Example 5-9 shows a procedure with the same behavior using dynamic SQL.
(Dynamic SQL is available in Oracle since version 8).

Example 5-9 PL/SQL procedure with usage of native dynamic SQL

CASE expression
WHEN condition_1 THEN result_1
WHEN condition_2 THEN result_2
... WHEN condition_n THEN
result_n ELSE result END

CASE expression
WHEN cond_1 THEN statement1
WHEN cond_2 THEN statement2 ...
WHEN cond_n THEN statementN
ELSE statement END

Oracle PL/SQL DB2 SQL PL
180 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

CREATE OR REPLACE PROCEDURE get_emp_name_v2(emp_id IN NUMBER) AS
 sql_stmt VARCHAR2(1000);
 v_result VARCHAR2(20);
BEGIN
 sql_stmt := 'SELECT last_name FROM employees WHERE emp_id = :x';
 EXECUTE IMMEDIATE sql_stmt
 INTO v_result
 USING emp_id;
 dbms_output.put_line(v_result.last_name);
END;

When using the MTK to convert the procedure get_emp_name_v2(), it will report
that the EXECUTE IMMEDIATE command cannot be converted because the MTK
cannot guarantee the correctness of converted dynamic SQL (only a true runtime
test can determine correctness). DB2 supports dynamic SQL in procedures
using the same type of syntax supported in Oracle (see Example 5-9). If the
dynamic SQL statement is an INSERT, UPDATE, or DELETE statement,
conversion to DB2 is usually straightforward. If the dynamic statement is a
SELECT, however, it needs to be converted using a dynamic cursor in DB2 (as
shown in Example 5-10).

Example 5-10 SQL PL procedure with native dynamic SQL

CREATE PROCEDURE get_emp_name_v2 (IN emp_id FLOAT)
LANGUAGE SQL
BEGIN
 DECLARE v_dyn_sql VARCHAR(1000);
 DECLARE v_sql_stmt STATEMENT;
 DECLARE c_employees CURSOR FOR v_sql_stmt;

 SET v_dyn_sql = 'SELECT last_name FROM employees WHERE emp_id = '
 || CHAR(emp_id);
 PREPARE v_sql_stmt FROM v_dyn_sql;
 OPEN c_employees;
 -- FETCH ...
 CLOSE c_employees;
END!

Example 2: update_emp_office
Example 5-11 shows a DB2 stored procedure with a dynamic UPDATE
statement.
 Chapter 5. Conversion reference 181

Example 5-11 Dynamic UPDATE with EXECUTE IMMEDIATE

CREATE PROCEDURE update_emp_office_v1 (IN v_emp_id FLOAT
 ,IN v_office_id FLOAT
 ,OUT v_num_changes INTEGER)
LANGUAGE SQL
BEGIN
 DECLARE v_dyn_sql VARCHAR(1000);

 SET v_dyn_sql = 'UPDATE employees' ||
 ' SET office_id = ' || CHAR(v_office_id) ||
 ' WHERE emp_id = ' || CHAR(v_emp_id);
 EXECUTE IMMEDIATE v_dyn_sql;

 GET DIAGNOSTICS v_num_changes = row_count;
END!

In Example 5-8, the variable rows_processed contained the number of rows
affected by the dynamic SQL statement. In DB2, the same result can be
achieved using GET DIAGNOSTICS. With the GET DIAGNOSTICS statement,
the number of row changed due to the last INSERT, UPDATE, or DELETE may
be returned.

Use EXECUTE IMMEDIATE if the SQL statement only needs to be executed
once or infrequently. If the SQL statement needs to be executed repeatedly, use
the PREPARE and EXECUTE statements.

When using the EXECUTE statement, parameter markers can be employed.
Parameter markers are designated by the question mark (?), as shown in
Example 5-12. Be aware that the EXECUTE statement cannot be used with a
SELECT or VALUES statement.

Example 5-12 demonstrates the use of a dynamic SQL statement using
PREPARE and EXECUTE instead of EXECUTE IMMEDIATE.

Example 5-12 Dynamic UPDATE with EXECUTE and PREPARE

CREATE PROCEDURE update_emp_office_v2 (IN v_emp_id FLOAT
 ,IN v_office_id FLOAT
 ,OUT v_num_changes INTEGER)
LANGUAGE SQL
BEGIN
 DECLARE v_dyn_sql VARCHAR(1000);
 DECLARE v_stmt STATEMENT;
182 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 SET v_dyn_sql = 'UPDATE employees' ||
 ' SET office_id = ?' ||
 ' WHERE emp_id = ?';

 PREPARE v_stmt FROM v_dyn_sql;
 EXECUTE v_stmt USING v_office_id, v_emp_id;

 GET DIAGNOSTICS v_num_changes = row_count;
END!

Example 3: get_max_band
Example 5-13 demonstrates a Java user-defined function (UDF) with dynamic
SQL. The function uses the invoker’s database connection with all its
authentications. The prepare is followed by the assignment of an input variable
called inOfficeID, to the value of the parameter marker. The SQL statement
may contain a full-select.

Example 5-13 Java UDF with dynamic SQL

import COM.ibm.db2.app.*;
import java.sql.*;

public class UDFemp extends UDF
{
 public void maxBand(int inOfficeID, String outBand)
 throws Exception
 {
 try
 {
 // Get caller's connection to the database
 Connection con =
 DriverManager.getConnection("jdbc:default:connection");

 String query = "SELECT max(band) " +
 "FROM employees " +
 "WHERE office_id = ?";

 PreparedStatement stmt = con.prepareStatement(query);
 stmt.setInt(1, inOfficeID);

 ResultSet rs = stmt.executeQuery();

 while(rs.next())
 {
 Chapter 5. Conversion reference 183

 outBand = rs.getString(1);
 }

 set(2, outBand);

 rs.close();
 stmt.close();
 con.close();
 }

 catch (SQLException sqle)
 {
 setSQLstate("38999");
 setSQLmessage("SQLCODE = " + sqle.getSQLState());
 return;
 }
 }
}

The corresponding CREATE FUNCTION statement for this Java UDF is shown
in Example 5-14:

Example 5-14 The CREATE FUNCTION statement for a Java UDF

CREATE FUNCTION get_max_band(INTEGER)
RETURNS CHAR
EXTERNAL NAME 'UDFemp!maxBand'
FENCED
CALLED ON NULL INPUT
VARIANT
READS SQL DATA
PARAMETER STYLE DB2GENERAL
LANGUAGE JAVA
NO EXTERNAL ACTION!

5.4 Cursor conversion

Because DECLARE CURSOR syntax is not supported in triggers and functions,
it is usually the case that some manual conversion of cursors may required.

This section covers the conversion of cursors in stored procedures. The
examples focus on methods for converting Oracle explicit cursors in function, as
well as how to handle converting cursor attributes.
184 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

In general, Oracle PL/SQL and DB2 SQL PL are similar in their syntax and
support for cursor operations; Table 5-2 lists some of the similarities and
differences.

Table 5-2 Mapping Oracle and DB2 Cursor operation

5.4.1 Converting an explicit cursor in a procedure
An Oracle SQL cursor is defined similar to a variable in a procedure. The
definition is in the stored procedure specification. Example 5-15 is a sample
Oracle procedure with an explicit cursor defined in the specification.

Example 5-15 Oracle procedure with explicit cursor

PROCEDURE get_sum_projects(v_office_id IN NUMBER
 ,sum_projects OUT NUMBER)
AS
 v_prj NUMBER(3);
 CURSOR c1 IS
 SELECT current_projects
 FROM employees
 WHERE office_id = v_office_id;
BEGIN
 sum_projects := 0;

Operation Oracle DB2

Declaring a cursor CURSOR cursor_name
[(cursor_parameter(s))]
IS select_statement;

DECLARE cursor_name
CURSOR [WITH HOLD] [WITH
RETURN] [TO CALLER | TO
CLIENT] FOR
select-statement

Opening a cursor OPEN cursor_name
[(cursor_parameter(s))];

OPEN cursor_name [USING
host-variable]

Fetching from cursor FETCH cursor_name INTO
variable(s)

FETCH [from] cursor_name
INTO variable(s)

Update fetched row UPDATE table_name
SET statement(s)...
WHERE CURRENT OF
cursor_name;

UPDATE table_name
SET statement(s)...
WHERE CURRENT OF
cursor_name

Delete fetched row DELETE FROM table_name
WHERE CURRENT OF
cursor_name;

DELETE FROM table_name
WHERE CURRENT OF
cursor_name

Closing cursor CLOSE cursor_name; CLOSE cursor_name
 Chapter 5. Conversion reference 185

 OPEN c1;
 LOOP
 FETCH c1 INTO v_prj;
 EXIT WHEN c1%NOTFOUND;
 sum_projects := sum_projects + v_prj;
 END LOOP;
END;

In DB2, the SQL cursor must be defined in the procedure body. To use
procedure parameters within the cursor, the SQL statement for the cursor must
be defined and prepared. Example 5-16, which is the conversion of the source in
Example 5-15, shows a cursor definition and the PREPARE statement.

Example 5-16 DB2 Stored procedure showing conversion of an explicit cursor

CREATE PROCEDURE get_sum_projects(IN v_office_id INTEGER
 ,OUT sum_projects INTEGER)
BEGIN
 DECLARE SQLCODE INT DEFAULT 0;
 DECLARE v_prj SMALLINT default 0;
 DECLARE v_no_data SMALLINT DEFAULT 0;

DECLARE c1 CURSOR FOR
 SELECT current_projects
 FROM employees
 WHERE office_id = v_office_id;

 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET v_no_data = 1;

 SET sum_projects = 0;
 OPEN c1;
 FETCH c1 INTO v_prj;
 WHILE (v_no_data =0)
DO
 SET sum_projects = sum_projects + v_prj;
 FETCH c1 INTO v_prj;

 END while;
 CLOSE c1;

END!
186 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.4.2 Converting an explicit cursor in functions and triggers
It is important to understand that DB2 triggers and functions must use inline SQL
PL. Oracle cursor operations in triggers and functions, such as explicit cursors,
must be converted to the corresponding inline SQL PL syntax.

In 4.12, “Manual conversion for ORA_EMP database objects” on page 153, we
provide an example of converting an explicit cursor in a trigger. Here,
Example 5-17 shows how to convert an Oracle explicit cursor in a function using
a FOR LOOP. The same method may be used in procedures; in fact, using a
FOR cursor can yield better performance results.

Example 5-17 shows the Oracle function source code.

Example 5-17 Function with an explicit cursor in Oracle

CREATE OR REPLACE FUNCTION CountProjects (
 /* Returns the number of projects in which the employee
 identified by p_emp_ID is currently engaged */
 p_empID IN employees.emp_ID%TYPE)
RETURN NUMBER AS

 v_TotalProjects NUMBER;

 -- Total number of projects
 v_AccountProjects NUMBER;

 -- projects for one account
 CURSOR c_DeptAccts IS
 SELECT dept_code, acct_id FROM employees
 WHERE emp_id = p_empID;
BEGIN

 FOR v_AccountRec IN c_DeptAccts LOOP
 -- Determine the projects for this account.

 SELECT num_projects INTO v_AccountProjects
 FROM accounts WHERE dept_code = v_AccountRec.dept_code
 AND acct_id = v_AccountRec.acct_id;

 -- Add it to the total so far.
 v_Totalprojects := v_Totalprojects + v_AccountProjects;

 END LOOP;

 RETURN v_Totalprojects;
 Chapter 5. Conversion reference 187

END CountProjects;

The converted DB2 code is shown in Example 5-18.

Example 5-18 Conversion using a FOR LOOP in DB2

CREATE FUNCTION CountProjects(p_empID INTEGER)
RETURNS INTEGER
LANGUAGE SQL
BEGIN ATOMIC
 DECLARE v_TotalProjects INT DEFAULT 0;
 DECLARE v_AccountProjects INT;
 X: FOR v_DeptAccts as -[1]
 Select dept_code, acct_id
 FROM employees
 WHERE emp_id = p_empID
 DO
 SET v_AccountProjects = (
 SELECT num_projects -[2]
 FROM accounts
 WHERE dept_code = v_DeptAccts.dept_code
 AND acct_id = v_DeptAccts.acct_id);
 SET v_Totalprojects = v_Totalprojects + v_AccountProjects;
 END FOR X;
 RETURN v_Totalprojects;
END!

The notes in Example 5-18 are explained as follows:
[1] The FOR LOOP X is declared and the values that will be used in the

WHERE clause in the SET statement are selected.

[2] SELECT INTO is not supported in inline SQL. The equivalent can be
achieved using the SET statement.

5.4.3 Converting cursor attributes
Oracle supports cursor attributes to get information about the current status of a
cursor. In DB2, SQLCODE or SQLSTATE can be used to obtain the same
information. Table 5-3 shows the mapping of Oracle cursor attributes to DB2
SQLCODE/SQSTATE values.
188 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 5-3 Mapping of cursor attributes

The following examples demonstrate how to convert these Oracle attributes to
DB2.

%ISOPEN
Consider the following Oracle code fragment that uses %ISOPEN:

IF c1%ISOPEN THEN
 fetch c1 into var1;
ELSE -- cursor is closed, so open it
 OPEN c1;
 fetch c1 into var1;
END IF;

You can implement the same logic in DB2 using CONDITION HANDLER:

DECLARE cursor_notopen CONDITION FOR SQLSTATE 24501;
DECLARE CONTINUE HANDLER FOR cursor_notopen
BEGIN

Oracle DB2

%ISOPEN Upon open a cursor, DB2 SQLCODE -502 is
returned if the cursor is already open. On
FETCH, SQLCODE -501 is returned if the cursor
is not open yet.

However, In DB2 procedure, you will not be able
to test for any negative sqlcodes (exceptions)
unless they are contained within an exception
handler because control will be returned to the
calling application or procedure.

If %isopen is used to test if a cursor is open
before closing it, it may not be needed in DB2.
DB2 will close the cursor for you.
The SQLSTATE associated with SQLCODE -501 is
24501.
The SQLSTATE associated with SQLCODE -502 is
24502

%NOTFOUND if (SQLCODE = 100) or if SQLSTATE = ‘02000’

%FOUND if (SQLCODE = 0) or if SQLSTATE = ‘00000’

%ROWCOUNT Use a counter variable to retrieve number of rows fetched
from the cursor
 Chapter 5. Conversion reference 189

 open c1;
 FETCH c1 int var1;
END;
 ...
FETCH c1 into var1;

For a more detailed discussion of CONDITION HANDLERS, refer to 5.6,
“Condition handling” on page 200.

%NOTFOUND
Here is an Oracle example that uses %NOTFOUND:

OPEN cur1;
LOOP
 FETCH cur1 INTO v_var1;
 EXIT WHEN cur1%NOTFOUND;

...
END LOOP;

In DB2, this can be implemented by using CONDITION HANDLERS or by
checking the SQLCODE value:

DECLARE SQLCODE int DEFAULT 0;
……
OPEN c1;
L1: LOOP
 FETCH c1 INTO v_var1;
 IF SQLCODE = 100 THEN
 LEAVE L1;
 END IF;
 ...
END LOOP L1;

%ROWCOUNT
SQL %ROWCOUNT yields the number of rows affected by an INSERT,
UPDATE, or DELETE statement, or returned by a SELECT INTO statement.
%ROWCOUNT yields 0 if an INSERT, UPDATE, or DELETE statement affected
no rows, or if a SELECT INTO statement returned no rows.

The use of %ROWCOUNT can be demonstrated by the following Oracle
examples. First, consider the example that uses %ROWCOUNT to determine the
condition for the loop:

LOOP
 FETCH c1 INTO my_ename, my_deptno;
 IF c1%ROWCOUNT > 10 THEN
190 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 EXIT;
 END IF;
 ...

END LOOP;

This Oracle code will process only the first 10 rows for the given cursor. This
logic can be implemented in DB2 using the FETCH FIRST N ROWS ONLY
clause in the cursor declaration, and processing this cursor till NOT FOUND.

DECLARE c1 CURSOR FOR
 SELECT ename, deptno
 FROM emp_table
 FETCH FIRST 10 ROWS ONLY;

DECLARE CONTINUE HANDLER FOR NOT FOUND
 BEGIN
 SET end-of-fetch = 1;
 END;

L1: LOOP
 FETCH c1 INTO my_ename, my_deptno;
 IF end-of-fetch = 1 THEN
 LEAVE L1;
 END IF;
 …………
END LOOP L1;

If %ROWCOUNT is used to determine how many rows from the cursor have
been processed at any given time, it will look like the following Oracle code:

LOOP
 FETCH c1 INTO my_ename, my_deptno;
 IF c1%ROWCOUNT > 10 THEN
 ...
 END IF;
 ...

END LOOP;

In DB2, you would need to use a local variable (counter) to store this information
after each fetch from the cursor:

DECLARE v_CURCOUNT INT DEFAULT 0;
 …….
 L1: LOOP
 FETCH c1 INTO my_ename, my_deptno;
 Chapter 5. Conversion reference 191

 v_CURCOUNT = v_CURCOUNT + 1;
 IF vCURCOUNT > 10 THEN
 ……
 END IF;
 ……
 END LOOP L1;

In the following example, %ROWCOUNT is used to take action if more than ten
rows have been deleted:

DELETE FROM emp_table WHERE ...
IF SQL%ROWCOUNT > 10 THEN -- more than 10 rows were deleted
 ...

END IF;

DB2 uses the GET DIAGNOSTICS statement to return the number of rows
affected by an INSERT, UPDATE, or DELETE statement:

DECLARE rc INT DEFAULT 0;
…….
DELETE FROM emp_table WHERE ...
GET DIAGNOSTICS rc = ROW_COUNT;
IF rc > 10 THEN -- more than 10 rows were deleted
 ...

END IF;

%FOUND
Note that Oracle treats any SQL statement as an implicit cursor. Implicit cursor
attributes return information about the execution of an INSERT, UPDATE,
DELETE, or SELECT INTO statement.

The values of the implicit cursor attributes always refer to the most recently
executed SQL statement. Before Oracle opens the SQL cursor, the implicit
cursor attributes yield NULL.

In the following example, %FOUND is used to insert a row if a delete succeeds:

Important: The GET DIAGNOSTICS statement is not supported for the
SELECT or SELECT INTO statement. Note the following points:

� SQLCODE will be 100 if no row is selected.
� SQLCODE will be 0 if one row is selected.
� SQLCODE will be -811 (SQLSTATE 21000 - SQLERROR) if more than

one row is selected.
192 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DELETE FROM emp WHERE empno = my_empno;
IF SQL%FOUND THEN -- delete succeeded
 INSERT INTO emp_table VALUES (my_empno, my_ename);

This code can be converted to DB2 as follows:

DELETE FROM emp WHERE empno = my_empno;
IF SQLCODE = 0 THEN -- delete succeeded
 INSERT INTO emp_table VALUES (my_empno, my_ename);

5.5 Collections
A collection is Oracle’s version of arrays. A collection is a single-dimension list of
an ordered group of elements, all of the same type (for example, bonuses for
employees). Each element has a unique subscript that determines its position in
the collection.

Oracle PL/SQL provides two kinds of collections: nested tables and variable-size
arrays (also known as varrays). Collections can have only one dimension, and
must be indexed by integers. Collections can be passed as parameters—thus,
they can be used to move columns of data into and out of database tables, or
between stored procedures and client-side applications.

5.5.1 Nested tables and varrays
To understand how nested tables and varrays can be converted to DB2, we first
address the difference between Oracle nested tables and varrays.

Nested tables are items of type TABLE within the database. You can view nested
tables as one-column database tables or one-dimension arrays. Oracle stores
the rows of a nested table in no particular order. But when you retrieve the
nested table into a PL/SQL variable, the rows are given consecutive subscripts
starting at 1.

Unlike variable arrays, which have a fixed size, nested tables can grow
dynamically with no upper bound. Another difference is that variable arrays must
have consecutive subscripts, which prevents you from deleting individual
elements from an array. Initially, nested tables have consecutive subscripts, but
they can be sparse (that is, have nonconsecutive subscripts).

Because DB2 does not support collections, the most generic way to convert a
nested table is by using the DB2 Declared Global Temporary Table (DGTT),
where the first column stores the value of the subscript, and the second column
stores the value of Oracle nested table.
 Chapter 5. Conversion reference 193

To clarify this concept, refer to Example 5-19; it fills the nested table EmpList with
names of the employees for a given department from table emp_table.

Example 5-19 Oracle code using nested table

DECLARE
 TYPE EmpList IS TABLE OF emp_table.ename%TYPE ;
 CURSOR c1 IS
 SELECT emp_name
 FROM emp_table
 WHERE dept = v_dept;
 EmpName emp_table.ename%TYPE;
 empNum NUMBER;
BEGIN
 LOOP
 FETCH c1 INTO EmpName;
 WHEN c1%NOTFOUND EXIT;
 empNum := empNum + 1;
 EmpList(empNum):= EmpName;
 END LOOP;
 CLOSE c1;
END;

The same can be implemented in DB2 using DGTT, as shown in Example 5-20.

Example 5-20 DB2 code using DGTT

DECLARE SQLCODE INT DEFAULT 0;

Note: DB2 temporary tables are not similar to Oracle temporary tables. DB2
temporary tables are memory-bound (provided that sufficient memory is
available). They are visible only to the connection that declares it, and they
exist only for as long as a connection is maintained (or dropped). If you
disconnect, the table is automatically cleaned up.

Tip: To use DGTTs, you must create a user temporary table space (none
exists by default). In the simplest case, you can use:

create user temporary tablespace usertemp1 managed by system using
('usertemp1')

The size of the buffer pool associated with this table space will affect how
memory-bound DGTTs are at runtime.
194 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DECLARE v_empname varchar(30);
DECLARE v_num INT DEFAULT 0;
DECLARE c1 CURSOR FOR
 SELECT emp_name
 FROM emp_table
 WHERE dept = v_dept;
DECLARE GLOBAL TEMPORARY TABLE SESSION.temp_emp_list
 (num integer, EmpName varchar(30))
 WITH REPLACE
 ON COMMIT PRESERVE ROWS
 NOT LOGGED;

OPEN c1;
 WHILE (SQLCODE = 0) DO
 FETCH c1 INTO v_empname;
 SET v_num = v_num +1;
 INSERT INTO SESSION.temp_emp_list
 VALUES (v_num,v_empname);
 END WHILE;
CLOSE c1;

The code is even more efficient if converted as shown in Example 5-21.

Example 5-21 Efficient DB2 code using DGTT

DECLARE GLOBAL TEMPORARY TABLE SESSION.temp_emp_list
 (num integer,EmpName varchar(30))
WITH REPLACE
ON COMMIT PRESERVE ROWS
NOT LOGGED;

INSERT INTO session.temp_emp_list
 SELECT row_number() over(), emp_name
 FROM emp_table
 WHERE dept = v_dept;

To convert Oracle varrays, you can also use DGTT—or sometimes the redesign
can help achieve the same functionality.

5.5.2 Bulk collect
In Oracle 8i and higher, you can fetch more than one row at a time into a
collection by using the BULK COLLECT clause. This clause is used as part of the
 Chapter 5. Conversion reference 195

SELECT INTO, FETCH INTO, or RETURNING INTO clause, and will retrieve
rows from the query into indicated collections.

Example 5-19 on page 194 can be rewritten using the BULK COLLECT clause
as follows:

DECLARE
 TYPE EmpList IS TABLE OF emp_table.ename%TYPE ;
 CURSOR c1 IS
 SELECT emp_name
 FROM emp_table
 WHERE dept = v_dept;
BEGIN
 OPEN c1;
 FETCH c1 BULK COLLECT INTO EmpList;
 CLOSE c1;
END;

or

DECLARE
 TYPE EmpList IS TABLE OF emp_table.ename%TYPE ;
BEGIN
 SELECT emp_name BULK COLLECT INTO EmpList;
END;

Oracle will treat SELECT INTO as an implicit cursor. It will fetch the data starting
at index 1, and successively overwrite elements in the output collection EmpList
until it has retrieved all requested rows.

To convert the BULK COLLECT statement to DB2, a DB2 DGTT can be used as
shown in Example 5-20 on page 194. In some cases the INSERT INTO
(SELECT * FROM) statement can be used, as shown in Example 5-22.

Example 5-22 DB2 code using INSERT INTO

DECLARE v_empname varchar(30);
DECLARE v_num INT DEFAULT 0;
DECLARE GLOBAL TEMPORARY TABLE SESSION.temp_emp_list
 (num INTEGER, EmpName VARCHAR(30))
 WITH REPLACE
 ON COMMIT PRESERVE ROWS
 NOT LOGGED;
INSERT INTO SESSION.temp_emp_list (
 SELECT emp_name
 FROM emp_table
 WHERE detp = v_dept);
196 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information about the GLOBAL TEMPORARY TABLE, refer to the IBM
DB2 9 publication SQL Reference Volume 2.

5.5.3 Passing result sets between procedures
In 5.5.2, “Bulk collect” on page 195, we discuss general conversion principles for
Oracle collection. Here, we demonstrate special cases of passing multiple row
result sets from one procedure to another.

It is often convenient to manipulate many variables at once as one unit. Oracle
nested tables and varrays are frequently used to implement this kind of
application. In Example 5-23, all employees from a specified department who
have an account code equal to 307 need to be retrieved, and the result passed to
an PL/SQL block (it could as well be a client program). The example illustrates a
PL/SQL procedure that returns nested tables as the output parameter.

Example 5-23 PL/SQL procedure returns nested table

CREATE PACKAGE BODY AccountPackage AS
 PROCEDURE AccountList(p_dept_code IN accounts.dept_code%TYPE,
 p_acct_id IN accounts.acct_id%TYPE,
 p_IDs OUT t_EmployeeIDTable,
 p_NumEmployees IN OUT NUMBER) IS

 v_EmployeeID Employees.Emp_id%TYPE;

 -- Local cursor to fetch the registered Employees.
 CURSOR c_RegisteredEmployees IS
 SELECT Emp_id
 FROM Employees
 WHERE dept_code = p_dept_code
 AND acct_id = p_acct_id;
 BEGIN
 /* p_NumEmployees will be the table index. It will start at
 0, and be incremented each time through the fetch loop.
 At the end of the loop, it will have the number of rows
 fetched, and therefore the number of rows returned in
 p_IDs. */
 p_NumEmployees := 0;
 OPEN c_RegisteredEmployees;
 LOOP
 FETCH c_RegisteredEmployees INTO v_EmployeeID;
 EXIT WHEN c_RegisteredEmployees%NOTFOUND;
 Chapter 5. Conversion reference 197

 p_NumEmployees := p_NumEmployees + 1;
 p_IDs(p_NumEmployees) := vEmployeeID;
 END LOOP;
 END AccountList;
END AccountPackage;

Note that type t_EmployeeIDTable should be declared within the
AccountPackage specification, as follows:

 TYPE t_EmployeeIDTable IS TABLE OF Employees.Emp_id%TYPE;

The AccountList procedure can be called from the following PL/SQL block:

DECLARE
v_DeptEmployees AccountPackage.t_EmployeeIDTable;

 v_NumEmployees BINARY_INTEGER := 20;

BEGIN
 -- Fill the PL/SQL table with employees from dept 'BA'
 AccountPackage.AccountList('BA', 307,
v_DeptEmployees,v_NumEmployees);

 -- Insert these employee into temp_table

 FOR v_LoopCounter IN 1..v_NumEmployees
 LOOP
 INSERT INTO temp_table (num_col, char_col)
 VALUES (v_DeptEmployees(v_LoopCounter),
 'In Department BA');
 END LOOP;
END;

Using nested table t_EmployeeIDTable, the results from cursor
c_RegisteredEmployees are passed to the calling block as one unit or as one
output variable.

DB2 has a different mechanism for processing multiple rows results. SQL
procedure uses the following to return result sets to a caller:

� Specify the DYNAMIC RESULT SETS clause in a CREATE PROCEDURE
statement.

� Declare the cursor using a WITH RETURN clause.

� Keep the cursor open for the client application.

� Unlike Oracle, no parameter is required in order for the result set to be
passed out of this procedure.
198 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 5-24 shows how an SQL procedure can pass results from the same
cursor to the calling application. The name of the cursor has been changed to
adhere to the DB2 18 character limit.

Example 5-24 SQL procedure returns multiple rows using CURSOR WITH RETURN

CREATE PROCEDURE AccountPackage.AccountList (IN p_dept_code CHAR(3),
 IN p_acct_id SMALLINT)
LANGUAGE SQL
RESULT SET 1

BEGIN

 DECLARE SQLCODE INTEGER DEFAULT 0;

 DECLARE c_RegisteredEmplo1 CURSOR WITH RETURN TO CALLER
 FOR SELECT "EMP_ID"
 FROM EMPLOYEES
 WHERE "DEPT_CODE" = p_dept_code
 AND "ACCT_ID" = p_acct_id;

 OPEN c_RegisteredEmplo1;

END

There are two options for the WITH RETURN clause:

� WITH RETURN TO CALLER (default): Use this option to return the result set
to the invoker, whether the invoker is an application or another procedure.

� WITH RETURN TO CLIENT: Use this option to return the result set directly to
the application, bypassing any intermediate nested routines.

To imitate the Oracle example in full, we convert a PL/SQL block that calls the
AcountPackage.AccountList procedure to a DB2 SQL procedure, as shown in
Example 5-25.

Example 5-25 DB2 store procedure calls AccountPackage.AccountList

CREATE PROCEDURE AccountPackage.CALL_AccountList ()
 LANGUAGE SQL
BEGIN
 DECLARE sqlcode INT DEFAULT 0;
 DECLARE v_empId INT DEFAULT 0;
 DECLARE v_empNum INT DEFAULT 0;
 DECLARE v_empCnt INT DEFAULT 0;
 DECLARE loc1 RESULT_SET_LOCATOR VARYING; - [1]
 Chapter 5. Conversion reference 199

 SET v_empNum = 20;

 CALL AccountPackage.AccountList('BA',307);
 ASSOCIATE RESULT SET LOCATOR(loc1) WITH - [2]
 PROCEDURE AccountPackage.AccountList;

 ALLOCATE c1 CURSOR FOR RESULT SET loc1; - [3]

L1: LOOP
 FETCH FROM c1 INTO v_empID;
 IF (sqlcode = 100) or (v_empCnt > v_empNum)
 THEN LEAVE L1;
 ELSE
 SET v_empCnt = v_empCnt + 1;
 INSERT INTO temp_table (num_col, char_col)
 VALUES (v_empId, 'IN DEPARTMENT ');
 END IF;
 END LOOP L1;
END

The notes in Example 5-25 are explained as follows; to receive result sets in SQL
procedures, you need to:

� [1] DECLARE result set locators to the stored procedure expected to return
these result sets.

� [2] ASSOCIATE result set locators to the stored procedure expected to return
these result sets.

� [3] ALLOCATE each cursor expected to be returned to a result set locator.

After this is done, rows can be fetched from the result sets. The cursor in this
case plays the role of an Oracle nested table, and allows you to pass multiple
variables (the result set from cursor) as one unit.

5.6 Condition handling
This section discusses the various methods of implementing condition handling
conversion.
200 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.6.1 Condition handling in stored procedure
Both PL/SQL and SQL PL support EXCEPTION HANDLERS to trap SQL errors
and handle them. This mechanism permits separation of a procedure’s error
processing from its main logic.

PL/SQL uses the following syntax for EXCEPTION:

EXCEPTION
 WHEN exception_name1 THEN <executable statements>
 WHEN exception_name2 THEN <executable statements>
 ...
 WHEN exception_nameN THEN <executable statements>
 WHEN OTHER <executable statements> ;

Where exception_name is one of the predefined exceptions (NO_DATA_FOUND,
TOO_MANY_ROWS) or has been defined using the following syntax:

exception_name EXCEPTION;
 PRAGMA EXCEPTION_INIT(exception_name, SQLCODE);

In DB2, SQL procedures exception handling is accomplished through the use of
condition handlers.

A condition handler is an SQL statement that is executed when a specified
condition is encountered during execution of a statement within the body of a
procedure. The handler is declared within a compound statement, and the
handler’s scope is limited to that compound statement.

The following is the syntax for the condition handler declaration:

DECLARE {CONTINUE | EXIT | UNDO} HANDLER FOR <condition>
 SQL-procedure-statement;

where <condition> is one of the following:

� SQLSTATE value
� SQLEXEPTION (SQLCODE < 0)
� SQLWARNING (SQLCODE > 0)
� NOT FOUND
� Condition name

Important: In DB2, an INSERT, UPDATE or DELETE that affects no rows
also results in a NOT FOUND condition (+100).

In the absence of a NOT FOUND handler, the SQLWARNING handler will be
invoked.
 Chapter 5. Conversion reference 201

Based on this, to convert the following PL/SQL code to DB2:

EXCEPTION
 WHEN NO_DATA_FOUND THEN v_status :=0;
 WHEN OTHER THEN v_err_flag :=1;

Two condition handlers need to be declared:

DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET v_status = 0;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SET v_err_flag = 1;

In this example, the Oracle exception name corresponds to a DB2 condition
name, and the predefined NO_DATA_FOUND exception corresponds to the
NOT FOUND condition. To match other Oracle predefined exceptions, the
appropriate DB2 SQLSTATE values would have to be used, and the condition
would be defined using the following syntax:

DECLARE condition_name CONDITION FOR SQLSTATE value;

For example, the Oracle predefined exception TOO_MANY_ROWS can be
converted using the following statement:

DECLARE too_many_rows CONDITION FOR SQLSTATE '21000';

Then a HANDLER for this CONDITION can be declared as follows:

DECLARE EXIT HANDLER FOR too_many_rows
BEGIN
...
END;

The following procedure, shown in Example 5-26, updates title_desc column
declared as char(50). If in_title_desc is longer than 50 characters, then
SQLEXCEPTION value is too long would occur and invoke the declared
HANDLER. As a result, the table will not be updated and err_num = -433 will be
returned as an output parameter.

Example 5-26 demonstrates the use of CONDITION HANDLERS in SQL
procedures.

Note: This example uses a CONTINUE handler. That is, after the handler
logic is complete, the flow of control continues from where the condition
originally occurred. Without the continue handler, the procedure would have
exited early, and returned an exception to the application.
202 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 5-26 Condition handler - SQL EXCEPTION

CREATE PROCEDURE new_title (IN in_title_desc varchar(100)
 ,OUT err_num INT)
LANGUAGE SQL
P1: BEGIN
 DECLARE SQLCODE INTEGER DEFAULT 0;
 DECLARE SQLSTATE CHAR(5) DEFAULT ' ';

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, SQLWARNING
 SET err_num = SQLCODE;

 UPDATE books
 SET title_desc = in_title_desc
 WHERE author = 'JACK LONDON';
END P1

Now this procedure can be changed to HANDLE a long value of title_desc and,
should a value longer than 50 characters occur, update the books table with a
truncated value; refer to Example 5-27.

Example 5-27 Condition handler - handle a long value

CREATE PROCEDURE new_title_1 (IN in_title_desc VARCHAR(100)
 ,OUT message_out CHAR(70))
LANGUAGE SQL
P1: BEGIN
 DECLARE SQLCODE INTEGER DEFAULT 0;
 DECLARE SQLSTATE CHAR(5) DEFAULT ' ';
 DECLARE v_trunc INT DEFAULT 0;
 DECLARE value_error CONDITION FOR SQLSTATE '22001';

 DECLARE CONTINUE HANDLER FOR value_error
 BEGIN
 UPDATE books
 SET title_desc = substr(in_title_desc,1,50)
 WHERE author = 'JACK LONDON';
 SET v_trunc = 1;
 END;

 UPDATE books
 SET title_desc = in_title_desc
 WHERE author = 'JACK LONDON';

 IF v_trunc = 0 THEN
 Chapter 5. Conversion reference 203

 SET message_out = 'TITLE UPDATED WITHOUT PROBLEM';
 ELSE
 SET message_out = 'TITLE UPDATED WITH TRUNCATION' ;
 END IF;
END P1

5.6.2 Condition handling in triggers and functions
Unfortunately, condition handling is not supported in triggers or functions.
However, there are often cases where condition handlers may not be required.
Here we present some examples.

Consider the following Oracle function, which contains a condition handler:

CREATE OR REPLACE FUNCTION func_with_handler1
RETURN NUMBER
AS

v_id NUMBER;
BEGIN

BEGIN
SELECT ObjID
INTO v_id
FROM T1;
EXCEPTION WHEN OTHERS THEN
v_Id := 0;

END;
RETURN v_id;

END;

When converted through the MTK, this function is converted as a stored
procedure because a condition handler is not supported in DB2 functions. In
some cases, this may be the appropriate conversion. If this function were used in
an SQL statement, however, we would need to make an effort to retain it as a
function in DB2.

Upon closer examination of this function, you can see that the function can be
rewritten without handlers, provided that the column ObjID in table T1 is not
nullable. It can be rewritten as follows:

CREATE FUNCTION func_with_handler1()
RETURNS INT
BEGIN ATOMIC
 DECLARE v_id INT;
 SET (v_id) = (SELECT ObjID FROM T1);
 IF (v_id = NULL) THEN
204 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 SET v_id = 0;
 END IF;
 RETURN v_id;
END

The value of v_id is set to null if the SELECT statement returns no rows.
Assuming the column ObjID is not nullable, if v_id is null after SELECT, it must
be the case that no rows were returned. The same technique can be applied to
triggers.

Of course, it could very well be that the logic is so complex that such a simple
substitution is not possible. In that case, the other option is to change your
application so that the function operates without handlers. If an error does occur,
then the exception will be returned to the function caller (whether a stored
procedure or the application itself) for handling.

5.6.3 Converting RAISE_APPLICATION_ERROR
Oracle PL/SQL permits the issuance of user-defined error messages from stored
procedures using RAISE_APPLICATION_ERROR. Thus, errors can be reported
to the application.

To call raise_application_error, you can use the following syntax:

raise_application_error(error_number, message[, {TRUE | FALSE}]);

DB2 SQL procedures support SIGNAL SQLSTATE statements to provide a
similar functionality.

Example 5-28 shows how to rewrite a new_title procedure to report a detection of
input value longer than 50 characters.

Example 5-28 Condition handler - SIGNAL SQLSTATE

CREATE PROCEDURE new_title_2 (IN in_title_desc VARCHAR(100))
LANGUAGE SQL
P1: BEGIN
 DECLARE SQLCODE INTEGER DEFAULT 0;
 DECLARE SQLSTATE CHAR(5) DEFAULT ' ';

 IF (length(in_title_desc) > 50) THEN
 SIGNAL SQLSTATE '71001'
 SET MESSAGE_TEXT = 'Value for update is too long';
 ELSE
 UPDATE books
 SET title_desc = in_title_desc
 Chapter 5. Conversion reference 205

 WHERE author = 'JACK LONDON';
 END IF;
END P1

In the ORACLE PL/SQL exception handler, functions SQLCODE and SQLERRM
can be used to determine which error occurred and to get the associated error
message.

DB2 SQL PL supports the GET DIAGNOSTICS statement to obtain information
related to the SQL statement just executed. This statement can be used within
the CONDITION HANDLER declaration to return a message associated with the
error:

DECLARE EXIT HANDLER FOR SQLEXCEPTION
GET DIAGNOSTICS EXCEPTION 1 out_err_msg = MESSAGE_TEXT;

Together with the error message, GET DIAGNOSTICS permits retrieval of the
number of rows that were affected by the previous UPDATE, DELETE, or
INSERT statement:

GET DIAGNOSTICS v_rowcount = ROW_COUNT;

The RETURN value of a nested procedure can be retrieved by using:

GET DIAGNOSTICS v_retcode = RETURN_STATUS;

5.7 Package initialization
With Oracle you can define initialization in PL/SQL packages, which is executed
only one time when starting a new database session. Example 5-29 shows the
initialization within an Oracle package.

Example 5-29 Oracle package with initialization

CREATE OR REPLACE PACKAGE BODY pkg_init_v1 AS

-- function / procedure definition
-- ...

-- Body initialization
BEGIN

-- ...
END pkg_init_v1;
206 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

In DB2, each SQL PL block is a function or procedure beginning with CREATE
FUNCTION or CREATE PROCEDURE. The MTK is able to convert
Example 5-29 if you define a procedure with the initialization commands.

Example 5-30 shows an alternative of Example 5-29 with the same behavior. In
the initialization, as illustrated in the example, part is now only the call of the
procedure init. Within init is the source of the initialization.

Example 5-30 Oracle package with initialization as procedure

CREATE OR REPLACE PACKAGE BODY pkg_init_v2 AS

-- function / procedure definition
-- ...

-- initialization procedure
PROCEDURE init IS
BEGIN

-- ...
END;

-- Body initialization
BEGIN

init;
END pkg_init_v2;

Within your application, you have to add the call of the procedure init in order to
perform the initialization every time you connect to the database.

5.8 Global variables
Global variables in Oracle are distinct for each connected user. The variables are
global to the connection. The appropriate conversion is to use DB2 global
temporary tables.

Example 5-31 shows a simple Oracle package with the definition and
initialization of two global variables.

Example 5-31 Definition of global variables in Oracle

CREATE OR REPLACE PACKAGE pkg_gv IS

 global_variable_1 VARCHAR2(128) := NULL;
 global_variable_2 INTEGER := 1;
 Chapter 5. Conversion reference 207

END pkg_gv;

Definition and initialization
Example 5-32 is a DB2 stored procedure with the definition of a global temporary
table. The table contains all the global variables you need within a session. Each
column of the table corresponds to a global variable. The table needs only to
have one row with the respective values.

The INSERT statement is necessary to initialize the global variables.

Example 5-32 Temporary table with global variables

CREATE PROCEDURE init_global_variables
LANGUAGE SQL
BEGIN
 -- declare temporary table for global variables
 DECLARE GLOBAL TEMPORARY TABLE session.global_variables (
 global_variable_1 VARCHAR(128)
 ,global_variable_2 INTEGER)
 ON COMMIT PRESERVE ROWS;

 -- initialize global variables
 INSERT INTO session.global_variables (
 global_variable_1
 ,global_variable_2)
 VALUES (null
 ,0);
END!

Note: ON COMMIT PRESERVE ROWS indicates that rows of the table will be
preserved after ending a transaction with COMMIT.

Using a procedure to initialize the temporary table yields two key benefits:

� The procedure developer does not have to hunt through application code
(which may be maintained by another person) to find the DDL of the
temporary table.

� The definition of the table is centralized at one place. If the global variables
require changes, you do not have to search for all the declarations. Instead,
you simply change the definition in one place.

As mentioned before, the values of the global variables are distinct for each
connection. This means that you have to define the DB2 global temporary table
208 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

at the beginning of each session. To do this with the definition of Example 5-32,
you need to call the stored procedure init_global_variables after you connect to
the DB2 database in your application.

When developing or converting other procedures that rely on these global
variables, you will have to run the init_global_variables procedure first to define
the temporary table in the current connection. Otherwise, DB2 will not be able to
resolve references to the temporary table at build time.

Setting values of global variables
To set a new value to a global variable, use an UPDATE statement to the
corresponding column in the temporary table GLOBAL_VARIABLES as shown:

UPDATE session.global_variables
 SET global_variable_1 = new_value;

Getting values of global variables
To get the value of a global variable, use a SELECT statement to the
corresponding column in the temporary table GLOBAL_VARIABLES, as shown:

SELECT global_variable_1
 INTO gv_value
 FROM session.global_variables
 FETCH FIRST 1 ROWS ONLY;

Under normal circumstances, you only have one row in the
GLOBAL_VARIABLES table. To ensure that you get no more than one row as a
result of the SELECT statement, use the FETCH FIRST 1 ROWS ONLY clause.

To prevent users from direct accessing the global temporary table, you may
optionally encapsulate the statements to set or get values in stored procedures.
In this case, you have to implement a procedure for each global variable. After
that, you have to grant the user the appropriate authority.

Using INOUT parameters
When using only a few global variables shared by a few procedures, it might be
more practical to simply convert the global variables as parameters. In this case,
change the parameter definition of the procedures (which uses global variables)
by adding an INOUT parameter for each of the global variables.

5.9 Hierarchical queries
The Oracle CONNECT BY ... START WITH ...clause can be used to select data
that has a hierarchical relationship, usually some sort of parent - child
relationship. In Example 5-33, the table EMPLOYEES consists of just these
 Chapter 5. Conversion reference 209

attributes: parent and child. We make sure (by means of a unique constraint) that
the child is unique within the table.

Example 5-33 Oracle hierarchical query

SELECT substr(lpad(' ', level * 2) || emp_id,1,20) AS emp_id
 , last_name
 , emp_mgr_id
 , level
FROM employees
CONNECT BY PRIOR emp_id = emp_mgr_id
START WITH emp_mgr_id IS NULL;

EMP_ID LAST_NAME EMP_MGR_ID LEVEL
-------------------- -------------------- ---------- ----------

10000 Sands 1
 10001 Marcus 10000 2
 10004 Polite 10001 3
 10005 Tenor 10001 3
 10002 January 10000 2
 10008 Even 10002 3
 10010 December 10002 3
 10011 August 10002 3
 10003 March 10000 2
 10006 Blonde 10003 3
 10007 Damon 10003 3
 10009 Ration 10003 3

In the following example we provide a DB2 UDF to get the same result. The
identity of each row is actually its encoded position in the hierarchy (this is
arbitrary). The solution also assumes that the resulting sorting can be done
based on the path. Here this works as long as no more than nine siblings exist on
any given level. However, a simple formatting of the path to a specific number of
digits per level can solve this problem.

The script uses SQL table functions. This capability, however, is only used for
encapsulation and is not required for function.

The function get_direct_childs() collects all immediate children of a node in the
hierarchy and returns them together with their relative position to each other and
in the tree; see Example 5-34.

Example 5-34 Computing of direct child data

CREATE FUNCTION get_direct_childs(code VARCHAR(30), parent INTEGER)
RETURNS TABLE(code VARCHAR(30), id INTEGER)
210 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

READS SQL DATA
DETERMINISTIC
NO EXTERNAL ACTION
RETURN
 SELECT code || '.' || RTRIM(CHAR(RANK() OVER (ORDER BY child_id))),
 child_id
 FROM (SELECT empno FROM emp
 WHERE emp.mgr
 = get_direct_childs.parent)
 AS T(child_id)!

The function get_rec_childs() contains the recursive logic. It starts with the root,
which is provided by the caller, and then collects children until no more new
children can be found; see Example 5-35.

Example 5-35 Hierarchical query with entry point

CREATE FUNCTION get_rec_childs(root INTEGER)
RETURNS TABLE(code VARCHAR(30), id INTEGER)
READS SQL DATA
DETERMINISTIC
NO EXTERNAL ACTION
RETURN
 WITH rec(code, id)
 AS (VALUES(CAST('1' AS VARCHAR(30)), root)
 UNION ALL
 SELECT t.code, t.id
 FROM rec, TABLE(get_direct_childs(rec.code, rec.id)) AS T)
 SELECT code, id FROM rec !

The function get_level() computes the hierarchy level of the current data; see
Example 5-36.

Example 5-36 Compute hierarchy level

CREATE FUNCTION get_level(code VARCHAR(30))
RETURNS INTEGER
DETERMINISTIC
NO EXTERNAL ACTION
RETURN
 (length(code) - length(replace(code, '.', '')))!

You get the hierarchy tree with the UDF get_rec_childs(). As a parameter, you
have to specify the root.
 Chapter 5. Conversion reference 211

Example 5-37 shows the use of the hierarchy function and its output with an
adequate format.

Example 5-37 Sample use of hierarchical query

SELECT T.code
 ,T.id
 ,substr((space(2 * get_level(code)) || employees.last_name)
 , 1
 , 20) as last_name
 ,emp_mgr_id
FROM TABLE(get_rec_childs(10000)) AS T
 ,employees
where T.id = employees.emp_id
ORDER BY code!

CODE ID LAST_NAME EMP_MGR_ID
----------- ----------- -------------------- -----------
1 10000 Sands -
1.1 10001 Marcus 10000
1.1.1 10004 Polite 10001
1.1.2 10005 Tenor 10001
1.2 10002 January 10000
1.2.1 10008 Even 10002
1.2.2 10010 December 10002
1.2.3 10011 August 10002
1.3 10003 March 10000
1.3.1 10006 Blonde 10003
1.3.2 10007 Damon 10003
1.3.3 10009 Ration 10003

The article “Port CONNECT BY to DB2” at the following Web site explains how to
map recursive queries from Oracle to DB2 using recursive common table
expressions:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0510rie
lau/

5.10 Print output messages
When converting the call statement of Oracle function dbms_output.put_line(),
the MTK provides only a function skeleton for you. You still need to implement
the function that will best suit your application needs.
212 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0510rielau/

We offer you a user-defined function (UDF) solution called PUT_LINE() that will
enable file output from pure SQL, such as an SQL stored procedure. You can
use it as a tool for debugging stored procedures. However, it also allows you to
write to a specified file for other purposes.

You can find the sources of the function and an installation guide as additional
material on the IBM Redbooks Internet site; see details in Appendix G,
“Additional material” on page 701.

5.11 Implicit casting in SQL
In addition to syntax differences, here we also highlight differences in how Oracle
and DB2 handle data type casting. Whether you know it or not, Oracle performs
implicit casting of data types (as required), while DB2 is strongly typed. Consider
the following example:

[1] create table t1 (c1 number);
[2] insert into t1 ('1')
[3] select * from t1 where c1='1'

In the first line we create a table, t1, which has a numeric column. In line two,
however, the character value 1 can be inserted into t1 without error. The value
was implicitly cast by Oracle from varchar2 to number.

In line three, we have yet another example of implicit casting because the
predicate c1 (numeric type) and 1 (character type) are allowed to be compared.
Certainly there are many more cases than this. Implicit casting can happen in a
variety of cases.

Because DB2 is strongly typed, SQL may have to be slightly rewritten to perform
explicit casts. Implicit casting can raise positive and negative issues. It certainly
makes SQL programming easier, but it can also be dangerous, and incurs some
overhead, which is why purists will discourage its use.

Following the previous example, we can rewrite the series of SQL as follows:

[1] create table t1 (c1 INT);
[2] insert into t1 (1)
[3] select * from t1 where c1=1

Of course, these are the easiest cases to solve because it is obvious where the
problem lies. Another common area where implicit casting must be resolved is in
functions and operators. For example:

create procedure echo_input (v_num in numver(9,0), v_echo out
varchar2)
 Chapter 5. Conversion reference 213

as
begin
 v_echo := ' Input number is: ' || v_num;
end;

In this case, the concatenation operator (||) in Oracle will automatically cast
v_num to varchar2 so that the strings can be combined. In DB2, v_num will have
to be explicitly cast to a character type.

If you convert this code through the MTK, it will help you identify all places where
implicit casting is occurring by providing code to perform explicit casting. If you
decide to perform a conversion without tools, it will take more time to find them.
DB2 supports the CAST function to help you with datatype conversion.

Here how that code fragment will look in DB2:

create procedure echo_input (v_num in integer, v_echo out
varchar(80))
as
begin
 v_echo := ' Input number is: ' || cast (v_num as CHAR(7));
end;

Based on past experience, among the most time-consuming porting activities will
revolve around converting implicit casting to explicit casting in dynamic SQL.
Because dynamic SQL, in general, cannot be fully resolved until runtime, the
MTK is unable to determine the proper casting functions to apply.

Consider the following example:

create procedure dyn_cast
as
 val varchar2(100) := '100';
begin
 EXECUTE IMMEDIATE 'CREATE TABLE T1 (C1 number)';
 EXECUTE IMMEDIATE 'INSERT INTO T1 VALUES (''' || val || ''')';
end;

Here we create a table T1 with a numeric column C1. When you convert to DB2,
the procedure will build with very few changes. The final SQL statement as
submitted to the database engine will look like this:

INSERT INTO T1 VALUES ('100');

However, it will fail at runtime because implicit casting is occurring in the INSERT
statement.
214 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Dealing with implicit casting will be quite troublesome at first, but as you
troubleshoot these problems, you will learn to quickly identify these situations.
The upside is that it will ultimately make your applications cleaner and in some
cases, better performing (especially in high volume SQL statements).

5.12 Outer join
Both Oracle and DB2 support outer join. DB2 supports the ANSI SQL syntax for
three types of outer join: right, left, and full. Oracle supports the same syntax,
starting in version 9i. Oracle also has proprietary left and right outer join syntax
that DB2 does not support. Table 5-4 demonstrates how to map this old syntax to
the DB2 equivalent for simple examples.

Table 5-4 Mapping of join definition

The MTK provides basic support for Oracle outer joins, with the following
restrictions:

� Only the equality (=) operator is supported.

� The (+) operator cannot follow a complex expression; it can follow a column
reference only.

In some cases, the MTK will not be able to convert complex outer join syntax.
The following example shows how a complex SQL statement involving multiple
outer joins can be mapped from Oracle to DB2 syntax.

It is important to realize that in Oracle, outer joins are defined in the WHERE
clause. By contrast, in DB2 they are defined in the FROM clause. Further, the

Oracle DB2

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B
WHERE A.id (+) = B.sales_rep_id;

SELECT A.last_name,A.id,B.name
FROM emp A
RIGHT OUTER JOIN customer B
ON A.id = B.sales_rep_id;

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B
WHERE A.id = B.sales_rep_id (+);

SELECT A.last_name,A.id,B.name
FROM emp A
LEFT OUTER JOIN customer B
ON A.id = B.sales_rep_id;

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B
WHERE A.id (+) = B.sales_rep_id
(+);

SELECT A.last_name,A.id,B.name
FROM emp A
FULL OUTER JOIN customer B
ON A.id = B.sales_rep_id;
 Chapter 5. Conversion reference 215

outer join condition of the two tables must be specified in the ON clause, not in
the WHERE clause.

Example 5-38 shows the Oracle outer join syntax.

Example 5-38 Oracle outer joins

SELECT
 t1.surname
FROM
 EXAMPLE_TABLE1 t1,
 EXAMPLE_TABLE2 t2,
 EXAMPLE_TABLE3 t3,
 EXAMPLE_TABLE4 t4
WHERE
 ((t1.emptype = 1) OR (t1.position = 'Manager'))
 AND (t1.empid = t2.empid(+))
 AND (t2.empid = t3.empid(+))
 AND (t2.sin = t3.sin(+))
 AND (t3.jobtype(+) = 'Full-Time')
 AND (t2.empid = t4.empid(+))
 AND (t2.sin = t4.sin(+))
ORDER BY
 t1.emptype, t2.other

Example 5-39 shows the DB2 conversion.

Example 5-39 DB2 outer join conversion

SELECT
 t1.surname,
FROM
 EXAMPLE_TABLE1 t1 LEFT OUTER JOIN
 EXAMPLE_TABLE2 t2 ON (t2.empid = t1.empid) LEFT OUTER JOIN
 EXAMPLE_TABLE3 t3 ON (t3.sin = t2.sin)
 AND (t3.empid = t2.empid)
 AND (t3.jobtype = 'Full-Time')
 LEFT OUTER JOIN
 EXAMPLE_TABLE4 t4 ON (t4.sin = t2.sin)
 AND (t4.empid = t2.empid)
WHERE
 ((t1.emptype = 1) OR (t1.position = 'Manager'))

ORDER BY
 t1.emptype, t2.other
216 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.13 Decode statement
The Oracle DECODE statement can be converted to a DB2 CASE statement in
two ways:

DECODE (condition, case1, assign1, case2, assign 2....,default)

This can be converted to the simple CASE statement:

CASE condition
WHEN case1 THEN assign 1
WHEN case2 THEN assign 2
....
ELSE default

END

Or, to the searched CASE statement:

CASE
WHEN condition THEN assign 1
WHEN condition THEN assign 2
....
ELSE default

END

For example, here is the Oracle code:

SELECT AVG(DECODE(Grade, 'A', 1,
 'B', 2,
 'C', 3,
 'D', 4,
 'E', 5))
INTO v_Grade FROM Students
WHERE DEPARTMENT = p_Department AND Course_ID = p_Course_ID;

This can be converted to DB2 code:

SELECT AVG(CASE GRADE WHEN 'A' THEN 1
 WHEN 'B' THEN 2
 WHEN 'C' THEN 3
 WHEN 'D' THEN 4
 WHEN 'E' THEN 5
 END) INTO v_Grade
FROM Students
 Chapter 5. Conversion reference 217

WHERE DEPARTMENT = p_Department
 AND Course_ID = p_Course_ID;

5.14 Rownum
Oracle uses the ROWNUM pseudo-column to control the number of rows
returned from an SQL statement. In DB2, you determine the number of rows to
read with the FETCH FIRST n ROWS ONLY statement.

Table 5-5 shows how different statements can be converted.

Table 5-5 Mapping of the ROWNUM function

Oracle DB2

SELECT select * from tab1
where ROWNUM < 10

select * from tab1
FETCH FIRST 9 ROWS ONLY;

UPDATE update tab1
set c1 = v1
where c2 = v2
and ROWNUM <= 10

FOR lv as temp_cur CURSOR FOR
 SELECT *
 FROM tab1
 WHERE c2 = v2
 FETCH FIRST 10 ROWS ONLY
 FOR UPDATE DO
 UPDATE tab1
 SET c1 = v1
 WHERE CURRENT OF temp_cur;
END FOR;

With FixPak 4 or above:
UPDATE (select c1 from
tab1where c2=v2 fetch first 10
rows only) set c1=v1

DELETE delete from tab1
where ROWNUM <= 100

FOR lv as temp_cur CURSOR FOR
 SELECT * FROM tab1
 FETCH FIRST 100 ROWS ONLY
 FOR UPDATE DO
 DELETE FROM tab1
 WHERE CURRENT OF temp_cur;
END FOR;

With FixPak 4 or above:
DELETE FROM (SELECT 1 FROM tab1
FETCH FIRST 100 ROWS ONLY)
218 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.15 INSERT, UPDATE, DELETE returning values
DB2 has introduced several new features that let you use SELECT and SELECT
INTO statements to retrieve result sets from SQL data-change operations
(INSERT, UPDATE, and DELETE) embedded in the FROM clause. This feature
can be used to migrate Oracle code using a similar feature. Example 5-40 is
sample Oracle code using a RETURNING INTO statement to retrieve a value
after updating a table.

Example 5-40 Oracle code using RETURNING INTO

Update staff
Set salary =10000.0
where id =p_id
returning name into p_name;

Example 5-41 and Example 5-42 show two ways to convert this Oracle code into
DB2 code; here SELECT INTO is shown.

Example 5-41 DB2 code using SELECT INTO

SELECT name INTO p_name
FROM NEW TABLE (

UPDATE staff
SET salary = 10000.0
WHERE id = p_id);

Here, using SELECT is shown.

Example 5-42 DB2 code using SELECT

set p_name = (SELECT name
FROM NEW TABLE (

UPDATE staff
SET salary = 10000.0
WHERE id = p_id));

5.16 Select from DUAL
Oracle provides a dummy table called DUAL, which is frequently used to retrieve
system information. When converting references to DUAL, you have several
options:

� Change the SELECT statement to a VALUES statement
� Directly assign special registers to variables (in SQL PL)
 Chapter 5. Conversion reference 219

� Create a table or view called DUAL to mimic the Oracle DUAL table (DUAL
would need to be created or aliased under all schemas)

� Use the DB2 dummy table SYSIBM.SYSDUMMY1, which has a single row
and one column, IBMREQD, with a value of Y

� Create a synonym of SYSIBM.SYSDUMMY1 called DUAL

Table 5-6 illustrates dummy table usage.

Table 5-6 Use of dummy table for system information

In some circumstances it may be too costly to comb through all source code to
convert references to DUAL and Oracle system variables to use DB2 syntax. As
an alternative, you can preserve your existing SQL by defining a view named
DUAL with the (column) value(s) you need; see Example 5-43.

Example 5-43 DB2 dummy view for system information

create view dual (sysdate)
as select CURRENT TIMESTAMP from SYSIBM.SYSDUMMY1
!

Here is the result:

db2 => select sysdate from dual

SYSDATE

2003-10-15-18.03.59.399071

 1 record(s) selected.

5.17 Manipulating date and time
Both Oracle and DB2 have date and time data types and functions to get the
date and time from the system or convert the date and time into different formats,
and perform arithmetic on dates. Oracle has DATE, which can be mapped to

Oracle DB2

select SYSDATE from DUAL VALUES(CURRENT TIMESTAMP) INTO
<variable>

or

select CURRENT TIMESTAMP from
SYSIBM.SYSDUMMY1
220 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2 TIMESTAMP. DB2 has two other date and time functions known as DATE
and TIME.

If your applications only use the date portion of Oracle’s date data type, it will be
more efficient to convert these types to DB2’s DATE type (rather than
TIMESTAMP).

Here we show examples of date manipulation.

� Getting dates

In Oracle, you use SELECT to get the date:

SELECT sysdate from dual;

In DB2, you use VALUES to get the date:

SELECT current timestamp FROM sysibm.sysdummy1;
SELECT current date FROM sysibm.sysdummy1;
SELECT current time FROM sysibm.sysdummy1;

� Converting dates

To convert the date in Oracle, TO_CHAR is used:

to_char(sysdate,'YYYY-MM-DD')
to_char(sysdate,'MM/DD/YYYY')

DB2 V8.1 supports functions TO_CHAR and TO_DATE but for only one
format, as illustrated:

TO_CHAR (timestamp_expression,'YYY-MM-DD HH24:MI:SS')
TO_DATE (string_expression, 'YYY-MM-DD HH24:MI:SS')

In addition, you can use the CHAR function to convert the date and specify
the localized format such as:

CHAR(current date,ISO);
CHAR(current date,USA);

The following additional examples demonstrate how DB2 dates can be
converted to different formats:

char(current date) = '10/01/2003'
char(current date + 3 days) = '10/04/2003'
char(current date,ISO) = '2003-10-01'
char(current date,EUR) = '01.10.2003'
char(current date,JIS) = '2003-10-01'
char(current time,USA) = '02:21 PM'
char(current time + 2 hours,EUR) ='16.21.23'

Note: For more information about using the CHAR function for date and
time conversion, refer to the DB2 publication SQL Reference.
 Chapter 5. Conversion reference 221

� Dates arithmetic

Dates arithmetic is frequently used. Here is an Oracle example:

add_months(sysdate,16)

In DB2, similar function can be implemented as follows:

current date + 16 months

Here are other examples of how arithmetic manipulation can be done with
DB2 dates:

current date = 10/02/2003
current date + 3 days = 10/05/2003
current timestamp + 2 years = 2005-10-02-12.33.27.667000
current timestamp - 2 months = 2003-08-02-12.33.27.667002
current time + 5 minutes = 12:38:27

DB2 also provides other functions to manipulate with dates, such as days,
dayname, monthname, and much more.

� Using UDF

Certain Oracle functions not supported by DB2 can be easily duplicated by
writing UDFs. For example, the following UDF can be used to convert the
Oracle built-in function last_day:

CREATE FUNCTION last_day(v_date date)
RETURNS DATE
SPECIFIC lastday
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN (v_date + 1 MONTHS) - DAY(v_date + 1 MONTHS) DAYS;

You can find the UDF samples to convert Oracle DUMP(date), NEW_TIME,
NEXT_DAY(), TRUNC() and other sample UDFs for migration at the following
IBM Web site:

http://www7b.software.ibm.com/dmdd/library/samples/db2/0205udfs/

Another example of using DB2 UDF in dates arithmetic is converting the
Oracle months_between function:

months_between(sysdate,v_date)

If you use the MTK to automate your conversion, it will implement
months_between as a User Defined Function and automatically deploy it into
the database. Here is the source code for this function:

CREATE FUNCTION months_between(d1 TIMESTAMP, d2 TIMESTAMP)
 RETURNS FLOAT
 LANGUAGE SQL
 DETERMINISTIC
222 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www7b.software.ibm.com/dmdd/library/samples/db2/0205udfs/

 NO EXTERNAL ACTION
 CONTAINS SQL
 RETURN 12*(year(d1) - year(d2)) + month(d1) - month(d2)
 + (TIMESTAMPDIFF(2,CHAR(d1 - (d2 + (12*(year(d1) - year(d2))
 + month(d1) - month(d2)) MONTHS))) / 2678400.0)

This function employs the DB2 built-in function TIMESTAMPDIFF. Details for
TIMESTAMPDIFF can be found in the DB2 manual SQL Reference.

Here we provide another version of a months_between UDF:

CREATE FUNCTION NoCASE.months_between(d1 TIMESTAMP, d2 TIMESTAMP)
RETURNS FLOAT
LANGUAGE SQL
DETERMINISTIC
NO EXTERNAL ACTION
CONTAINS SQL
RETURN 12*(year(d1) - year(d2)) + month(d1) - month(d2)
+ SIGN(ABS(day(d1) - day(d2)) * (day(d1 + 1 day)*day(d2 + 1 day) -
1))
*((day(d1) - day(d2))*86400 + midnight_seconds(d1) -
midnight_seconds(d2)) / 2678400.0
END

For more information about manipulation with dates, refer to the article on the
DB2 developer domain:

http://www7b.software.ibm.com/dmdd/library/techarticle/0211yip/0211yip3
.html

5.18 Set operations
Set operators can be used to combine result sets in both Oracle and DB2.
Table 5-7 lists the differences between the products.

Table 5-7 Mapping of set operations

DB2 supports the ALL option on each operator, allowing duplicates to be
preserved. Oracle allows ALL only on UNION.

Oracle DB2

UNION UNION

UNION ALL UNION ALL

MINUS EXCEPT

INTERSECT INTERSECT
 Chapter 5. Conversion reference 223

http://www7b.software.ibm.com/dmdd/library/techarticle/0211yip/0211yip3.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0211yip/0211yip3.html

Null values conversion
In Oracle, the function NVL provides a conversion of NULL values to non-null
values:

NVL(TO_CHAR(MANAGER_ID),’No Manager’)

This statement converts all of the NULL values in the manager_id column to the
string No Manager.

In DB2, use the COALESCE function to convert nulls, as shown here:

COALESCE(MANAGER_ID,’No Manager’)

5.19 Function that returns rowtype
Oracle allows result sets to be returned from functions if their return type is an
REF cursor, as illustrated in Example 5-44. You will likely convert such functions
as procedures in DB2, because this minimizes the number of application
changes required (you would simply add the word CALL in front of the function
call).

The (less desirable) alternative is to convert this as a table function, but table
functions in DB2 have limited functionality, and the application must convert the
function call into a SELECT statement.

Example 5-44 Oracle function with a REF cursor

CREATE OR REPLACE PACKAGE ReturnRtype AS
 TYPE t_RefCur IS REF CURSOR;

 -- Selects from employees based on the supplied department,
 -- and returns the opened cursor variable.
 FUNCTION EmployeesQuery(p_Department IN VARCHAR2)
 RETURN t_RefCur;
END ReturnRtype;

CREATE OR REPLACE PACKAGE BODY ReturnRtype AS

 -- Selects from employees based on the supplied department,
 -- and returns the opened cursor variable.
 FUNCTION EmployeesQuery(p_Department IN VARCHAR2)
 RETURN t_RefCur IS
 v_ReturnCursor t_RefCur;
 v_SQLStatement VARCHAR2(500);
 BEGIN
 v_SQLStatement := 'SELECT * FROM employees WHERE department = :m';
224 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 -- Open the cursor variable, and return it.
 OPEN v_ReturnCursor FOR v_SQLStatement USING p_Department;
 RETURN v_ReturnCursor;
 END EmployeesQuery;
END ReturnRtype;

The converted DB2 code is shown in Example 5-45.

Example 5-45 Conversion to a procedure with a Result Set in DB2

Create Procedure EmployeesQuery (IN p_Department varchar(30))
LANGUAGE SQL
DYNAMIC RESULT SETS 1
BEGIN
 DECLARE C1 cursor with return to client for
 Select * from employees where department = p_Department;
 OPEN C1;
END!

5.20 Local functions
Oracle allows procedures or functions—called Local Procedures or Local
Functions—to be created and referenced within the body of a stored procedure.
When converting this to DB2, the Local Procedure or Local Function must be
created outside of the Stored Procedure that references it, before it can be used.

Example 5-46 shows how a Local Function created and referenced in an Oracle
stored procedure would be converted to DB2. It shows the Oracle source code of
the function.

Example 5-46 Oracle procedure with Local function

CREATE OR REPLACE PROCEDURE callLocalFunc AS
 /* Local declarations, which include a cursor, variable, and a
 function. */
 CURSOR c_AllEmployees IS
 SELECT first_name, last_name
 FROM employees;

 v_FormattedName VARCHAR2(50);
 Chapter 5. Conversion reference 225

 /* Function which will return the first and last name
 concatenated together, separated by a space. */
 FUNCTION FormatName(p_FirstName IN VARCHAR2,
 p_LastName IN VARCHAR2)
 RETURN VARCHAR2 IS
 BEGIN
 RETURN p_FirstName || ' ' || p_LastName;
 END FormatName;

-- Begin main block.
BEGIN
 FOR v_EmployeeRecord IN c_AllEmployees LOOP
 v_FormattedName :=
 FormatName(v_ EmployeeRecord.first_name,
 v_ EmployeeRecord.last_name);
 DBMS_OUTPUT.PUT_LINE(v_FormattedName);
 END LOOP;
END callLocalFunc;

Example 5-47 shows the DB2 conversion of the function.

Example 5-47 DB2 Conversion of Oracle Procedure with Local Function

CREATE FUNCTION FormatName(p_FirstName VARCHAR(20), -[1]
 p_LastName VARCHAR(20))
 RETURNS VARCHAR(41)
LANGUAGE SQL
BEGIN ATOMIC
 RETURN p_FirstName || '' || p_LastName;
END!

CREATE PROCEDURE callFunc ()
LANGUAGE SQL

BEGIN
 DECLARE c_AllEmployees CURSOR WITH RETURN FOR

SELECT FormatName(first_name, last_name) FROM employees;

 OPEN c_AllEmployees;
END!
226 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The note in Example 5-47 is explained as follows:

[1] The function must be created before the procedure that references it.

5.21 Partitioning and MDC

If you are using partitioned tables on Oracle, you will need to decide how to
partition your data in DB2. In this section we introduce the various partitioning
features provided by DB2 and compare them to the partitioning techniques on
Oracle.

In a single database partition, DB2 automatically organizes data on disk by
distributing data in a round robin fashion across all containers of a table space.
This method of data organization is the default behavior on DB2 and does not
require any type of further definition. However, DB2 can be designed to organize
data in other ways as well. These different data organization schemes can be
specified at the database or table level.

The data organization methods available on DB2 are:

� Table partitioning
� Database partitioning
� Multidimensional clustering
� Combined organization schemes

Table partitioning
Table partitioning in DB2 is also referred to as range partitioning or data
partitioning. This data organization scheme is one in which table data is divided
across multiple storage objects called data partitions or ranges according to
values in one or more table columns. Each data partition is stored separately and
can be in different table spaces.

Example 5-48 is an example of table partitioning on DB2. The example
demonstrates the use of a “shorthand” notation that automatically generates
24 partitions of uniform size; that is, one partition for each month over a two-year
period. Note that MINVALUE and MAXVALUE will catch all values that fall below
and above the defined ranges.

Example 5-48 DB2 table partitioning

CREATE TABLE orders
(

l_orderkey DECIMAL(10,0) NOT NULL,
l_partkey INTEGER,
l_suppkey INTEGER,
 Chapter 5. Conversion reference 227

l_linenumber INTEGER,
l_quantity DECIMAL(12,2),
l_extendedprice DECIMAL(12,2),
l_shipdate DATE

) PARTITION BY RANGE(l_shipdate)
(STARTING MINVALUE,
 STARTING '1/1/1992' ENDING '12/31/1993' EVERY 1 MONTH,
 ENDING AT MAXVALUE);

Example 5-49 illustrates table partitioning using manual syntax, which is required
when the partitioning key is composed of a composite column.

Example 5-49 Table partitioning using manual syntax

CREATE TABLE sales
 (
 year INT,
 month INT
)

IN tbsp1, tbsp2, tbsp3, tbsp4, tbsp5, tbsp6, tbsp7, tbsp8
PARTITION BY RANGE (year, month)
(STARTING FROM (2001, 1)

 ENDING (2001,3) IN tbsp1,
 ENDING (2001,6) IN tbsp2,
 ENDING (2001,9) IN tbsp3,
 ENDING (2001,12) IN tbsp4,
 ENDING (2002,3) IN tbsp5,
 ENDING (2002,6) IN tbsp6,
 ENDING (2002,9) IN tbsp7,
 ENDING AT MAXVALUE);

Oracle’s range partitioning is conceptually comparable to table partitioning on
DB2. The differences between them lie mainly in the syntax used to define how
the table is partitioned.

As a comparison, the DB2 example (Example 5-49) has been rewritten to show
how range partitioning might be written on Oracle (Example 5-50).

Example 5-50 Oracle range partition

CREATE TABLE sales
(
 year int,
 month int
)

228 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 PARTITION BY RANGE (year, month)
 (PARTITION p1 VALUES LESS THAN (2002,4) tablespace tbsp1,
 PARTITION p2 VALUES LESS THAN (2002,7) tablespace tbsp2,
 PARTITION p3 VALUES LESS THAN (2002,10) tablespace tbsp3,
 PARTITION p4 VALUES LESS THAN (2002,13) tablespace tbsp4,
 PARTITION p5 VALUES LESS THAN (2003,4) tablespace tbsp5,
 PARTITION p6 VALUES LESS THAN (2003,7) tablespace tbsp6,
 PARTITION p7 VALUES LESS THAN (2003,10) tablespace tbsp7,
 PARTITION p8 VALUES LESS THAN (MAXVALUE) tablespace tbsp8);

Note that on Oracle each partition is given a name. In contrast, on DB2 the
partitions in these examples are not named. On DB2, if the partition is not
explicitly named, a system name is generated by default. However, because the
system name can be long and cumbersome, it is recommended that you
explicitly name the partition. This can be done using the PART or PARTITION
keyword.

Also note that on Oracle each partition contains values less than, and not
including, the value that defines that partition. On DB2, the values defined for
each partition are included within that partition.

DB2 provides a method of table partitioning that is based on a generated
expression of a column. Depending on the situation, table partitioning on a
generated column may be used in a similar way to list partitioning on Oracle.

Example 5-51 is an example of Oracle’s list partitioning.

Example 5-51 Oracle list partitioning

CREATE TABLE customer
(
 cust_id int,
 cust_prov varchar2(2)
)
 PARTITION BY LIST (cust_prov)
 (PARTITION p1 VALUES ('AB', ‘MB”) tablespace tbsp_ab,
 PARTITION p2 VALUES ('BC') tablespace tbsp_bc,
 PARTITION p3 VALUES ('SA') tablespace tbsp_mb,
 ….
 PARTITION p13 VALUES ('YT') tablespace tbsp_yt,
 PARTITION p14 VALUES(DEFAULT) tablespace tbsp_remainder);

Example 5-52 shows how Oracle’s list partitioning can be written as DB2 table
partitioning based on a generated column.
 Chapter 5. Conversion reference 229

Example 5-52 DB2 conversion of Oracle list partition

CREATE TABLE customer
(
 cust_id INT,
 cust_prov CHAR(2),
 cust_prov_gen GENERATED ALWAYS AS
 (CASE
 WHEN cust_prov = 'AB' THEN 1
 WHEN cust_prov = 'BC' THEN 2
 WHEN cust_prov = 'MB' THEN 1
 WHEN cust_prov = ‘SA’ THEN 3
 ...
 WHEN cust_prov = 'YT' THEN 13

ELSE 14
 END)
)
IN tbsp_ab, tbsp_bc, tbsp_mb, tbsp_remainder
 PARTITION BY RANGE (cust_prov_gen)

 (STARTING 1 ENDING 14 EVERY 1);

In Example 5-52, numeric values are generated based on values for
CUST_PROV. The numeric values populate the generated column,
CUST_PROV_GEN, on which table partitioning is based.

Because an automatic version of the syntax is used in this example, it is
sufficient to list the table spaces for each partition with a single IN clause. If the
manual version of the syntax was used and each partition was defined
individually, then an IN clause for each partition would be required (as shown in
Example 5-49 on page 228).

Database partitioning
On DB2, database partitioning is used when the database is created as a
multiple partitioned database. This feature of DB2 is an optional feature and is
known as the Database Partitioning Feature (DPF). DPF is mostly used for large,
data warehousing applications although it can be used in some types of OLTP
applications as well. When database partitioning is used, the multiple database
partitions appear and work together as a single unit, This architecture allows
complex data access tasks to run on different parts of the data in parallel.

When this feature is enabled, data organization is based on a hashing algorithm
that distributes table data across the multiple database partitions. Each database
partition can reside on a separate physical machine. Data is hashed according to
a distribution key that is either explicitly defined in the table using the
DISRIBUTE BY HASH clause, or is defaulted to the first qualified column. Ideally,
230 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

a distribution key is chosen that can hash the table data evenly across all
database partitions.

Example 5-53 is an example of how a table is defined when database partitioning
is used.

Example 5-53 Define a table in a partitioned database

CREATE TABLE partition_table
 (partition_date date NOT NULL,
 partition_data VARCHAR(20) NOT NULL
)
IN tbsp_parts
DISTRIBUTE BY HASH (partition_date);

The DISTRIBUTE BY HASH clause of a table is only used in a multiple database
environment. To partition data in a single database partitioned environment,
table partitioning or multidimensional clustering organization is used.

Hash partitioning on Oracle is done in a single database environment.
Example 5-54 shows an example of how hash partitioning syntax on Oracle
compares to DB2.

Example 5-54 Oracle hash partitioning

CREATE TABLE hash_table
 (
 hash_part date,
 hash_data varchar2(20)
)
 PARTITION BY HASH(hash_part)
(partition p1 tablespace tbsp1,
partition p2 tablespace tbsp2
);

Multidimensional clustering
Multidimensional clustering, also known as an MDC table, is a method of data
organization that clusters data together on disk according to dimension key
values. A dimension is a key or attribute, such as product, time period, or
geography, used to group factual data into a meaningful way for a particular
application.

A dimension can consist of a composite of two or more columns. A desirable
characteristic of dimension values is that they are of a low cardinality and consist
of a minimal number of unique values.
 Chapter 5. Conversion reference 231

Example 5-55 is an example of an MDC table definition.

Example 5-55 MDC table definition

CREATE TABLE SALES
(
STORE INT NOT NULL,
SKU INT NOT NULL,
DIVISION INT NOT NULL,
QUANTITY INT NOT NULL
)
ORGANIZE BY DIMENSIONS (STORE, SKU);

As shown in Example 5-55, a table is created that specifies that division and
quantity is to be organized by two dimensions, STORE and SKU. All data in the
table will be stored on disk in blocks of data organized by STORE and SKU
values. Each block on disk will only contain rows of data based on a unique set of
dimension values.

When dimension keys are used as predicates in the WHERE clause of a
SELECT statement, query performance is usually greatly improved because
many rows are retrieved with fewer I/Os. In addition, performance benefits are
gained from the smaller block index that is used with MDC tables. Because all
rows in a block are referenced by the same dimensions, only one index entry per
dimension is needed to locate all the rows in that block.

Oracle does not have an data organization scheme that is similar to the MDC
table.

Combining methods of data organization
Just as Oracle has composite partitioning, a variety of data organization
schemes can be combined on DB2.

These combinations are:

� Database partitioning with a sublevel of table partitioning

� Database partitioning with a sublevel of MDC data organization

� Database partitioning with a sublevel of table partitioning followed by a
sublevel of MDC data organization

� Table partitioning with a sublevel of MDC data organization

Example 5-56 shows an example of combining database partitioning, table
partitioning, and MDC organization.
232 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 5-56 Combining database partitioning, table partitioning, and MDC

CREATE TABLE orders
(
order_id INTEGER,
ship_date DATE,
region SMALLINT,
category SMALLINT
)
IN tbsp1, tbsp2, tbsp3, tbsp4
DISTRIBUTE BY HASH (order_id)
PARTITION BY RANGE (ship_date)
(STARTING FROM ('01-01-2005') ENDING ('12-31-2006') EVERY (1 MONTH))
ORGANIZE BY DIMENSION (region, category);

In Example 5-56, the data is distributed over multiple database partitions using a
hashed value of ORDER_ID. Within each database partition, the table is
partitioned by the SHIP_DATE month, and within each table partition the data is
organized in blocks by dimensions REGION and CATEGORY.

On Oracle, composite partitioning is used to combine the following types of
partitioning methods.

These combinations are:

� Range partitioning with hash subpartitioning
� Range partitioning with list subpartitioning

The composite partitioning on Oracle is used when partitioning by a range alone
does not provide enough granularity for managing a partition. On DB2, to break
down a table partition into smaller units, you can use a composite column as a
range partitioning key. The range partition key is defined by the PARTITION BY
RANGE clause as shown in Example 5-57.

Example 5-57 Using PARTITION BY RANGE clause

CREATE TABLE sales
 (
 year INT,
 month INT
)

IN tbsp1, tbsp2, tbsp3, tbsp4, tbsp5, tbsp6, tbsp7, tbsp8
PARTITION BY RANGE (year, month) ….

If adding a secondary column to the partitioning key is not possible, then use a
generated column to complete the composite column.
 Chapter 5. Conversion reference 233

Table 5-8 summarizes comparisons between Oracle’s partitioning methods with
DB2.

Table 5-8 Mapping Oracle data organization schemes to DB2

Indexes
With the table partitioning feature, each index on a partitioned table can be
placed into its own table space regardless of the underlying table space for the
table. The CREATE INDEX statement supports the IN tablespace-name clause
as follows:

CREATE INDEX index1 ON table1 IN tablespace1;

This means that if the partitioned table uses an SMS table space, each index can
be placed into its own table space. If no table space for an index is provided, the
index will be placed into the first table space specified for a table.

Indexes that are created on partitioned tables are global; that is, the index holds
entries for all partitions on the table.

Oracle
partitioning

DB2 data
organization

Oracle 10g syntax DB2 9.1 syntax

No equivalent Round robin None Default: occurs
automatically on
single partition
database

Range partitioning Table partitioning PARTITION BY
RANGE

PARTITION BY
RANGE

Hash partitioning Database
partitioning

PARTITION BY
HASH

DISTRIBUTE BY
HASH

List partitioning Table partitioning
with generated
column

PARTITION BY
LIST

PARTITION BY
RANGE

Composite
partitioning:

hash-range
hash-list

Combination of:
database
partitioning,
table partitioning,
multidimensional
clustering

PARTITION BY
RANGE,
SUBPARTITION
BY HASH
SUBPARTITION
BY LIST

DISTRIBUTE BY
HASH
PARTITION BY
RANGE
ORGANIZE BY
DIMENSIONS

No equivalent Multidimensional
clustering

None ORGANIZE BY
DIMENSIONS
234 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Roll-in and roll-out of data
DB2 supports attaching a new partition to an existing partitioned table (roll-in)
and the detaching of a partitioned table into a single table (roll-out). This
functionality is achieved by using the ATTACH PARTITION and DETACH
PARTITION clauses of the ALTER TABLE statement. By attaching a new
partition to a table, you facilitate the adding of a new range of data to a
partitioned table. A new partitioned range can be added anywhere in the table,
and not only to the high end of the table.

To attach a partition, the data is loaded into a newly created table and then that
table is attached to the existing partitioned table. Example 5-58 shows the newly
created table DEC03 that has been loaded with data rolled into the partitioned
table STOCK.

Example 5-58 Roll-in

ALTER TABLE stock ATTACH PARTITION dec03
STARTING FROM '12/01/2003' ENDING AT '12/31/2003'
FROM dec03;
COMMIT WORK ;

The new table that is attached must match the existing table in several ways.
The source and target tables must match in column order and definitions, default
values, nullability, compression and table space types used.

When a source is newly attached it is offline and remains offline until the SET
INTEGRITY statement is executed. The following example shows the SET
INTEGRITY statement:

SET INTEGRITY FOR stock ALLOW WRITE ACCESS
IMMEDIATE CHECKED FOR EXCEPTION IN stock USE stock_ex;
COMMIT WORK;

SET INTEGRITY validates the data in the newly attached data partition. The
COMMIT WORK is needed to end the transaction and to make the table
available for use.

In a similar way, an existing table can have a partition detached into a separate
table by using the ALTER statement:

ALTER TABLE stock DETACH PART dec01 INTO stock_drop;
DROP TABLE stock_drop;

In addition, partitioned tables may be modified using the ADD PARTITION and
DROP PARTITION options of the ALTER TABLE statement. The ADD
PARTITION clause is used to add an empty partition with a new range to an
 Chapter 5. Conversion reference 235

existing partitioned table. After it is added, the partitioned table can be loaded
with data.

5.22 %ROWTYPE and %TYPE

The %TYPE and %ROWTYPE PL/SQL declarations are used to define PL/SQL
variables to inherit the data type definition from other variable or database
columns. These declarations are particularly useful for variables used to hold
database data values. The %TYPE declaration is used to inherit a single column
data type definition. The %ROWTYPE declaration is used to retrieve a record
type that represents all columns in a table or cursor result set.

The MKT does not automatically convert %TYPE and %ROWTYPE declarations
that use collection or cursor variable as object. (For a more detailed discussion of
collection conversion, refer to 5.5, “Collections” on page 193.)

In this section, we discuss how the MTK handles the conversion of %TYPE and
%ROWTYPE variable declarations.

%TYPE
In Oracle, you can refer to the type of an existing variable, field, or column by
using the %TYPE attribute in PL/SQL. The MTK supports %TYPE for variables,
columns, and fields of record variables. The MTK replaces these references
directly by the type they refer to.

Example 5-59 shows some Oracle %TYPE examples.

Example 5-59 Oracle %TYPE

-- Base table: employees (emp_id int, first_name char(20))

-- %TYPE referencing to a table column definition
v_id employee.emp_id%TYPE;
v_fname employee.emp_name%TYPE;

--%TYPE referencing to a variable definition
v_id2 var_id%TYPE;
v_fname2 var_name%TYPE;

--%TYPE referencing to a table variable
TYPE Typ_Rec1 IS RECORD (emp_id INT, first_name CHAR(20));
var1 Typ_Rec1;

The converted DB2 code is shown in Example 5-60.
236 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 5-60 DB2 conversion of %TYPE

-- Base table: employee (emp_id INTEGER, first_name CHAR(20))

DECLARE V_ID INTEGER;
DECLARE V_FNAME CHAR(20);

DECLARE V_ID2 INTEGER;
DECLARE V_FNAME2 CHAR(20);

DECLARE VAR1_EMP_ID INTEGER;
DECLARE VAR1_FIRST_NAME CHAR(20);

%ROWTYPE
On Oracle, you can use %ROWTYPE in PL/SQL to refer to the record type that
represents a row, a cursor, or a cursor variable. PL/SQL scripts containing the
%ROWTYPE attribute are handled in the same way as a record type that has
been previously declared.

During the conversion process, the MTK produces a list of DB2 variables
matching the record fields, and creates a variable for each of these record fields.
In addition to the variable declaration, you must also change how the variables
are referenced in the code. Oracle uses dot notation to reference the field in the
record, and after the conversion you must directly use the new variable created
by the MTK.

Example 5-61 shows an example of Oracle %ROWTYPE usage.

Example 5-61 Oracle %ROWTYPE declaration and usage

-- Base table: employee (emp_id int, emp_name char(40))
declare
 -- ROWTYPE declaration
 v_emp employees%ROWTYPE ;
begin
 -- Assigning values
 v_emp.emp_id := 1000 ;
 v_emp.first_name := 'John';
end;
/

Example 5-62 shows the %ROWTYPE converted to DB2.

Example 5-62 %ROWTYPE conversion to DB2

-- Base table: employee (emp_id INTEGER, emp_name CHAR(40))
 Chapter 5. Conversion reference 237

BEGIN ATOMIC

DECLARE V_EMP_EMP_ID INTEGER;
DECLARE V_EMP_EMP_NAME CHAR(40);

SET V_EMP_EMP_ID = 1000 ;
SET V_EMP_EMP_NAME = ‘John’;

END!

5.23 MERGE

The MERGE statement is used to merge data from a source, such as table, view,
or query, into a target, such as table or view. Depending on whether the target
already has the data to be merged, you can specify different actions, for
example, insert the new rows or update or delete existing ones.

The MTK translates the Oracle MERGE statement to DB2 with the exception of
the following clauses:

� Optimizer hints
� error_logging_clause

Because the Oracle optimizer hints are not applicable to DB2, if used in a
MERGE statement, you have to manually convert the MERGE statement. The
error_logging_clause is not supported in DB2.

DB2 and Oracle MERGE statements perform differently when a DELETE clause
is included that contains an UPDATE clause. DB2 rows that were updated by the
MERGE statement containing an UPDATE clause will not be deleted if they
match the condition in the DELETE clause. When you use a translated MERGE
statement (by the MTK), you need to keep this difference in mind.

We show a conversion example of a MERGE statement with the DELETE
clause. We use two tables in our example: STAGE_TABLE and PRODUCTS.
STAGE_TABLE is our source table, and its data will be merged into the
PRODUCTS table, our target table.

These two tables have the following data:

� STAGE_TABLE

select * from stage_table;

 PROD_NO DESCRIPTION QUANTITY
238 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

---------- ------------------------------ ----------
 1 7
 2 2
 4 1
 5 Hoad 9
 6 Cap 20

� PRODUCTS

SQL> select * from products;

PROD_NO DESCRIPTION QUANTITY
---------- ------------------------------ ----------
 1 Shoes 10
 2 Socks 5
 3 Shirts 25
 4 Paints 3

Example 5-63 shows the MERGE statement in Oracle, and the result of the
MERGE statement.

Example 5-63 Oracle MERGE example

MERGE INTO products pd
 USING (SELECT prod_no, description, quantity
 FROM stage_table) st
 ON (pd.prod_no = st.prod_no)
 WHEN MATCHED THEN
 UPDATE SET pd.quantity = pd.quantity + st.quantity
 DELETE WHERE pd.quantity > 15
WHEN NOT MATCHED THEN
 INSERT (prod_no, description, quantity)
 VALUES (st.prod_no, st.description, st.quantity);

5 rows merged.

SQL> select * from products;

PROD_NO DESCRIPTION QUANTITY
---------- ------------------------------ ----------
 2 Socks 7
 3 Shirts 25
 4 Paints 4
 5 Hoad 9
 6 Cap 20
 Chapter 5. Conversion reference 239

In Example 5-63, the DELETE clause of the MERGE statement deletes only
matched rows with quantity greater than 15 after the update operation. Note that
although products 3 and 6 have quantities greater than 15, they are not deleted
because they are not updated by the MERGE statement. The DELETE clause
will not be executed against any row affected by the UPDATE clause.

Example 5-64 shows how to achieve similar functionality in DB2. In this example,
we first merge two tables and set the quantity accordingly. Since the Oracle
MERGE statement only deletes rows after they have been updated, after merge,
we use the DELETE statement to remove the records that have a quantity
greater than 15.

Example 5-64 DB2 MERGE conversion example

MERGE INTO products pd
 USING (SELECT prod_no, description, quantity
 FROM stage_table) st
 ON (pd.prod_no = st.prod_no)
 WHEN MATCHED THEN
 UPDATE SET
 pd.quantity = pd.quantity + st.quantity
 WHEN NOT MATCHED THEN
 INSERT (prod_no, description, quantity)
 VALUES (st.prod_no, st.description, st.quantity)

DELETE FROM products pr WHERE pr.prod_no IN (SELECT pd.prod_no FROM
products pd INNER JOIN stage_table st ON (pd.prod_no = s
t.prod_no) WHERE (pd.quantity + st.quantity) > 15 AND pd.quantity <>
st.quantity)

db2 => select * from products

PROD_NO DESCRIPTION QUANTITY
----------- ------------------------------ -----------
 2 Socks 7
 3 Shirts 25
 4 Paints 4
 5 Hoad 9
 6 Cap 20

 5 record(s) selected.
240 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

5.24 Index conversion

Indexes are used to speed up queries by providing the optimizer another way of
retrieving data other than a sequential scan. Most indexes in the Oracle
database are translated by the MTK, but there are a few differences between
Oracle and DB2.

INCLUDE column index
INCLUDE column index is introduced in DB2 9. When creating a unique index,
you have the option to include extra columns to the index using the INCLUDE
clause. The INCLUDE columns are stored with the index, but will not be sorted
and considered for uniqueness. Use of INCLUDE columns improves the
performance of data retrieval when index access is involved. DB2 does not need
to access the data page because the data value is already available on the index
page.

Creating an index with INCLUDE columns is shown in Example 5-65.

Example 5-65 Creating index with INCLUDE columns

CREATE UNIQUE INDEX ix1 ON employee
 (name ASC)
 INCLUDE (dept, mgr, salary, years)

5.24.1 Differences between Oracle and DB2

Both Oracle and DB2 use index for query performance optimization. There are
differences in the implementation of indexes between Oracle and DB2.

Different meaning of cluster index
In Oracle, a cluster index means an index on a clustered table or a partitioned
table.

In DB2, if the index is created with the CLUSTER option, the index is the
clustering index of the table. While creating the clustering index, the data in the
table is rearranged in the same order as that of the index.

The clustering index provides performance enhancements when a query scans
most of the data in the same order as that of the index. When a new row is
inserted, an attempt is made to keep the new row physically close to rows that
have key values logically closed in the index-key sequence. Over time, updates
and inserts may make the table less well clustered in relation to the index. You
might need to periodically reorganize the table to make the data clustered again.
 Chapter 5. Conversion reference 241

Example 5-66 provides an example of the command that is used to create a
clustering index.

Example 5-66 DB2 clustering index

CREATE INDEX inxcls_emp_empno
ON employee(empno ASC)
CLUSTER
PCTFREE 10
MINPCTUSED 40;

Bitmap indexes
The Oracle bitmap index is not available in DB2. This type of index is aimed at
data warehousing and is suitable for an index where there are very few key
values (low cardinality)—for example, gender or state.

Although you can’t explicitly create a bitmap index in DB2, the DB2 optimizer
may create dynamic bitmap indexes during the execution of certain types of
queries.

Functional indexes
An Oracle function-based index computes the value of the function or expression
and stores it in the index. The function-based index is not available in DB2. To
achieve similar functionality, you should create a computed column with the
generated values for the function expression, and then create an index on this
column.

5.25 Oracle database links

A table that resides in another database can be accessed like a local table
through the features delivered by the database management systems. In Oracle,
the database link provides this capability, while in DB2, the Homogeneous
Federation Feature delivers the ability to access database objects in different
DB2 data servers.

You can have unified access to the data managed by multiple data servers,
including DB2 and Informix with DB2 Homogeneous Federation Feature. This
allows applications to access and integrate diverse data—mainframe and
distributed—as though it were a DB2 table, regardless of where the information
resides, while retaining the autonomy and integrity of the data sources. The
WebSphere Federation Server significantly expands the choice of data sources
to any kind of data including database management systems on various
platforms, flat files, Excel®, rich media, e-mails, XML, as well as LDAP.
242 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information about WebSphere Federation Server, refer to:

http://www.ibm.com/software/data/integration/support/federation_server/

or the DB2 manual Administration Guide for Federated Systems, SC19-1020.

DB2 Homogeneous Federation Feature enables you to:

� Gain virtualized real-time access to disparate data sources
� Speed time to market for new projects
� Access more data sources
� Extend your data warehouse or data mart with remote data

Setting up federated databases
Setting up the federated databases is simple. We demonstrate the steps by an
example. In this example, we want to join the LOCAL_DEPARTMENT table in
the DB2_EMP database with the EMPLOYEE table in database SAMPLE. Since
the query will be executed on DB2_EMP, it will be the federated server.

1. Enable the Federation feature.

The Federation feature is enabled by setting the DB2 database manager
configuration (DBM CFG) parameter FEDERATED to YES on the federated
server. You can check and set the value as shown in Example 5-67.

Example 5-67 Enabling Federation feature

/WORK # db2 get dbm cfg |grep "Federated Database"
Federated Database System Support (FEDERATED) = NO
/WORK # db2 update dbm cfg using federated yes immediate
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command
completed
successfully.
/WORK # db2 get dbm cfg |grep "Federated Database"
Federated Database System Support (FEDERATED) = YES

Once the FEDERATED value in DBM CFG is changed, it is applied after
restarting the database server. See Example 5-68.

Example 5-68 Restart the server

/WORK # db2stop force
02/14/2007 10:09:04 0 0 SQL1064N DB2STOP processing was
successful.
SQL1064N DB2STOP processing was successful.
/WORK # db2start
02/14/2007 10:09:08 0 0 SQL1063N DB2START processing was
successful.
 Chapter 5. Conversion reference 243

http://www.ibm.com/software/data/integration/support/federation_server/

SQL1063N DB2START processing was successful.

2. Configure the component that is needed to federate the table in another
database.

– WRAPPER - A mechanism by which a federated server can interact with
certain types of data sources. In our example, we create a wrapper for the
SAMPLE database from DB2_EMP. You can check the data source from
the catalog view syscat.servers.

– SERVER - A data source to a federated database. In our example, the
data source is the SAMPLE database.

– USER MAPPING - Definition of mapping between an authorization ID that
uses a federated database and the authorization ID and password to use
at a specified data source.

– NICKNAME - Alias for a data source object. In our example, we create a
nickname, REMOTE_EMPLOYEE, for the EMPLOYEE table of the
SAMPLE database. From DB2_EMP, we then use this nickname in the
query to join data.

Example 5-69 shows the script, fed_config.db2, we used to set up the
federated system in our lab.

Example 5-69 Source of fed_config.db2

CONNECT TO db2_emp;
--
-- create wrapper,user mapping, and nickname
--
--Create wrapper;
CREATE WRAPPER drda;
SELECT * FROM syscat.wrappers;

CREATE SERVER fedserver
 type db2/udb version '9.1'
 WRAPPER "DRDA"
 AUTHID "db2inst1"
 PASSWORD "db2inst1"
 OPTIONS (dbname 'SAMPLE');
--
SELECT * FROM syscat.servers
-- Map user

CREATE USER MAPPING FOR USER
 SERVER fedserver
 OPTIONS(REMOTE_AUTHID 'db2inst1', REMOTE_PASSWORD 'db2inst1');
244 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

--
SELECT * FROM syscat.usermappings;

CREATE NICKNAME remote_employee FOR fedserver.db2inst1.employee;

Use the following command to execute the script:

/WORK # db2 -tf fed_config.db2

You can see the registered federation values in the result of the selection
from the system catalog tables.

After you configure a Federation server and link a remote table with a
nickname in the local database, you can access the remote table because it
is in the local database.

Example 5-70 demonstrates that you can delete and insert records on table
EMPLOYEE of the SAMPLE database from DB2_EMP because it is one of
the tables in this database.

Example 5-70 Access to a remote table

CONNECT TO db2_emp;
--
-- insert a row in remote table
--
DELETE FROM remote_employee WHERE empno='999999';
INSERT INTO
remote_employee(empno,firstnme,lastname,workdept,edlevel)
 VALUES ('999999','CARLOS','EDUARDO','E11',20);
SELECT empno,firstnme,workdept
 FROM remote_employee WHERE empno='999999';
--
-- Result of the SELECT
--
EMPNO FIRSTNME WORKDEPT
------ ------------ --------
999999 CARLOS E11

You also can join the remote table with the local table as shown in
Example 5-71.

Example 5-71 Join data in two tables

connect to db2_emp;
--
-- Create a local table and insert 3 rows
--
CREATE TABLE local_department
 Chapter 5. Conversion reference 245

 (deptno CHAR(3), deptname CHAR(20));

INSERT INTO local_department VALUES
 ('E01','Operation'),
 ('E10','Sales'),
 ('E11','Global Services');

SELECT * FROM local_department;
--
-- Join data in two tables
--
SELECT empno, firstnme, deptname
 FROM remote_employee r, local_department d
 WHERE r.workdept=d.deptno and empno='999999';

The result of joining a remote table (REMOTE_EMPLOYEE) and a local table
(LOCAL_DEPARTMENT) is shown in Example 5-72.

Example 5-72 The result of joining two tables

-- Result of the first SELECT (SELECT FROM local_department)

DEPTNO DEPTNAME
------ --------------------
E01 Operation
E10 Sales
E11 Global Services

-- Result of the second SELECT (Join local_department and
remote_employee)

EMPNO FIRSTNME DEPTNAME
------ ------------ --------------------
999999 CARLOS Global Services

5.26 Temporary tables

An Oracle temporary table can be translated as the DB2 global temporary table.

In DB2, the DECLARE GLOBAL TEMPORARY TABLE statement defines a
temporary table for the current session. The description of the declared
temporary table does not appear in the system catalog. It is not persistent and
cannot be shared with other sessions. Each session that defines a declared
246 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

global temporary table of the same name has its own unique description of the
temporary table. When the session terminates, the rows of the table are deleted,
and the description of the temporary table is dropped.

The USER TEMPORARY table space must exist to create a global temporary
table.

Example 5-73 shows how to create a DB2 global temporary table.

Example 5-73 Creating a DB2 global temporary table

CREATE USER TEMPORARY TABLESPACE demotmp
 PAGESIZE 4 k MANAGED BY SYSTEM
 USING ('/db2/demotmp');

DECLARE GLOBAL TEMPORARY TABLE E1
 LIKE employee
 ON COMMIT PRESERVE ROWS NOT LOGGED IN demotmp;

INSERT INTO session.e1
 SELECT * FROM employee WHERE workdept = 'D21';

SELECT empno, workdept, salary FROM session.e1;

The result of this script is shown in Example 5-74.

Example 5-74 Data in the global temporary table

EMPNO WORKDEPT SALARY
------ -------- -----------
000070 D21 96170.00
000230 D21 42180.00
000240 D21 48760.00
000250 D21 49180.00
000260 D21 47250.00
000270 D21 37380.00
200240 D21 37760.00

5.27 Concurrency and transaction

Both concurrency control and locking are used to ensure the data integrity in any
DBMS. The concurrency can be categorized into read concurrency and update
concurrency.
 Chapter 5. Conversion reference 247

First of all, the default concurrency processing is different for Oracle and DB2. So
when you migrate an application to DB2, you need to keep in mind the
fundamental differences shown in Table 5-9.

Table 5-9 Summary of different default settings between Oracle and DB2

5.27.1 Read concurrency

Oracle uses a feature called read consistency, which lets a query return a result
based on the state of the data when the query starts, regardless of other
processes such as update or delete on the same data while the query is running.
This mechanism is called Multi-Version Read Consistency and is implemented
by undo data in the undo segments.

DB2 does not support this type of processing. The application should be
analyzed to determine if this difference is acceptable. If not, then it must be
determined what the requirement is: readers not blocking writers, query results
based on the state of the data when the query began (read consistency), or both.

DB2 implements various isolation levels to support read concurrency.

Uncommitted Read
Uncommitted Read (UR), also known as dirty read, is the lowest level of
isolation. It is the least restrictive, but provides the greatest level of concurrency.
However, it is possible for a query executed under UR to return data that has
never been committed to the database.

Cursor Stability
Cursor Stability (CS) is the default isolation mode. It is used when no isolation is
set in an application. In this isolation mode, only the row on which the cursor is
currently positioned is locked. This lock is held until a new row is fetched or the
unit of work (UOW) is terminated. If a row is updated, the lock is held for the
duration of the transaction.

Read Stability
Under Read Stability (RS) isolation, locks are only placed on the rows that an
application retrieves within a unit of work. Applications cannot read uncommitted
data and no other application can change the rows locked by the Read Stability

Oracle DB2

Lock mode Set lock node to wait Set lock mode to not wait

Isolation level Set isolation to dirty read Set isolation to cursor stability
248 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

application. It is possible to retrieve phantom rows if the application retrieves the
same row more than once within the same unit of work.

The Read Stability isolation level ensures that all returned data remains
unchanged until the time the application sees the data, even when temporary
tables or row blocking are used. One of the objectives of the Read Stability
isolation level is to provide both a high degree of concurrency as well as a stable
view of the data. To assist in achieving this objective, the optimizer ensures that
table level locks are not obtained until lock escalation occurs.

Repeatable Read
Repeatable Read (RR) is the highest level of isolation and has the lowest level of
concurrency. Locks are held on all rows processed (scanned) for the duration of
a transaction. Because so many locks are required for repeatable read, the
optimizer might choose to lock the entire table instead of locking individual rows.
The same query issued by the application more than once in a unit of work gives
the same result each time (no phantom reads). No other application can update,
delete, or insert a row that affects the resulting table until the unit of work is
completed.

Table 5-10 DB2 isolation level summary

In DB2, the isolation level can be specified for a session, a client connection, or
an application before a database connection and is set to control the type of
locks and the degree of concurrency allowed by the application. For embedded
SQL, the level is set at bind time; and for dynamic SQL, the level is set at run
time.

The isolation level is set by the SET ISOLATION statement, as shown in
Example 5-75.

Example 5-75 Setting the isolation level

SET ISOLATION TO ur ;

Isolation level Read a data
locked by
other users

Lock placed on data rows

Uncommitted Read yes No

Cursor Stability no Only a row currently fetched by cursor, until
fetching the next row.

Read Stability no Rows retrieved within a UOW.

Repeatable Read no All rows processed (scanned) within a
transaction.
 Chapter 5. Conversion reference 249

SET ISOLATION TO rs ;

Or you can set the isolation level in a SELECT statement, as shown in
Example 5-76.

Example 5-76 Set the isolation level in a SELECT statement

SELECT deptno, deptname, mgrno
FROM dept
WHERE admrdept ='a00'
WITH UR;

Read scanners can skip noncommitted INSERTs or DELETEs
To improve concurrency, DB2 permits the deferral of row locks for Cursor
Stability or Read Stability isolation scans in certain situations, until a record is
known to satisfy the predicates of a query. By default, when row locking is
performed during a table or an index scan, DB2 locks each row before
determining whether the row qualifies for the query. To improve concurrency of
scans, it may be possible to defer row locking until after determining that a row
qualifies for a query. This lock deferral feature was introduced using the registry
variable DB2_EVALUNCOMMITTED.

In addition, you might improve concurrency by setting the registry variables
DB2_SKIPDELETED and DB2_SKIPINSERTED. These registry variables permit
scans to unconditionally skip uncommitted deletes and inserts, respectively.

The default value for all these registry variables is OFF.

DB2_SKIPINSERTED=ON
DB2 will treat the uncommitted INSERTs (for CS and RS isolation levels only) as
though they had not yet been inserted. This feature provides increased
concurrency without sacrificing isolation semantics. DB2 implements the ability
for scanners to skip uncommitted inserted rows versus waiting, when in conflict
through lock attributes and feedback on lock requests.

DB2_SKIPDELETED=ON
This acts in the same manner for deletions as DB2_SKIPINSERTED does for
insertions. When set to ON, it allows uncommitted deletions to be ignored for
cursors using the CS or RS isolation levels. DB2 will unconditionally bypass any
uncommitted rows in a query.

DB2_EVALUNCOMMITTED=ON
DB2 allows scans with isolation level Cursor Stability (CS) or Read Stability (RS)
to avoid or defer row locking until a data row is known to satisfy predicate
250 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

evaluation. Rows that do not satisfy your query are bypassed. With this variable
enabled, predicate evaluation can occur on uncommitted data.

For more information, refer to the white paper “Lock avoidance in DB2 UDB V8”
at:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0509schuetz/

Recommendation for the appropriate isolation level
Choosing the appropriate isolation level to use for a transaction is very important.
The isolation level not only influences how well the database supports
concurrency, but it also affects the overall performance of the application
containing the transaction. That is because the resources needed to acquire and
free locks vary with each isolation level.

Generally, when more restrictive isolation levels are used, less concurrency
support is provided and the overall performance may be decreased because
more resources are required. However, when deciding on the best isolation level
to use, the deciding factor should be which phenomena are acceptable and
which phenomena are not. The following heuristic can be used to help you
decide which isolation level to use for a particular situation:

� If you are executing queries on read-only databases or if you are executing
queries and do not care if uncommitted data values are returned, use the
Uncommitted Read isolation level. (The Read-only transactions are needed.
High data stability is not required.)

� If you want maximum concurrency without seeing uncommitted data values,
use the Cursor Stability isolation level. (The Read/Write transactions are
needed. High data stability is not required.)

� If you want concurrency and you want qualified rows to remain stable for the
duration of an individual transaction, use the Read Stability isolation level.

� If your application uses a cursor which selects a few data rows and fetches to
perform some additional processing, you need to set the isolation level as
Read Stability or Repeatable Read to avoid a phantom select.

� Even though a cursor in your application has only one row, if your isolation
level is set to Repeatable Read, make sure that your query uses a proper
index to fetch a row to avoid locking all rows in the table caused by the table
scan.

5.27.2 Update concurrency

When an update such as an INSERT, DELETE, or UPDATE statement occurs in
the database, a lock is used to support the update concurrency. In Oracle, locks
placed on the table elements can be on individual rows, or on pages of rows in
 Chapter 5. Conversion reference 251

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0509schuetz/

the table. In DB2, the database manager imposes locks on objects such as rows,
tables, and table spaces as they are required. The default used by DB2 is row
locking.

In DB2, databases, table spaces, and tables can be explicitly locked. Here are
some examples of commands that can be used to lock the database objects:

� Database lock

CONNECT TO database IN EXCLUSIVE MODE

� Table space lock

QUIESCE tablespace FOR TABLE tablename INTENT FOR UPDATE;

� Table lock

LOCK TABLE tablename IN EXCLUSIVE MODE;

In DB2, databases, tables, and rows can be implicitly locked. For example:

� Databases are locked during full database restore.
� Tables are locked during lock escalation.
� Rows are locked through normal data modification.

SELECT FOR UPDATE
If you convert the Oracle UPDATE cursor or SELECT FOR UPDATE statement
to DB2, you can use a DB2 cursor.

Example 5-77 shows the Oracle SELECT FOR UPDATE code sample.

Example 5-77 Oracle - SELECT FOR UPDATE

EXEC SQL select * from staff where id=p_id for update;
...
EXEC SQL update staff set salary = 10000.0

where id =p_id ;

Example 5-78 shows how this can be converted to DB2.

Example 5-78 DB2 Update cursor sample in ESQL/C program

EXEC SQL DECLARE C1 CURSOR FOR
 select * staff where id=:p_id for update of salary;

EXEC SQL OPEN C1;
EXEC SQL FETCH C1 INTO ... ;

if (strcmp (change, "YES") == 0)
EXEC SQL update staff set salary = :salary
 WHERE CURRENT OF C1;
252 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

EXEC SQL CLOSE C1;

If SELECT FOR UPDATE is used for holding the update lock on a specific row
but not to update the data on Oracle, you can use SELECT with the USE AND
KEEP UPDATE [SHARE|EXCLUSIVE] LOCKS clause in DB2 to achieve the
purpose, as shown in Example 5-79:

Example 5-79 Using the DB2 USE AND KEEP UPDATE clause

EXEC SQL select * from staff where id=:p_id
FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCK;

In Example 5-79, SELECT retrieves data from the STAFF table with exclusive
lock on the data. Because the data will be updated later with a searched update,
and should be locked when the query is executed.

5.27.3 Miscellaneous differences

Unlike in Oracle, in DB2 locks are stored in the memory and not in data pages.
The LOCKLIST database configuration parameter can be used to configure the
memory available for locks, while the MAXLOCKS configuration parameter
defines the maximum amount of memory for a particular application's locks.

Also In DB2 9, LOCKLIST can be set to AUTOMATIC to enable self tuning. This
allows the memory tuner to dynamically size the memory area controlled by this
parameter as the workload requirements change. The value of LOCKLIST is
tuned together with the MAXLOCKS parameter. Therefore, disabling self tuning
of the LOCKLIST parameter also disables self tuning of the MAXLOCKS.
Enabling self tuning of the LOCKLIST parameter automatically enables self
tuning of the MAXLOCKS.

5.27.4 Transaction

Most transaction statements—COMMIT, ROLLBACK, and SAVEPOINT—in
Oracle are converted to DB2 by the MTK.

Different COMMIT behavior
The Oracle COMMIT statement does not close currently open cursors. The DB2
COMMIT statement does close currently open cursors (except those declared
using WITH HOLD). Manual conversion might be required if open cursors are
used after a COMMIT in the Oracle source code. COMMIT in both Oracle and
DB2 releases the locks held by the cursors, except in DB2 for WITH HOLD
cursors.
 Chapter 5. Conversion reference 253

Multiple SAVEPOINT
You can convert an Oracle multiple SAVEPOINT into DB2, as shown in
Example 5-80.

Example 5-80 DB2 multiple SAVEPOINT

CREATE TABLE DEPT_SAVEPOINT (
 DEPTNO CHAR(6),
 DEPTNAME VARCHAR(20),
 MGRNO INTEGER);

INSERT INTO DEPARTMENT VALUES ('A20', 'MARKETING', 301);

SAVEPOINT SAVEPOINT1 ON ROLLBACK RETAIN CURSORS;

INSERT INTO DEPARTMENT VALUES ('B30', 'FINANCE', 520);

SAVEPOINT SAVEPOINT2 ON ROLLBACK RETAIN CURSORS;

INSERT INTO DEPARTMENT VALUES ('C40', 'IT SUPPORT', 430);

SAVEPOINT SAVEPOINT3 ON ROLLBACK RETAIN CURSORS;

INSERT INTO DEPARTMENT VALUES ('R50', 'RESEARCH', 150);

At this point, the DEPT_SAVEPOINT table exists with rows A20, B30, C40, and
R50.

If you now issue the ROLLBACK TO SAVEPOINT SAVEPOINT3, row R50 is no
longer in the DEPARTMENT table.

If you then issue ROLLBACK TO SAVEPOINT SAVEPOINT1, the
DEPARTMENT table still exists, but the rows inserted since SAVEPOINT1 was
established (B30 and C40) are no longer in the table.

For more information about Concurrency and Transaction, refer to “Managing
concurrency” in the DB2 manual Performance Guide, SC10-4222.

5.28 Encryption

In DB2, the encryption and decryption module are bundled, so you can
implement an encrypted database using encryption and decryption built-in
functions. You can encrypt a column with an encryption key (password). The
254 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

data can then be decrypted using the password. You also can include a hint for
the key. A function is provided to get the password hint.

Only a data of CHAR and VARCHAR data type can be encrypted. The column
data type to store an encrypted value is VARCHAR FOR BIT DATA. To encrypt a
column, you need to declare a column with sufficient size to contain the
encrypted value.

� When the hint parameter is specified, the length attribute of the result is equal
to the total of the following:

– Length attribute of the unencrypted data
– 8 bytes
– Number of bytes to the next 8-byte boundary
– 32 bytes for the length of the hint

� When the hint parameter is not specified, the length attribute of the result is
equal to the total of the following:

– Length attribute of the unencrypted data
– 8 bytes
– Number of bytes to the next 8-byte boundary

You can use the encrypt function to find the length of the result before you create
a table, as shown in the Example 5-81:

Example 5-81

values length(encrypt('IBM Redbook','los gatos'))
1

 24

 1 record(s) selected.

values length(encrypt('IBM Redbook','los gatos','a city of the cat'))
1

 41

 1 record(s) selected.

Example 5-82 illustrates how to store encrypted data; an error in the password is
also included.

Example 5-82 Creating data encryption

CREATE TABLE encryptions
 Chapter 5. Conversion reference 255

(
id INT NOT NULL,
data CHAR(30) FOR BIT DATA
);

-- Insert few rows with encryption function
-- These inserts will success.

INSERT INTO encryptions VALUES
(1,encrypt('100-1111','WheiZen')),
(2,encrypt('200-2222','Carlos')),
(3,encrypt('300-3333','Fraser','CA'));

-- This insert does not have a valid password

INSERT INTO encryptions VALUES
(4, ENCRYPT('400-4444','Anna'));

DB21034E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned:
SQL20144N The encryption password is invalid because the length of the
specified password was less than 6 bytes or greater than 127 bytes.
SQLSTATE=428FC

Example 5-83 shows how to use the decryption function to retrieve data.

Example 5-83 Retrieve encrypted data

-- Select a encrypted value and actual value with decryption function
--
SELECT data FROM encryptions
WHERE id=1;

DATA

x'0C09F7FF0333D5A350B39B651F58A96E248F7E53E44708B9202020202020'

1 record(s) selected.

-- select a data with a key
SELECT id,DECRYPT_CHAR(data,'WheiZen') FROM encryptions

where id=1

ID 2
256 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

----------- ----------------------
 1 100-1111

 1 record(s) selected.
--
-- select data with wrong key
--
select id, DECRYPT_CHAR(data,'AnnaChoi')
 FROM encryptions
 WHERE id=2;
SQL20145N The decryption function failed. The password used for
decryption does not match the password used to encrypt the data.
SQLSTATE=428FD

-- select a hint for decryption
--
SELECT GETHINT(data) From encryptions
 where id=3;
1

CA

 1 record(s) selected.

You can also set an encryption password in the session level. See Example 5-84.
It will affect every insert if no encryption key is specified.

Example 5-84 Set encryption password in the session level

set encryption password = 'The Pride';
insert into encryptions values
 (20,encrypt('500-5555')),
 (30,encrypt('600-6666'));

5.29 Oracle multitable, conditional, and pivot insert

Oracle multitable, conditional, and pivot insert are not converted to DB2
statements by the MTK. To convert, you need to separate an Oracle multitable,
conditional, or pivot insert SQL statement into appropriate SQL statements.
 Chapter 5. Conversion reference 257

Example 5-85 shows an Oracle multitable insert SQL statement.

Example 5-85 Oracle multitable insert

INSERT ALL
INTO emp_dept VALUES(empno,firstnme,workdept)
INTO emp_salary VALUES(empno,firstname,salary,comm)
SELECT empno,firstnme,workdept,salary,comm
FROM employee
WHERE edlevel < 16;

Example 5-86 shows the DB2 conversion code.

Example 5-86 Conversion of Oracle multitable insert to DB2

INSERT INTO emp_dept
SELECT empno,firstnme,workdept
FROM employee
WHERE edlevel < 16;

INSERT INTO emp_salary
SELECT empno,firstnme,salary,comm
FROM employee
WHERE edlevel < 16;

5.30 Additional considerations
External procedures and functions are also frequently seen in Oracle and DB2
applications. Complete information about building and running external
procedures and functions is beyond the scope of this book. We provide here two
examples of building routines using C and Java. For complete information about
building and running external procedures and functions, consult the following
IBM DB2 9 documents:

� Getting Started with Database Application Development, SC10-4252
� Developing SQL and External Routines, SC10-4373

5.30.1 Building C/C++ routines

We now show an example of creating a stored procedure written in C. First, here
are some basic steps that must be followed when creating any C procedure (or
function):
258 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Create the external procedure/function and save it on your file system. If the
procedure/function contains embedded SQL, then it should be saved with the
extension .sqc, if not save it with the extension .c

� Create the export file (AIX ONLY)

AIX requires you to provide an export file that specifies which global functions
in the library are callable from outside it. This file must include the names of
all routines in the library. Other UNIX platforms simply export all global
functions in the library. This is an example of an AIX export file for the
procedure outlanguage that exists in the file spserver.sqc:

#! spserver export file
outlanguage

The export file spserver.exp lists the stored procedure outlanguage. The
linker uses spserver.exp to create the shared library spserver that contains
the outlanguage stored procedure.

� On Windows, a DEF file is required which has a similar purpose. See
sqllib/samples/c/spserver.def for an example.

� Run the bldrtn script which creates the shared library:

bldrtn my_routine my_database_name

The script copies the shared library to the server in the path sqllib/function.

� Catalog the routines by running the catalog_my_routine script on the server.

Notes
� After a shared library is built, it is typically copied into a directory from which

DB2 will access it. When attempting to replace a routine shared library, you
should either run /usr/sbin/slibclean to flush the AIX shared library cache, or
remove the library from the target directory, and then copy the library from the
source directory to the target directory. Otherwise, the copy operation may fail
because AIX keeps a cache of referenced libraries and does not allow the
library to be overwritten.

� DB2 provides build scripts for precompiling, compiling, and linking C stored
procedures. These are located in the sqllib/samples/c directory, along with
sample programs that can be built with these files. This directory also
contains the embprep script used within the build script to precompile a *.sqc
file. The build scripts have the .bat (batch) extension on Windows, and have
no extension on UNIX platforms. For example, bldrtn.bat is a script to build
C/C++ stored procedure on Windows platform; bldrtn is the equivalent on
UNIX.
 Chapter 5. Conversion reference 259

Example
Here is a simple example of creating and cataloging a stored procedure written in
C. This procedure queries the sysprocedures table from the DB2 system catalog
to determine in which language (JAVA, C, etc.) that a procedure
TWO_RESULT_SETS is written.

� The C source file (Example 5-87), with embedded SQL, is created and saved
as outlanguage.sqc.

Example 5-87 Stored procedure in C

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlca.h>
#include <sqludf.h>
#include <sql.h>
#include <memory.h>
SQL_API_RC SQL_API_FN outlanguage(char language[9]){
 struct sqlca sqlca;
 EXEC SQL BEGIN DECLARE SECTION;
 char out_lang[9];
 EXEC SQL END DECLARE SECTION;
 /* Initialize strings used for output parameters to NULL */
 memset(language, '\0', 9);
 EXEC SQL SELECT language INTO :out_lang
 FROM sysibm.sysprocedures
 WHERE procname = ‘TWO_RESULT_SETS’;
 strcpy(language, out_lang);
 return 0;
} /* outlanguage function */

� The .exp file is created and saved as outlanguage.exp. Here are the contents
of that file:

outlanguage

� The file outlanguage_crt.db2, which catalogs the procedure, is created and
saved. Here are the contents:

CREATE PROCEDURE outlanguage (OUT language CHAR(8))
DYNAMIC RESULT SETS 0
LANGUAGE C
PARAMETER STYLE SQL
NO DBINFO
FENCED NOT THREADSAFE
MODIFIES SQL DATA
260 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

PROGRAM TYPE SUB
EXTERNAL NAME 'outlanguage!outlanguage'!

� The build script bldrtn for the outlanguage.sqc file is executed using the
db2_emp database:

bldrtn outlanguage db2_emp

� A connection is made to the database:

db2 connect to db2_emp

� The script to catalog the procedure is executed:

db2 –td! –vf outlanguage_crt.db2 > message.out

� DB2 responds with the message:

DB20000I The SQL command completed successfully.

The message.out file should be viewed for messages, especially if any other
message than The SQL command completed successfully is returned.

� The procedure is tested:

db2 “call outlanguage(?)”

Results:

Value of output parameters

 Parameter Name : LANGUAGE
 Parameter Value : JAVA
 Return Status = 0

5.30.2 Building Java routines
Here are the basic steps to create an external Java User-Defined Function (UDF)
from the DB2 Command Window:

� Compile your_javaFileName.java to produce the file
your_javaFileName.class with this command:

javac your_javaFileName.java

� Copy your_javaFileName.class to the sqllib\function directory on Windows
operating systems, or to the sqllib/FUNCTION directory on UNIX.

� Connect to the database:

db2 connect to your_database_name

� Register the your_javaFileName library in the database using the CREATE
FUNCTION SQL statement.

db2 –td! –vf <your_create_function_statement.db2>
 Chapter 5. Conversion reference 261

Example
Here is an example of a Java UDF that will retrieve the system name from the
DB2 Registry variable DB2SYSTEM.

� The Java source file as shown in Example 5-88 is saved as
db2system_nameUDF.java.

Example 5-88 UDF Java source

import java.io.*;
public class db2system_nameUDF {
 public static String db2system_name() {
 Runtime rt = Runtime.getRuntime();
 Process p=null;
 String s = null;
 String returnString = "";
 try {
 // WINDOWS: **** uncomment and compile the following for Windows
 // p = rt.exec("cmd /C db2set DB2SYSTEM");
 // UNIX: **** uncomment and compile the following for UNIX
 p = rt.exec("db2set DB2SYSTEM");
 BufferedInputStream buffer =
 new BufferedInputStream(p.getInputStream());
 BufferedReader commandResult =
 new BufferedReader(new InputStreamReader(buffer));
 try {
 while ((s = commandResult.readLine()) != null)
 returnString = returnString.trim() + s.trim() ;
 // MAX number of chars for the DB2SYSTEM variable is 209
characters
 commandResult.close();
 // Ignore read errors; they mean process is done
 } catch (Exception e) {
 }
 } catch (IOException e) {
 returnString = "failure!";
 }
 return(returnString);
 }
}

� Compile the Java source. The compile command is:

javac db2system_nameUDF.java

� Copy the .class file to the /sqllib/function directory:

$ cp db2system_nameUDF.java /home/db2inst1/sqllib/function
262 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Construct the Create Function file and save it as db2system_name.db2:

DROP FUNCTION DB2SYSTEM_NAME !
CREATE FUNCTION DB2SYSTEM_NAME ()
RETURNS VARCHAR(209)
EXTERNAL NAME 'db2system_nameUDF!db2system_name'
LANGUAGE JAVA
PARAMETER STYLE JAVA
NOT DETERMINISTIC
NO SQL
EXTERNAL ACTION!

� Connect to the database:

db2 connect to db2_emp

� Execute the script to register the UDF with the database:

db -td! -vf db2system_name.db2

� Test the UDF:

db2 “values db2system_name()”

Result:

smpoaix

1 record(s) selected.
 Chapter 5. Conversion reference 263

264 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 6. Data conversion

Data conversion is a sensitive task in the porting project. You have to ensure that
all data is moved to the target database, both correctly and in time.

In this chapter, we discuss the data conversion methods for deploying the data
from Oracle to the DB2 database. The data can be transformed by the following
methods:

� Using the IBM Migration Toolkit (MTK) generated scripts and data files

� Using the MTK to move data online

� Exporting the data manually from Oracle to flat file and importing or loading to
DB2

� Using operating system named pipes

� Using WebSphere Federation Server

Furthermore, we give some hints for time planning of the data movement
process.

6

© Copyright IBM Corp. 2003, 2007. All rights reserved. 265

6.1 Data conversion process

The data conversion process is quite complex. Before you define a porting
method, you should do some tests with only a portion of the data to verify that the
chosen method works successfully for your database environment. Generally, it
is a good idea that tests cover all potential cases. For these reasons, we
recommend that you start early with the testing.

The tasks of the test phase are:

� Calculate the source data size and calculate the required space for the files
on disk.

� Select the tools and the conversion method.

� Test the conversion using the chosen method with only a small amount of
data.

With the result of the test, you should be able to:

� Estimate the time for the complete data conversion process.

� Create a plan for the development environment conversion.

� Create a plan for the production environment conversion, using the
information from the development environment conversion.

� Schedule the time for the data conversion.

The following factors influence the time and complexity of the process:

� Amount of data and data changes

The more data that you have to move, the more time you need. Consider the
data changes as well as the timestamp conversions.

� System availability

You can run the data movement either when the production system is down
or when the business process is running, by synchronizing source and target
database. Depending on the strategy you choose, you will need less or more
time.

� Hardware resources

Be aware that you need up to three times the disk space during the data
movement for:

– The source data in Oracle
– The unloaded data stored in the file system
– The loaded data in the target DB2
266 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

6.2 Time planning

After testing the data movement and choosing the proper tool and strategy, you
should create a detailed time plan. This time plan should include the following
tasks:

� Depending on the data movement method:

– Implementing or modifying scripts for data unload and load
– Learning how to use the chosen data movement tools

� Data unload from Oracle

� Data load to DB2

� Backup of the target DB2 database

� Testing the loaded data in DB2 for completeness and consistency

� Switching of the applications, including database interfaces

� Fallback process in case of incidents

The most sensitive environment is a production system with a 7x24 hour
availability requirement. Figure 6-1 shows the way to move data to the target
database in a high availability (HA) environment. The dark color represents the
new data, the light color represents the converted and moved data. If possible,
export the data from a standby database or mirror database to minimize the
impact on the production environment. The following tasks should be performed
to move data from an HA environment:

1. Create scripts that export all data up to a defined timestamp.

2. Create scripts that export changed data since the last export. This includes
new data as well as deleted data.

3. Repeat Step 2 as often as necessary, until all data is moved to the target DB2
database.

4. Define a fallback strategy and prepare fallback scripts.
 Chapter 6. Data conversion 267

Figure 6-1 Data movement strategy in a high availability environment

When the data is completely moved to the target DB2 database, you can switch
the application and database. Prepare a well-defined rollout process for the
applications and the interfaces belonging to DB2. It is always a good idea to
allow some buffer time for any unplanned incidents.

6.3 Data movement through flat files
The main principle of data movement is to export the Oracle data to flat files in a
well-defined format, and then to LOAD or IMPORT the data to DB2. We can use
any tool or write any application to achieve this. This section discusses the data
movement through flat files.

The script examples included in this section can be downloaded from the IBM
Redbook Web site. See Appendix G, “Additional material” on page 701 for
details.

Before writing data into a flat file, ensure that the maximum file size of your
operating system is big enough. On AIX, you can get the actual file size limit in
blocks with the following command:

ulimit -a

Data
 movement

Time

Oracle Oracle Oracle

DB2 DB2 DB2
268 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

To set the file size limit to unlimited on AIX, enter the following command as the
root user:

ulimit -f -1

6.3.1 Moving data using the MTK
In 4.7, “The Generate Data Transfer Scripts task” on page 122, we explain how to
use the MTK to generate scripts for data unload and data load; the correlation of
scripts and table definitions of the source and target are defined in the MTK. The
MTK also allows you to move (deploy) data through its GUI, online, without the
need for the generated scripts.

6.3.2 Using shell scripts
We use UNIX shell scripts in our example, which make use of the Oracle
SQL*Plus utility to extract the data from Oracle tables to flat files. These scripts
can only be run on UNIX platforms, and should be run under a user that has the
Oracle environment set. Additionally, these scripts will only work against Oracle
tables containing CHAR, VARCHAR2, and NUMBER data types. For exporting
LOB columns, special programs must be written using Oracle APIs. Example 6-1
shows the main data_unload.sh script. This script reads the table name from the
table_list_file parameter specified when invoking the script, constructs the
dynamic query, and estimates the line size using two awk scripts. Once the
query is constructed, it is fed to the SQL*Plus utility, the output is spooled and
stored in the output file table_name.DAT as delimited ASCII (DEL).

Example 6-1 The data_unload.sh script

#!/bin/ksh
#
Shell script: data_unload.sh
#
Syntax: data_unload.sh <table_list_file>
#
Starting from an flat file containing a list of all the table,
extracts data from Oracle for each table and writes data into
a file named table_name.DAT, formatted in columns
#
This script uses the awk command with the following awk command files:
desc.awk formats the query command files using RTRIM and DECODE
to obtain a column-formatted output
count.awk computes the total length of a record
#
#

#

 Chapter 6. Data conversion 269

Define the environment variables for the oracle user and password
ORACLE_USR=user1
ORACLE_PWD=user1
#
Start of main program

Loop on all the tables listed in the input file
for i in `cat $1`
do
 # Define some environment variables for temporary files
 export OUTFILE=$i.DAT
 DSCFILE=$i.dsc
 SQLFILE=$i.sql
 VARFILE=$i.var
 ALLFILE=$i.all
 POSFILE=$i.pos
 rm -f $OUTFILE
 rm -f $DSCFILE
 rm -f $SQLFILE

 # Extract the table description from Oracle catalog
 sqlplus -s $ORACLE_USR/$ORACLE_PWD <<EOF >/dev/null 2>&1
 clear columns
 clear breaks
 set pagesize 100
 set newpage 1
 set feedback off
 spool $DSCFILE
 desc $i
 EOF

 # Cut head and tail from the file containing the descriptions of the tables
 # Change also the NOT NULL clause in a blank string
 # and cut the blanks in the first column
 tail +3 $DSCFILE | sed 's/NOT NULL/ /; s/^ //' > $DSCFILE.tmp1
 NL=`wc -l < $DSCFILE.tmp1`
 NLM1=`expr $NL - 1`
 head -$NLM1 $DSCFILE.tmp1 > $DSCFILE.tmp2
 cp $DSCFILE.tmp2 $VARFILE

 # Change the data types, leaving in the file the respective lengths
 # It is assumed that 41 bytes are enough to contain the significative
 # part of the NUMBER fields
 sed -e 's/ VARCHAR2(/ /' \
 -e 's/ NUMBER(/ /' \
 -e 's/ NUMBER/ 41/' \
 -e 's/ INTEGER(/ /' \
 -e 's/ INTEGER/ 41/' \
 -e 's/ CHAR(/ /' \
270 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 -e 's/ CHAR/ 1/' \
 -e 's/ RAW(/ /' \
 -e 's/ VARCHAR(/ /' \
 -e 's/)//' \
 -e 's/\([0-9]*\)\,\([0-9]\)*/\1/' \
 $DSCFILE.tmp2 > $DSCFILE.tmp3
 mv $DSCFILE.tmp3 $DSCFILE
 rm -f $DSCFILE.tmp*

 # Compute the record length of the table
 # using the count.awk awk script
 LS=`awk -f count.awk $DSCFILE`

 # Prepare the heading of the query statement on the table
 # by echoing the statements into the sql file
 echo "clear columns" > $SQLFILE
 echo "clear breaks" >> $SQLFILE
 echo "set pagesize 50000" >> $SQLFILE
 echo "set linesize $LS" >> $SQLFILE
 echo "set feedback off" >> $SQLFILE
 echo "set heading off" >> $SQLFILE
 echo "set space 0" >> $SQLFILE
 echo "set newpage 1" >> $SQLFILE
 echo "spool $OUTFILE" >> $SQLFILE
 echo "select '' " >> $SQLFILE

 # Append to the query statement file the list of the table fields
 # to obtain the column layout, using the desc.awk awk script
 awk -f desc.awk $VARFILE >> $SQLFILE

 # Append to the query statement file the "from" clause
 # and the closing instructions
 echo "from $i;" >> $SQLFILE
 echo "spool off" >> $SQLFILE
 echo "quit" >> $SQLFILE

 # Execute the query statement
 sqlplus -s $ORACLE_USR/$ORACLE_PWD @$SQLFILE >/dev/null 2>&1

 # Cut the first line from the output file
 tail +2 $OUTFILE > $OUTFILE.tmp
 mv $OUTFILE.tmp $OUTFILE

 # Change the DATE data type into its DB2 external length, 26 bytes
 sed 's/ DATE/ 26/' $DSCFILE > $DSCFILE.tmp1
 mv $DSCFILE.tmp1 $DSCFILE
done
 Chapter 6. Data conversion 271

The table name is read from table_list_file and described using the DESCRIBE
TABLE command, and output is directed to a describe file TABLE_NAME.dsc.
From the describe file, the SELECT query is constructed using the awk script file
desc.awk, which produces the TABLE_NAME.sql file. Example 6-2 shows the
desc.awk script. The TABLE_NAME.sql file contains the SELECT statement
which, when executed, produces the result that can be exported to a delimited
ASCII file type, which can be used for the LOAD or IMPORT utilities. The
character data types are enclosed by the ~ character and the DATE data types
are converted to the equivalent DB2 TIMESTAMP data type. The query uses the
concatenation string || to concatenate the column values to a single line.

Example 6-2 The desc.awk script

BEGIN {}
{
 if ($2 == "DATE")
 print " || rtrim(DECODE("$1",NULL,' ',TO_CHAR("$1",'YYYY-MM-DD-HH24.MI.SS')
|| '.000000'),26)"
 if (substr($2,1,4) == "CHAR")
 print " ||'~'||rtrim("$1")||'~,' "
 if (substr($2,1,8) == "VARCHAR2")
 print " ||'~'||rtrim("$1")||'~,' "
 if (substr($2,1,6) == "NUMBER")
 print " ||rtrim("$1")||','"
}

The data_unload.sh script also uses another awk script, count.awk, to count the
length of each column to estimate the output line size for the SQL*Plus utility.
Example 6-3 shows this script. Once the SELECT statement and the line size is
ready, the SQL*Plus environment is set using the SET PAGESIZE, and SET
LINESIZE commands. The commands SET PAGESIZE, SET LINESIZE, and
SET FEEDBACK manipulate the output. The SET LINESIZE is set with the
output produced by the count.awk script. Then the SQL*Plus runs the
TABLE_NAME.sql file and spools the output to the TABLE_NAME.dat output flat
file. This file is in delimited ASCII (DEL) format and can be used by either the
LOAD or IMPORT utility. For example, to export the ACCOUNTS table, enter the
table name into a file, such as table.lst, edit the data_unload.sh script, and enter
the Oracle user name ORACLE_USR and password ORACLE_PWD, and then
invoke using the command:

sh data_unload.sh table.lst

This produces the accounts.dsc, accounts.sql, accounts.var, and accounts.DAT
files. To load the data using LOAD utility, use the command:

DB2 LOAD FROM accounts.DAT OF DEL MODIFIED BY CHARDEL~ INSERT INTO
ACCOUNTS
272 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

To load the data using the IMPORT utility, use the command:

DB2 IMPORT FROM accounts.DAT OF DEL MODIFIED BY CHARDEL~ INSERT
INTO ACCOUNTS

Example 6-3 The count.awk script

BEGIN { total=0 }
{
 if ($2 == "DATE")
 total +=26
 else
 total += $2+4
}
END { print total }

6.3.3 Using Oracle’s stored procedures
In this example, we explain an Oracle stored procedure, export_table, written by
the authors of this book, to demonstrate how to unload the data from Oracle
using this stored procedure, and to load the data into DB2. As in our previous
example, this stored procedure can only be used for CHAR, VARCHAR2,
NUMBER, and DATE data types. As in the shell script, this stored procedure
gets the table name as the input parameter, constructs the SELECT query for
output, and exports the table data to an output flat file. This output file format is
also delimited in an ASCII file format.

The advantage of using this stored procedure is that it can be used on both
Windows and UNIX platforms. The output file is placed under the directory
specified by the UTL_FILE_DIR initialization parameter, which specifies the
directory for PL/SQL file I/O. So, it is a must that this initialization parameter be
specified in the Oracle instance before using this stored procedure. Example 6-4
shows the export_table stored procedure script.

Example 6-4 Procedure to export_ table data

/***/
/* This stored procedure accept the table name as input */
/* and exports the data into flat file identified by the */
/* UTL_FILE_DIR with the format acceptable by the DB2 */
/* IMPORT utility or LOAD utility as Delimited ASCII file */
/* Note : this procedure can be used for the table with data */
/* types CHAR,VARCHAR2 and NUMBER. */
/***/
CREATE OR REPLACE PROCEDURE export_table(
 i_table_name IN VARCHAR2 -- table name to be exported
)
IS
 Chapter 6. Data conversion 273

 stmt_1 VARCHAR2(4000) := 'select '; -- first part of select
 stmt_2 VARCHAR(50) := ' as linecol from '; -- second part of the select
 stmt_cursor INTEGER; -- statement handle
 linecol VARCHAR2(4000); -- output buffer for utl_file
 ret INTEGER; -- dbms_sql handle
 filepath VARCHAR(40):='c:\oracle'; -- path for output file
 filename VARCHAR(40); -- output filename
 filemode CHAR(1):='w'; -- output file mode for write
 filelnsz INTEGER := 4000; -- max file line size
 dtype_excp EXCEPTION;
 fhandle utl_file.file_type; -- file handle for utl_file
 CURSOR col_crsr(tab_col_name IN VARCHAR2) IS
 SELECT column_name, data_type
 FROM user_tab_columns
 WHERE table_name = tab_col_name;

BEGIN
 stmt_1 := stmt_1||'/*parallel('||i_table_name||',4)*/'||''''||'''';

 /***/
 /* Build the select statement */
 /***/
 FOR my_rec IN col_crsr(i_table_name) LOOP
 IF my_rec.data_type = 'DATE' THEN
 stmt_1 := stmt_1 || '|| rtrim(DECODE('|| my_rec.column_name
 || ',NULL,'|| ''' '''|| ',TO_CHAR('
 || my_rec.column_name ||','''
 || 'YYYY-MM-DD-HH24.MI.SS'||''')))';
 ELSIF my_rec.data_type = 'CHAR' THEN
 stmt_1 := stmt_1 || '||'''||'~'||''''||'||rtrim('
 || my_rec.column_name||')||'''||'~,'||'''';
 ELSIF my_rec.data_type = 'VARCHAR2' THEN
 stmt_1 := stmt_1 || '||'''||'~'||''''||'||rtrim('
 || my_rec.column_name||')||'''||'~,'||'''';
 ELSIF my_rec.data_type = 'NUMBER' THEN
 stmt_1 := stmt_1 || '||rtrim('||my_rec.column_name
 || ')||'''||','||'''';
 ELSE RAISE dtype_excp;
 END IF;
 END LOOP;
 stmt_2 := stmt_2 || i_table_name;
 stmt_1 := stmt_1 || stmt_2;

 /***/
 /* Execute the statement and open the cursor */
 /***/
 stmt_cursor := dbms_sql.open_cursor;
 dbms_sql.parse(stmt_cursor,stmt_1,dbms_sql.native);
 dbms_sql.define_column(stmt_cursor,1,linecol,4000);
274 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 ret := dbms_sql.execute(stmt_cursor);
 filename:=i_table_name||'.DAT';
 fhandle:= utl_file.fopen(filepath,filename,filemode,filelnsz);

 /***/
 /* Fetch the rows and write it to output file */
 /***/
 WHILE dbms_sql.fetch_rows(stmt_cursor)>0 LOOP
 dbms_sql.column_value(stmt_cursor,1,linecol);
 utl_file.put_line(fhandle,linecol);
 END LOOP;

 /**/
 /* Close the cursor and file */
 /**/
 dbms_sql.close_cursor(stmt_cursor);
 utl_file.fclose(fhandle);

 EXCEPTION
 WHEN dtype_excp THEN dbms_output.put_line('Invalid Data type');
END;

This stored procedure uses the Oracle DBMS_SQL package to construct the
SELECT statement and retrieve the result set. It uses the UTL_FILE Oracle
package to create the output file, open it, and write the output data to the output
file. The UTL_FILE can only write to output files created under the
UTL_FILE_DIR identified directory. The filepath variable in the stored procedure
has to be edited and given the value for the UTL_FILE_DIR initialization
parameter. In our example, it points to C:\Oracle as the UTL_FILE_DIR
parameter. The output file created will be named as TABLE_NAME.DAT file. For
example, to export the data in the ACCOUNTS table, the stored procedure is
called using the command:

CALL EXPORT_TABLE(‘ACCOUNTS’)

Note that the table name should be entered in uppercase. When the stored
procedure is called successfully, it produces the output file ACCOUNTS.DAT. To
load the data using the LOAD utility, use the command:

DB2 LOAD FROM ACCOUNTS.DAT OF DEL MODIFIED BY CHARDEL~ INSERT INTO
ACCOUNTS

To load the data using the IMPORT utility, use the command:

DB2 IMPORT FROM ACCOUNTS.DAT OF DEL MODIFIED BY CHARDEL~ INSERT INTO
ACCOUNTS
 Chapter 6. Data conversion 275

6.4 Alternative ways for moving data
Besides the MTK, there are many other tools and products for data movement.
Here we show a couple of them. There are also a number of third-party tools that
work with both Oracle and DB2, but they are not covered here. A quick Internet
search can identify many of them. You should choose the tool according to your
environment and the amount of data that will be moved.

6.4.1 Data movement through named pipes
As described in 6.1, “Data conversion process” on page 266, you need additional
disk space during the data movement process. To avoid the space for the flat
files, you can use named pipes on UNIX-based systems. To use this function,
the writer and reader of the named pipe must be on the same machine. You must
create the named pipe on a local file system before exporting data from the
Oracle database.

Because the named pipe is treated as a local device, there is no need to specify
that the target is a named pipe. The following is an AIX example:

1. Create a named pipe:

mkfifo /u/dbuser/mypipe

2. Use this pipe as the target for a data unload operation:

<data unload routine> > /u/dbuser/mypipe

3. Load the data into DB2 from the pipe:

<data load routine> < /u/dbuser/mypipe

The commands in step 2 and 3 show only the principle of using the named pipes.
To unload and load the data, use the routines discussed previously in this
chapter.

6.4.2 WebSphere Federation Server
In a high availability environment, you will usally need to move the data during
production activity. A practical solution is to use the federated access that
WebSphere Federation Server provides.

IBM WebSphere Federation Server provides integrated, real-time access to
diverse data as if it were a single database, regardless of where it resides. You

Note: It is important to start the pipe reader after starting the pipe writer.
Otherwise, the reader will find an empty pipe and exit immediately.
276 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

can hold the same data both in Oracle and in DB2, and you are free to switch to
the new DB2 database when the functionality of the ported database and
application is guaranteed.

The WebSphere Federation Server, formerly known as WebSphere Information
Integrator, lets users manage data movement strategies between mixed
relational data sources including distribution and consolidation models.

Data movement can be managed table-at-a-time, such as for warehouse loading
during batch windows, or with transaction consistency for data that is never
offline. It can be automated to occur on a specific schedule, at designated
intervals, continuously, or as triggered by events. Transformation can be applied
inline with the data movement through standard SQL expressions and stored
procedure execution.

For more information, visit the WebSphere Federation Server product site:

http://www.ibm.com/software/data/integration/federation_server/
 Chapter 6. Data conversion 277

http://www.ibm.com/software/data/integration/federation_server/

278 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 7. Application conversion

In this chapter, we discuss some aspects of converting an application from an
Oracle environment to a DB2 environment. The following topics are covered:

� Planning

� Conversion of self-build applications
– Written with Oracle Pro*C
– Written in Java
– Based on Oracle OCI
– Based on ODBC
– Based on Perl
– Based on PHP
– Based on .NET

� Package application migration

– SAP

7

© Copyright IBM Corp. 2003, 2007. All rights reserved. 279

7.1 DB2 application development introduction

To develop applications that access the DB2 database, embed the data access
method of the high-level language into the application. IBM DB2 provides various
programming interfaces for data access and manipulation.

There are various methods for performing data interaction from your application,
including: embedded static, dynamic SQL, native API calls, and methods
provided by DB2 drivers for a specific application environment.

7.1.1 Embedded SQL

The SQL statement can be embedded within a host language where SQL
statements provide the database interface while the host programming language
provides all remaining functionality. Embedded SQL applications require a
specific precompiler for each language environment in order to preprocess (or
translate) the embedded SQL calls into the host language.

Building embedded SQL applications involves two prerequisite steps prior to
application compilation and linking. This is different from building applications
with Oracle database access, as Oracle database applications do not have the
concept of binding applications to a database prior to runtime. It also explains
why the static embedded SQL method is efficient and can yield good
performance.

The two prerequisite steps for building DB2 embedded SQL applications are:

1. Preparing the source files containing embedded SQL statements using the
DB2 precompiler

The PREP (PRECOMPILE) command is used to invoke the DB2 precompiler.
The precompiler reads the source code, parses and converts the embedded
SQL statements to DB2 run-time services API calls, and writes the output to a
new modified source file. The precompiler produces access plans for the SQL
statements, which are stored together as a package within the database.

2. Binding the statements in the application to the target database

Binding is done, by default, during precompilation (the PREP command). If
binding is to be deferred (for example, running the BIND command later),
then the BINDFILE option needs to be specified at PREP time in order for a
bind file to be generated.

Figure 7-1 illustrates the precompile-compile-bind process for creating a program
with embedded SQL.
280 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 7-1 Precompile-compile-bind process for creating embedded SQL applications

DB2 supports the C/C++, FORTRAN, COBOL, and Java (SQLJ) programming
languages for embedded SQL.

Embedded SQL applications can be categorized as follows:

� Static embedded SQL

In embedded SQL, you are required to specify the complete SQL statement
structure. This means that all the database objects (including columns and
table) must be fully known at the precompile time with the exception of
objects referenced in the SQL WHERE clause. However, all the host variable
data types still must be known at the precompiler time. Note that host
variables should be declared in a separate EXEC SQL DECLARE section
and be compatible with DB2 data types.

Example 7-1 shows a fragment of a COBOL program with static embedded
SQL.

Example 7-1 A COBOL static embedded SQL program

move "Clerk" to job-update.
EXEC SQL UPDATE staff SET job=:job-update
 WHERE job='Mgr'
END-EXEC.
move "UPDATE STAFF" to errloc.

Application
with Embedded SQL

Modified Source File

Step 1: Precompile(db2 PREP)

Object files

Step 2: Host Language Compiler

Executable Program

Step 3: Host Language Linker

Database Manager Package

bind file

Step 4: Binder (db2 BIND)
 Chapter 7. Application conversion 281

� Dynamic embedded SQL

If not every database object in the SQL statement is known at the precompile
time, use dynamic embedded SQL. The dynamic embedded SQL statement
accepts a character string host variable and a statement name as arguments.
These character string host variables serve as placeholders for the SQL
statements to be executed later. Note that dynamic SQL statements are
prepared and executed during program runtime.

Example 7-2 is a fragment of a C program with a dynamic SQL statement.

Example 7-2 A dynamic SQL C program

EXEC SQL BEGIN DECLARE SECTION;
char st[80];
char parm_var[19};
EXEC SQL END DECLARE SECTION;

strcpy(st, "SELECT tabname FROM syscat.tables");
strcat(st, " WHERE tabname <> ? ORDER BY 1");

EXEC SQL PREPARE s1 FROM :st;
EXEC SQL DECLARE c1 CURSOR FOR s1;
strcpy(parm_var, "STAFF");
EXEC SQL OPEN c1 USING :parm_var;

Note that host variable PARM_VAR still needs to be declared in EXEC SQL
DECLARE SECTION.

7.1.2 Driver support

DB2 supports numerous drivers for developing more complex applications.The
driver manager defines a set of methods, variables, and conventions that provide
a consistent database interface specifically for the DB2 database. Applications
utilizing drivers are compiled and linked with the driver manager’s libraries to
invoke standardized APIs.

DB2 currently supports a large number of drivers, including CLI/ODBC, ADO and
OLEDB, JDBC, SQLJ, PERL DBI, PHP, and the .NET Data Provider.

Perl database interface
To better understand how the interface works, let us examine the PERL
database interface (DBI). A Perl program uses a standard API to communicate
with the DBI module for Perl, which supports only dynamic SQL. It defines a set
of methods, variables, and conventions that provide a consistent database
interface independent of the actual database being used. DBI gives the API a
consistent interface to any database that the programmer wishes to use.
282 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DBD::DB2 is a Perl module which, when used in conjunction with DBI, allows
Perl to communicate with the DB2 database.

Figure 7-2 illustrates the Perl/ DB2 environment.

Figure 7-2 Perl/DB2 environment

Installation
You can acquire Perl as follows:

� The source can be downloaded from

http://www.perl.com

and compiled.

� A binary version called ActivePerl, available for most operating systems, can
be downloaded from ActiveState at:

http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=htt
p%3A%2F%2Fwww.activestate.com%2F

System requirements
The following requirement information is available at the ActiveState Web site:

http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=htt
p%3A%2F%2Fwww.activestate.com%2F

� General

– Recommended 90 MB hard disk space for typical install
– Web browser for online help

� AIX

– PowerPC®
– Minimum AIX 5.1

Note: The latest version of ActivePerl, at the time of this writing, is 5.8.8.820

DB2
database

PERL
script

DBI
driver

DBD::DB2
database

driver
 Chapter 7. Application conversion 283

http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.activestate.com%2F
http://www.perl.com

� HP-UX

– PA-RISC: Minimum HP-UX 11.00
– Itanium: Minimum HP-UX 11.22

� Linux

– x86
– libc-2.1.x+ (e.g. Red Hat 6.x+, Debian 2.2+)

� Solaris

– SPARC: Minimum Solaris 2.6
– x64/x86: Minimum Solaris 10
– You must use GNU tar to unpack the ActiveState Installer Package

� Windows

– x86
– All Windows platforms: IE 5.5+
– Windows 95: DCOM for Windows 95
– Windows NT: Service Pack 5+

In addition to Perl, two additional modules need to be downloaded and installed
in order to enable the Perl driver for DB2:

� DBI
� DBD::DB2

These modules can be downloaded from the Comprehensive Perl Archive
Network (CPAN) at:

http://CPAN.org

Information regarding installation of these modules may also be found at this
location.

PHP extensions
IBM supports access to DB2 databases from PHP applications through two
extensions that offer distinct sets of features:

� ibm_db2

This is an extension written, maintained, and supported by IBM for access to
DB2 databases. It offers a procedural API that, in addition to the normal
create, read, update, and write database operations, also offers extensive

Note: For the latest information about PERL and DB2, and related PERL
modules, refer to the following Web site:

http://www.ibm.com/software/data/db2/perl/
284 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://CPAN.org
http://www.ibm.com/software/data/db2/perl/
http://www.ibm.com/software/data/db2/perl/

access to the database metadata. This extension can be compiled with either
PHP 4 or PHP 5.

� PDO_IBM and PDO_ODBC

These are drivers for the PHP Data Objects (PDO) extension that offers
access to DB2 databases through the standard object-oriented database
interface. PDO_IBM is an IBM database driver. Both PDO_IBM and
PDO_ODBC extensions can be compiled directly against the DB2 libraries to
avoid the communications overhead and potential interference of an ODBC
driver manager.

Installation
An easy method of installing and configuring PHP on Linux, UNIX, or Windows
operating systems is Zend Core for IBM, which can be downloaded and installed
for use in production systems from the following Web site:

http://www.zend.com/downloads

Additionally, precompiled binary versions of PHP are available for download
from:

http://php.net/

Most Linux distributions include a precompiled version of PHP. On UNIX
operating systems that do not include a precompiled version of PHP, your own
version of PHP may be compiled.

Requirements
For setting up the PHP environment on Linux, UNIX, or Windows operating
systems refer to Developing Perl and PHP applications; SC10-4234.

7.2 Application migration planning

Application migration is another major step in the migration project. This process
includes:

� Check of software and hardware availability and compatibility
� Education of developers and administrators
� Analysis of application logic and source code
� Setting up the target environment
� Change of database specific items
� Application test
� Application tuning
� Roll-out
� User education
 Chapter 7. Application conversion 285

http://php.net/
http://www.zend.com/downloads
http://www.zend.com/downloads

The planning includes the creation of a project plan. Plan enough time and
resources for each task. IBM and our business partners can help you with
questions in order to define a well prepared project.

For the applications developed in-house, the migration effort is on the shoulder of
the migration team. For package applications, you can contact the vendor for a
recommended migration process. In 7.4, “Package applications migration
planning” on page 330, we explain the recommended migration process of some
packages.

Check software and hardware availability and compatibility
The architecture profile is one of the outputs of the first task of migration planning
assessment. While preparing the architecture profile, you need to check the
availability and compatibility of all involved software and hardware in the new
environment.

Education of developers and administrators
Ensure that the staff has the skills for all products and the system environment
you will use for the migration project. Understanding the new product is essential
for analyzing the source system.

Analyzing application logic and source code
In this analysis phase you should identify all the Oracle proprietary features and
the affected sources. Examples of Oracle proprietary features are direct SQL
queries to the Oracle Data Dictionary, Optimizer hints and Oracle joins, which
are not supported by DB2. You also need to analyze the database calls within
the application for the usage of database API.

Setting up the target environment
The target system, either the same or a different one, has to be set up for
application development. The environment can include:

� The Integrated Development Environment (IDE)
� Database framework
� Repository
� Source code generator
� Configuration management tool
� Documentation tool

A complex system environment usually consists of products from different
vendors. Check the availability and compatibility before starting the project.
286 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Change of database-specific items
Regarding the use of the database API, you need to change the database calls in
the applications. The changes include:

� Language syntax changes
The syntax of database calls varies in the different programming languages.
In 7.3, “Self-build application” on page 288, we discuss the varieties of C/C++
and Java applications. For information regarding other languages, contact
IBM Technical Sales.

� SQL query changes
Oracle supports partly nonstandard SQL queries such as including of
optimizer hints or table joins with a (+) syntax. To convert such queries to
standard SQL, you can use the MTL SQL Translator.

You need to modify the SQL queries to the Oracle Data Dictionary as well,
and change them to select the data from the DB2 Catalog.

� Changes in calling procedures and functions
Sometimes there is a need to change procedures to functions and vice versa.
In such cases, you have to change all the calling commands and the logic
belonging to the calls in other parts of the database and the applications.

� Logical changes
Because of architectural differences between Oracle and DB2, changes in the
program flow might be necessary. Most of the changes are related to the
different concurrency models.

Application test
A complete application test is necessary after the database conversion and
application modification to ensure that the database conversion is completed,
and all the application functions work properly.

It is prudent to run the migration several times in a development system to
guarantee the process, then run the same migration on a test system with
existing test data, then a copy or subset of productions data, before eventually
running the process in production. Chapter 10, “Testing” on page 447 discusses
the testing steps in detail.

Application tuning
Tuning is a continuous activity for the database since data volume, number of
users, and applications change from time to time. After the migration, application
tuning should be concerned with the architectural differences between Oracle
and DB2. For the details, see Chapter 10, “Testing” on page 447, in DB2
Performance-tuning Guidelines, SC10-4222, and DB2 V7.1 Performance Tuning
Guide, SG24-6012.
 Chapter 7. Application conversion 287

Roll-out
The roll-out procedure varies and depends on the type of application and the
kind of database connection you have. Prepare the workstations with the proper
driver (for example, DB2 Runtime Client, ODBC, and JDBC) and server
according to the DB2 version.

User education
In case of changes in the user interface, the business logic, or the application
behavior because of system improvements, user education is required. Be sure
to provide enough user education since the acceptance of the target system is
corresponding to the skills and satisfaction of the users.

7.3 Self-build application
Self-build (in-house developed) applications are unique in every case. There are
a variety of languages used in applications and each one can have its unique
way of using APIs. In this section we explain the necessary steps in converting
self-build applications from Oracle to DB2, and we provide some examples in
C/C++ and Java, which show you how to convert the database calls.

Note that the examples included in this chapter are excerpts from the actual
programs, and cannot be compiled and executed by themselves.

7.3.1 Converting Oracle Pro*C applications to DB2
While many aspects of DB2 application development underwent changes in
recent years (stored procedures from C/COBOL/Java to SQL procedure
language, support for PL/SQL in user-defined functions, triggers, and in-line
SQL, and an enriched set of built-in functions, etc.), support for embedding SQL
into other host languages (C/C++) practically has not changed.

This chapter explains the steps necessary during application conversion to
programs with embedded DB2 SQL calls.

Connecting to the database
There is a difference in how C programs connect to the database. In Oracle each
instance (service name) can manage only one database. DB2 instances can be

Note: Since some differences exist in functionality and syntax between SQL
statements in Oracle and DB2, all converted SQL statements should be tested
in the target (DB2) environment before incorporating them in the converted
DB2 application.
288 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

used to manage multiple databases, thus the database name should be implicitly
provided by a connection statement.

In order to connect to the Oracle database, you need to specify the Oracle user
and the password for that user:

EXEC SQL CONNECT :user_name IDENTIFIED BY :password;

In DB2, you need to specify the database name, user ID, and password for that
user ID. So, the above statement will be converted to:

EXEC SQL CONNECT TO :dbname USERID :userid PASSWORD :password;

Note that dbname, userid, and password need to be declared as host variables.

Host variable declaration
Host variables are C or C++ language variables that are referenced within SQL
statements. They allow an application to pass input data to and receive output
data from the database manager. After the application is precompiled, host
variables are used by the compiler as any other C/C++ variable.

Host variables should not only be compatible with DB2 data types (accepted by
the DB2 precompiler), but also must be acceptable for the programming
language compiler.

As the C program manipulates the values from the tables using host variables,
the first step is to convert Oracle table definitions to DB2 data types; see
Appendix A, “Data types” on page 597 for details. Note that this mapping is
one-to-many because it depends on the actual usage of data. For example,
Oracle DATE data can be converted to DB2 DATE, if it only stores the actual
date, but it needs to be converted to DB2 TIMESTAMP if it stores DATE and
TIME.

The next step is to match DB2 data types with C data types. The table in
Appendix A, “Data types” on page 597 shows mapping between data types.

All host variables in a C program need to be declared in a special declaration
section, so that the DB2 precompiler can identify the host variables and the data
types:

EXEC SQL BEGIN
DECLARE SECTION;

char emp_name[31] = {'\0'};
sqlint32 ret_code = 0;

EXEC SQL END DECLARE SECTION;
 Chapter 7. Application conversion 289

Within this declaration section, there are rules for host variable data types that
are different from Oracle precompiler rules. Oracle precompiler permits host
variables to be declared as VARCHAR. VARCHAR[n] is a pseudo-type
recognized by the Pro*C precompiler. It is used to represent blank-padded,
variable-length strings. Pro*C precompiler converts it into a structure with a
2-byte length field followed by an n-byte character array. DB2 requires usage of
standard C constructs. So, the declaration for the variable emp_name
VARCHAR[25] needs to be converted as follows:

struct emp_name {
short var_len;
char var_data[25] };

Or, as mentioned above, the use of a char emp_name[n] is also permitted for
VARCHAR data. Variables of user-defined types (using typedef) in PRO*C need
to be converted to the source data type. For example, type theUser_t has been
declared to host values from Oracle object type:

typedef struct user_s
 {short int userNum;
 char userName[25];
 char userAddress[40];
 } theUser_t;

In Pro*C program, you can have host variables declared as theUser_t:

EXEC SQL BEGIN DECLARE;
 theUser_t *myUser;
 EXEC SQL END DECLARE SECTION;

To use this host variable for DB2, you would need to take it out of EXEC SQL
DECLARE SECTION and define the host variable MyUser as a structure.

DB2 allows for the host variable to be declared as a pointer with the following
restriction: If a host variable is declared as a pointer, no other host variable may
be declared with that same name within the same source file.

The host variable declaration char *ptr is accepted, but it does not mean a
null-terminated character string of an undetermined length. Instead, it means a
pointer to a fixed-length, single-character host variable. This may not be what
was intended for the Oracle host variable declaration.

It is recommended that sqlint32 and sqlint64 be used for INTEGER and BIGINT
host variables, respectively. By default, the use of long host variables results in
the precompiler error SQL0402 on platforms where long is a 64-bit quantity such
as 64 BIT UNIX. Use the PREP option LONGERROR NO to force DB2 to accept
290 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

long variables as acceptable host variable types and treat them as BIGINT
variables.

Starting with Version 9, DB2 supports XML type for host variables. In the
declaration section of the application, declare the XML host variables as LOB
data types as shown in the following:

EXEC SQL BEGIN DECLARE;
 SQL TYPE IS XML as CLOB(N) my_xml_var1;
 SQL TYPE IS XML as BLOB(N) my_xml_var2;
EXEC SQL END DECLARE SECTION;

You can learn more on handling XML types within C applications from DB2
Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET,
SG24-7301.

Oracle host tables
In Pro*C programs, you can declare host variables using arrays, then declare a
cursor you want to get results from. You can then issue a fetch statement that will
get all rows from the cursor into that host array.

Here is a fragment of PRO*C that demonstrates this method:

EXEC SQL BEGIN DECLARE SECTION;

long int dept_numb[10];
char dept_name[10][14];
char v_location[12];

EXEC SQL END DECLARE SECTION;
/* …… */

EXEC SQL DECLARE CUR1 CURSOR FOR
 SELECT DEPTNUMB, DEPTNAME
 FROM org_table
 WHERE LOCATION = :v_location;
/*……. */

EXEC SQL FETCH CUR1 INTO :dept_num, :dept_name;

The last statement will get all 10 rows from the cursor into arrays.

Because DB2 does not support arrays for the host variable declaration, the
above code needs to be converted as follows:

EXEC SQL BEGIN DECLARE SECTION;
 Chapter 7. Application conversion 291

sqlint32 h_dept_numb = 0;
char h_dept_name[14] = {'\0'};
char v_location[12] = {'\0'};

EXEC SQL END DECLARE SECTION;
/* move array out of DECLARE section - just C variables */
long int dept_numb[10];
char dept_name[10][14];
short int i = 0;

/* …… */

EXEC SQL DECLARE CUR1 CURSOR FOR
 SELECT DEPTNUMB, DEPTNAME
 FROM org_table
 WHERE LOCATION = :v_location;

/*we need Fetch one row at the time and move to corresponding
 member of array */

for (i=0;i<11;i++){
 EXEC SQL FETCH CUR1 INTO :h_dept_num, :h_dept_name;
 if (SQLCODE == 100) {

break;
 }

 dept_numb[i] = h_dept_numb;
 strcpy(dept_name[i], h_dept_name);
}

Exception handling
The mechanisms for trapping errors are quite similar between Oracle and DB2,
using the same concept of separating error routines from the mainline logic.
There are three different WHENEVER statements that could be used to define
program behavior in case of an error in DB2:

EXEC SQL WHENEVER SQLERROR GOTO error_routine;
EXEC SQL WHENEVER SQLWARNING CONTINUE;
EXEC SQL WHENEVER NOT FOUND not_found_routine;

Although the WHENEVER statement is prefixed by EXEC SQL like other SQL
statements, it is not an executable statement. Instead, a WHENEVER statement
causes the precompiler to generate code in a program to check the SQLCODE
attribute from the SQLCA after each SQL statement, and to perform the action
specified in the WHENEVER statement. SQLERROR means that an SQL
statement returns a negative SQLCODE indicating an error condition.
292 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

SQLWARNING indicates a positive SQLCODE (except +100), while NOT
FOUND specifies SQLCODE = +100, indicating that no data rows were found to
satisfy a request.

A compilation unit can contain as many WHENEVER statements as necessary,
and they can be placed anywhere in the program. The scope of one
WHENEVER statement reaches from the placement of the statement in the file
onward in the character stream of the file until the next suitable WHENEVER
statement is found or end-of-file is reached. No functions or programming blocks
are considered in that analysis. For example, you may have two different
SELECT statements: one must return at least one row, and the other may not
return any. You will need two different WHENEVER statements:

EXEC SQL WHENEVER NOT FOUND GOTO no_row_error;
 EXEC SQL SELECT address
 INTO :address
 FROM test_table
 WHERE phone = :pnone_num;
 ……..
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 EXEC SQL SELECT commis_rate
 INTO :rate :rateind
 WHERE prod_id = :prodId;
 if (rateind == -1) rate = 0.15;
 ……

Oracle precompiler also supports DO and STOP statements as actions in a
WHENEVER statement; those are not supported by the DB2 precompiler and
need to be converted to GOTO.

Another alternative is to check SQLCODE explicitly after each EXEC SQL
statement because that allows more context-sensitive error handling.

Error messages and warnings
The SQL Communication Area (SQLCA) data structure in DB2 is similar to the
same structure of Oracle. SQLCA provides information for diagnostic checking
and event handling.

To get the full text of longer (or nested) error messages, you need the sqlglm()
function:

sqlglm(message_buffer, &buffer_size, &message_length);

where message_buffer is the character buffer in which you want Oracle to store
the error message; buffer_size specifies the size of message_buffer in bytes;
 Chapter 7. Application conversion 293

Oracle stores the actual length of the error message in *message_length. The
maximum length of an Oracle error message is 512 bytes.

DB2 provides its user with a special runtime API function to return an error
message based on SQLCODE:

rc=sqlaintp(msg_buffer, 1024, 80, sqlca.sqlcode);

Where 80 stands for the number of characters after which a line break will be
inserted in the message. DB2 will search for work boundaries to place such a line
break. 1024 specifies the length of the message buffer, for example char
msg_buffer[1024]. As a result of invoking this function, the allocated buffer will
contain the descriptive error message, for example:

SQL0433N Value "TEST VALUES" is too long. SQLSTATE=22001.

If you need more information about a particular error, DB2 provides an API
function that returns an extended message associated with the specific
SQLSTATE:

rc=sqlogstt(msg_sqlstate_buffer, 1024, 80, sqlca.sqlcode);

As a result of invoking this function, char msg_sqlstate_buffer[1024] will
contain, for example, the following message:

SQLSTATE 22001: Character data, right truncation occurred; for
example, an update or insert value is a string that is too long for
the column, or datetime value cannot be assigned to a host variable,
because it is too small.

Passing data to a stored procedure from a C program
In Oracle, in order to invoke a remote database procedure, the following
statements are used:

EXEC SQL EXECUTE
 BEGIN
 Package_name.SP_name(:arg_in1,:arg_in2, :status_out);
 END;
END-EXEC;

The value transfer between the calling environment and the stored procedure
may be achieved through arguments. You can choose one of three modes for
each argument: IN, OUT or INOUT. For example, the above stored procedure
may be declared as:

CREATE PACKAGE package_name IS
 PROCEDURE SP_name(
 agr_in1 IN NUMBER ,
 arg_in2 IN CHAR(30),
294 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 status_out OUT NUMBER);

When this stored procedure is invoked, values passed from the calling program
will be accepted by the stored procedure correspondingly.

The DB2 client application invokes a stored procedure by using the CALL
statement, which can pass parameters to the stored procedure and receive
parameters returned from the stored procedure. It has the following syntax:

CALL procedure_name (:parm1, …:parmN);

As with all SQL statements, you prepare CALL statement with parameter
markers and then supply values for the markers using SQLDA:

CALL procedure_name USING DESCRIPTOR host_var;

The SQLDA is very helpful if you have an unknown number of host variables or
very many variables—such as 100 or more. Managing single variables in those
cases can be very troublesome.

In order to invoke a stored procedure from C client, the following need to be in
place:

� A stored procedure needs to be created and registered with the database.

� A host variable or parameter marker to each IN and INOUT parameter of the
stored procedure should be declared and initialized.

Consider an example. The program must give a raise to each employee whose
current salary is less than some value. The program will pass that value to a
stored procedure, perform an update, and return back the status. The client code
in C will look as shown in Example 7-3.

Example 7-3 Passing data to a stored procedure

#include <sqlenv.h>

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 Sqlint32 salary_val=0;
 Sqlint16 salind=1;
 Sqlint16 status=0;
 Sqlint16 statind=0;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLCA;
 EXEC SQL CONNECT TO sample;
 EXEC SQL WHENEVER SQLERROR GOTO err_routine;
 Chapter 7. Application conversion 295

 salary_val = getSalaryForRaise();
 statind = -1; /* set indicator variable to -1 */
 /* for status as output-only variable */

 EXEC SQL CALL raiseSal(:salary_val :salind, :status :statind);
 if (status == 0){
 printf (" The raises has been successfully given \n ");
 EXEC SQL COMMIT;
 }
 else
 if (status ==1)
 printf (" NO input values has been provided.\n ");
 else
 if (status == 2)
 printf("Stored procedure failed.\n");

 err_routine:
 printf (" SQL Error, SQLCODE = \n ", SQLCODE);
 EXEC SQL ROLLBACK;
}

Note that all host variables that are used as parameters in the statement are
declared and initialized in EXEC SQL DECLARE SECTION.

Building a C/C++ DB2 application
DB2 provides sample build scripts for precompiling, compiling, and linking
C-embedded SQL programs. These are located in the sqllib/samples/c directory,
along with sample programs that can be built with these files. This directory also
contains the embprep script used within the build script to precompile a *.sqc file.

Build files are provided by DB2 for each language on supported platforms where
the types of programs they build are available in the same directory as the
sample programs for each language. These build files, unless otherwise
indicated, are for supported languages on all supported platforms. The build files
have the .bat (batch) extension on Windows, and have no extension on UNIX
platforms. For example, bldmapp.bat is a script to build C/C++ applications on
Windows.

DB2 also provides utilemb.sqc and utilemb.h files, containing functions for error
handling. In order to use utility functions, the utility file must first be compiled, and
then its object file linked during the creation of the target program’s executable.
Both the makefile and build files in the sample directories do this for the
programs that require error-checking utilities.

For more information on building C applications, see Application Development
Guide: Building and Running Applications V8, SC09-4825-01.
296 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

7.3.2 Converting Oracle Java applications to DB2
For Java programmers, DB2 offers two APIs: JDBC and SQLj.

JDBC is a mandatory component of the Java programming language as defined
in the Java 2, Standard Edition (J2SE™) specification. To enable JDBC
applications for DB2, an implementation of the various Java classes and
interfaces, as defined in the standard, is required. This implementation is known
as a JDBC driver. DB2 offers a complete set of JDBC drivers for this purpose.
They are categorized as the CLI drivers, the DB2 JDBC Type 2 Driver for Linux,
UNIX and Windows (DB2 JDBC Type 2 Driver), or IBM DB2 Driver for JDBC and
SQLJ (Type 2 and Type 4). The Type 2 Driver is deprecated.

SQLJ is a standard development model for data access from Java applications.
The SQLJ API is defined in the SQL 1999 specification. The DB2 JDBC Type 2
Driver for Linux, UNIX and Windows, or the IBM DB2 Driver for JDBC and SQLJ
provide support for both JDBC and SQLJ APIs in a single implementation. JDBC
and SQLJ can interoperate in the same application. SQLJ provides the unique
ability to develop using static SQL statements and control access at the DB2
package level.

The Java code conversion is rather easy. The API itself is well defined and
database independent. For instance, the database connection logic is
encapsulated in standard J2EE™ DataSource objects. The Oracle or DB2
specific things such as user name, database name, etc. are then configured
declaratively within the application.

However, there is the need to change your Java source code regarding:

� The API driver (JDBC or SQLJ).

� The database connect string.

� Oracle’s proprietary SQL, such as CONNECT BY for recursive SQL, the
usage of DECODE() or SQL syntax like the (+) operator instead of
LEFT/RIGHT OUTER JOIN. MTK provides support here with the SQL
Translator.

� Remove or simulate proprietary optimizer hints in SQL queries.

For complete information regarding the Java environment, drivers, programming,
and other relevant information, consult Developing Java Applications,
SC10-4233.

Java access methods to DB2
DB2 has rich support for the Java programming environment. You can access
DB2 data by putting the Java class into a module in one of the following ways:
 Chapter 7. Application conversion 297

� DB2 Server

– Stored procedures (JDBC or SQLJ)
– SQL functions or user-defined functions (JDBC or SQLJ)

� Browser

– Applets based on JDBC (JDBC)

� J2EE Application Servers (such as WebSphere Application Server)

– Java ServerPages (JSPs) (JDBC)
– Servlets (SQLJ or JDBC)
– Enterprise JavaBeans™ (EJBs) (SQLJ or JDBC)

JDBC drivers for DB2
The drivers that are supported for DB2 9 are:

� DB2 JDBC Type 2 Driver for Linux, UNIX and Windows
� IBM DB2 Driver for JDBC and SQLJ

The DB2 JDBC Type 2 Driver for Linux, UNIX, and Windows has been
deprecated. Currently, the IBM DB2 Driver for JDBC and SQLJ is the
recommended driver. This driver supports both Type 2 and Type 4 connections.

The DB2 JDBC Type 2 Driver supports:

� Most of the methods that are described in the JDBC 1.2 specification, and
some of the methods that are described in the JDBC 2.0 specification.

� SQLJ statements that perform equivalent functions to all JDBC methods.

� Connection pooling.

� Distributed transactions.

� Java user-defined functions and stored procedures.

The IBM DB2 Driver for JDBC and SQLJ supports:

� All of the methods that are described in the JDBC 3.0 specifications.

� SQLJ statements that perform equivalent functions to most JDBC methods.

� Connections that are enabled for connection pooling. WebSphere Application
Server or another application server does the connection pooling.

� Java user-defined functions and stored procedures (IBM DB2 Driver for JDBC
and SQLJ type 2 connectivity only).

� Global transactions that run under WebSphere Application Server Version 5.0
and above.

� Support for distributed transaction management. This support implements the
Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS)
298 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

and Java Transaction API (JTA) specifications, which conform to the X/Open
standard for distributed transactions.

Type 2 connectivity
For IBM DB2 Driver for JDBC and SQLJ Type 2 connectivity, the getConnection
method must specify a URL, as shown in the following:

getConnection(String url);

The following is the syntax of the URL for the Type 2 connectivity.

>>-+-+-jdbc:db2:database----------+-+--------------------------><
 | +-jdbc:db2os390:database-----+ |
 | +-jdbc:db2os390sqlj:database-+ |
 | +-jdbc:default:connection----+ |
 | +-jdbc:db2os390--------------+ |
 | '-jdbc:db2os390sqlj----------' |
 | .-----------------------. |
 | V | |
 '-:---property--=--value--;-+----'

Type 4 connectivity
For IBM DB2 Driver for JDBC and SQLJ Type 4 connectivity, the getConnection
method must specify a user ID and a password, through parameters or through
property values. See Example 7-4.

Example 7-4 getConnection syntax for Type 4 connectivity

getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);

The following is the syntax for a URL for IBM DB2 Driver for JDBC and SQLJ
Type 4 connectivity.

>>-+-jdbc:db2:------+-//server--+-------+--/database------------>
 '-jdbc:db2j:net:-' '-:port-'

>--+-----------------------------+-----------------------------><
 | .-----------------------. |
 | V | |
 '-:---property--=--value--;-+-'

Example 7-5 shows how to set the user ID and password in the user and
password parameters.

Example 7-5 Setting the user ID and password in the user and password parameters

// Set URL for data source
String url = "jdbc:db2://sysmvs99.stl.ibm.com:6543/san_jose";
 Chapter 7. Application conversion 299

// Create connection
String user = "db2inst1";
String password = "db2inst1";
Connection con = DriverManager.getConnection(url, user, password);

JDBC driver declaration
In order to connect from a Java application to an Oracle database using the OCI
driver, the following must be done:

1. Import the Oracle driver.
2. Register the driver manager.
3. Connect with a user ID, the password, and the database name.

Example 7-6 shows an Oracle JDBC connection through OCI:

Example 7-6 Oracle JDBC connection

import java.sql.*;
import java.io.*;
import oracle.jdbc.driver.*;

class rsetClient
{
 public static void main (String args []) throws SQLException
 {
 // Load the driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@oracle","uid","pwd");

 // ...
 }
}

It is not necessary to import a JDBC library when connecting to DB2. The
registration and connection to DB2 is demonstrated in Example 7-7. Be aware
that the parameters for the getConnection method will be determined by the
connection type.

Example 7-7 DB2 JDBC connection

import java.sql.*;

class rsetClient
{
 public static void main (String args []) throws SQLException {
300 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 // Load DB2 JDBC application driver
 try
 {

// use ONE of the following - depending on the chosen driver:
//IBM DB2 Driver for JDBC and SQLJ

Class.forName("com.ibm.db2.jcc.DB2Driver");
//DB2 JDBC Type 2 Driver for Linux, UNIX and Windows

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver”);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 // Connect to the database
 Connection conn =

 // Use appropriate parameters for getConnection depending on chosen //
driver.
 DriverManager.getConnection("jdbc:db2://dbname","uid","pwd");
 // ...
 }
}

Stored procedure calls
The handling of input and output parameters in stored procedures calls differ
between Oracle and DB2. The following examples explain the different kinds of
procedure calls, and the usage of parameters and result sets.

Stored procedure with an input parameter
A stored procedure has been created in Oracle as:

CREATE OR REPLACE PROCEDURE sp_testcall_1(parm1 IN INTEGER
 ,parm2 IN INTEGER)

and in DB2 as:

CREATE PROCEDURE sp_testcall_1(IN parm1 INTEGER
 ,IN parm2 INTEGER)

The procedures have two input parameters and no output parameters. There is
no difference in the call between Oracle and DB2. In both cases the parameter
values need to be set before the stored procedure can be executed. Example 7-8
demonstrates this point.

Example 7-8 Java call of Oracle or DB2 procedure with input parameter

String SP_CALL = "{call sp_testcall_1(?,?)}";

 Chapter 7. Application conversion 301

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

CallableStatement stmt;
try {
 stmt = conn.prepareCall(SP_CALL);
 stmt.setInt(1,10);
 stmt.setInt(2,15);
 stmt.execute();
 // ...
}

Stored procedure with a result set
The next example shows a procedure without an input parameter, but defines a
result set as an output parameter. The result set is an opened cursor defined in
the procedure. The rows are fetched in the Java application with a loop.

The Oracle stored procedure is defined as:

TYPE CursorType IS REF CURSOR;
CREATE PROCEDURE sp_testcall_3(oCursor OUT CursorType) AS
BEGIN
 open oCursor for select last_name from employees;
END;

The output parameter type is registered as CURSOR before the procedure is
called.

Example 7-9 Java call of Oracle procedure with result set

String SP_CALL = "{call sp_testcall_3}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.registerOutParameter (1, OracleTypes.CURSOR);
 stmt.executeUpdate();
 ResultSet rs = (ResultSet) stmt.getObject(1);
 while(rs.next())
 {
 // ...
 }
}
302 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The corresponding DB2 procedure looks like this:

CREATE PROCEDURE db2_spcall_v3
RESULT SETS 1
LANGUAGE SQL
BEGIN
 DECLARE c1 CURSOR WITH RETURN FOR
 SELECT last_name
 FROM employees;

 OPEN c1;
END!

The result set definition in SQL PL is different from Oracle’s PL/SQL. You have to
specify the amount of expected result sets.

With DB2, you do not need to register the result set with the method
registerOutParameter() in the Java application. To get the result set you call the
method getResultSet() instead of getObject(), as in Example 7-9.

Example 7-10 Java call of DB2 procedure with result set

String SP_CALL = "{call db2_spcall_v3}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 ResultSet rs = null;
 stmt.execute();
 rs = stmt.getResultSet();
 while(rs.next())
 {
 // ...
 }
}

Stored procedure with an input parameter and result set
Example 7-11 is a combination of Example 7-8 and Example 7-9. Note the
numbering of the parameters. The first input parameter, value2, is numbered
with 2, the result set rs is numbered with 1.

Example 7-11 Java call of Oracle procedure with input parameter and result set

private static final String SP_CALL = "{call sp_testcall4 (?) }";

CallableStatement stmt1 = conn.prepareCall(SP_CALL);
 Chapter 7. Application conversion 303

Stmt1.registerOutParameter(1, OracleTypes.CURSOR);
Stmt1.execute();
ResultSet rs = (ResultSet) stmt1.getObject(1);

while(rs.next()) {
 int value1 = rs.getInt(1);
 stmt2.setInt(2, value2);
 stmt2.execute();
 ResultSet rs = (ResultSet) stmt1.getObject(1);
 // ...
}

In DB2, input parameters and result sets are defined as shown in Example 7-12
and Example 7-13. Input parameters are numbered, beginning with 1, and are
independent from the retrieval of result sets.

Example 7-12 Java call of DB2 procedure with input parameter and result set

String SP_CALL = "{call db2_spcall_v4(?)}";

Connect to the database
 Connection conn =
 DriverManager.getConnection (url, userName, password);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.setInt(1, emp_id);
 ResultSet rs = null;
 stmt.execute();
 rs = stmt.getResultSet();
 while(rs.next())
 {
 System.out.println (rs.getString (1));
 // ...
 }
}

Stored procedure converted from a function
Calling an Oracle function is similar to calling a stored procedure with an input
parameter and a result set. The function is defined as:

CREATE TYPE CursorType IS REF CURSOR;
CREATE FUNCTION sp_testcall_4(v_num IN INTEGER)
 RETURN CursorType
304 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 7-13 Java of Oracle function with input parameter and result set

String SP_CALL = "{? = call sp_testcall_4(?)}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.registerOutParameter (1, OracleTypes.CURSOR);
 stmt.setInt(2, 6);
 stmt.execute();
 ResultSet rs = (ResultSet) stmt.getObject(1);
 while(rs.next())
 {
 // ...
 }
}

As described in Chapter 5, “Conversion reference” on page 165, Oracle functions
may need to be converted to a stored procedure in DB2. The migrated DB2
procedure may look like the one shown in Example 7-13, with an input parameter
and a result set as an output parameter.

7.3.3 Converting Oracle Call Interface applications
You may want to consider rewriting applications using the Oracle Call Interface
(OCI) by using CLI or ODBC. The OCI is specific to the Oracle database and
cannot be used with any other databases.

In most cases, you can replace OCI functions with the appropriate CLI or ODBC
functions, followed by relevant changes to the supporting program code. The
remaining non-OCI program code should require minimal modification. The
examples in this chapter show a comparison of the OCI and CLI or ODBC
statements required for establishing a connection to an Oracle and DB2
database.

Introduction to CLI
DB2 Call Level Interface (DB2 CLI) is the IBM callable SQL interface to the DB2
family of database servers. It is a C and C++ API for relational database access
that uses function calls to pass dynamic SQL statements as function arguments.
It is an alternative to embedded dynamic SQL, but unlike embedded SQL, DB2
CLI does not require host variables or a precompiler.
 Chapter 7. Application conversion 305

DB2 CLI is based on the Microsoft Open Database Connectivity (ODBC)
specification, and the International Standard for SQL/CLI. These specifications
were chosen as the basis for the DB2 Call Level Interface in an effort to follow
industry standards, and to provide a shorter learning curve for application
programmers already familiar with either of these database interfaces. In
addition, some DB2-specific extensions have been added to help the application
programmer specifically exploit DB2 features.

The DB2 CLI driver also acts as an ODBC driver when loaded by an ODBC
driver manager. It conforms to ODBC 3.51.

Comparison of DB2 CLI and Microsoft ODBC
Figure 7-3 compares DB2 CLI and the DB2 ODBC driver. The left side shows an
ODBC driver under the ODBC Driver Manager, and the right side illustrates DB2
CLI, the callable interface designed for DB2-specific applications.

Figure 7-3 DB2 CLI and ODBC

In an ODBC environment, the Driver Manager provides the interface to the
application. It also dynamically loads the necessary driver for the database

ODBC Driver Manager
Environment

DB2 CLI
Environment

Application

ODBC Driver Manager

Other
ODBC
Driver

A

Other
ODBC
Driver

B

DB2
ODBC
Driver

C

Gateway
B

DB2
Client

DBMS
A

DBMS
B

DB2 UDB
Server DB2 (MVS)

SQL/DS
SQL/400

Other DRDA
DBMS

DB2 Connect

DB2 UDB
Server

DB2 UDB
Client

DB2 Connect

DB2 CLI
Driver

Application
306 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

server that the application connects to. It is the driver that implements the ODBC
function set, with the exception of some extended functions implemented by the
Driver Manager. In this environment, DB2 CLI conforms to ODBC 3.51.

For ODBC application development, you must obtain an ODBC Software
Development Kit. For the Windows platform, the ODBC SDK is available as part
of the Microsoft Data Access Components (MDAC) SDK, available for download
from:

http://www.microsoft.com/data/

For non-Windows platforms, the ODBC SDK is provided by other vendors.

In environments without an ODBC driver manager, DB2 CLI is a self-sufficient
driver, which supports a subset of the functions provided by the ODBC driver.
Appendix D, “Oracle Call Interface (OCI) mapping” on page 667 summarizes the
two levels of support. The CLI and ODBC function summary provides a complete
list of ODBC functions and indicates whether they are supported.

Setting up the CLI environment
Runtime support for DB2 CLI applications is contained in all DB2 clients. Support
for building and running DB2 CLI applications is contained in the DB2 Application
Development (DB2 AD) Client.

The CLI/ODBC driver will auto bind on the first connection to the database,
provided the user has the appropriate privilege or authorization. The
administrator may want to perform the first connect or explicitly bind the required
files.

Procedure
In order for a DB2 CLI application to successfully access a DB2 database:

1. Ensure that the DB2 CLI/ODBC driver was installed during the DB2 client
install.

2. Catalog the DB2 database and node if the database is being accessed from a
remote client. On the Windows platform, you can use the CLI/ODBC settings
GUI to catalog the DB2 database.

3. Optional: Explicitly bind the DB2 CLI/ODBC bind files to the database with the
command:

 db2 bind ~/sqllib/bnd/@db2cli.lst blocking all messages cli.msg\
 grant public

On the Windows platform, you can use the CLI/ODBC settings GUI to bind
the DB2 CLI/ODBC bind files to the database.
 Chapter 7. Application conversion 307

http://www.microsoft.com/data/
http://www.microsoft.com/data/

4. Optional: Change the DB2 CLI/ODBC configuration keywords by editing the
db2cli.ini file, located in the sqllib directory on Windows, and in the sqllib/cfg
directory on UNIX platforms.

On the Windows platform, you can use the CLI/ODBC settings GUI to set the
DB2 CLI/ODBC configuration keywords.

Change of OCI database calls
All Oracle Call Interface (OCI) calls in your application need to be changed to CLI
calls. The program flow is retained, but you need to modify the definition and
processing of database handles. There may not be an exact match in the
conversion process. Your program code might require additional revisions to
obtain similar functionality.

The following examples show you the different SQL statements in order to
connect to a database. In Oracle you need to define variables for the
environment handles as well as the database name, username, and password:

ociRC = OCILogon(env_hp, // environment handle
 err_hp, // error handle
 &svc_hp, // service context
 user_name, // username
 strlen (user_name), // length of username
 password, // password
 strlen (password), // length of password
 db_name // database name
 strlen (db_name)); // length of database name

In DB2 you also need to specify the connection handle, database name,
username, and password. So, the OCI statement will be converted as follows:

cliRC = SQLConnect(*pHdbc, // connection handle
 db_name, // database name
 strlen (db_name), // length of database name
 user_name, // username
 strlen (user_name), // length of username
 password, // password
 strlen (password)); // length of password

Appendix D, “Oracle Call Interface (OCI) mapping” on page 667 gives you a
mapping of the most important Oracle8 OCI calls to the closest DB2 CLI
equivalents. Refer to the Oracle8i Server Application Development Guide and to
the Call Level Interface Guide and Reference, Volume 1, SC10-4224, and
Volume 2, SC10-4225 for details on the OCI and CLI functions.
308 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The following classes of OCI functions have no equivalents in DB2 CLI. The
functionality must be implemented either in SQL or in C (or C++) directly:

� Navigational functions

OCIObject__()
OCICache__()

� Datatype mapping and manipulation functions

OCIColl__()
OCIDate__()
OCINumber__()
OCIString__

and so on.

However, CLI performs conversion of data between data types wherever
possible.

� External procedure functions

OCIExtProc__()

Error handling and diagnostics
Diagnostics refers to dealing with warning or error conditions generated within an
application. Two levels of diagnostics are returned when calling DB2 CLI
functions:

� Return codes
� Detailed diagnostics consisting of SQLSTATEs, messages, and SQLCA

Each CLI function returns the function return code for a basic diagnosis. The
functions SQLGetDiagRec() and SQLGetDiagField() provide more detailed
diagnostic information. If the diagnostic originates at the DBMS, the
SQLGetSQLCA() function provides access to the SQLCA. This arrangement lets
applications handle the basic flow control based on return codes, and uses the
SQLSTATES along with the SQLCA to determine the specific causes of failure,
and to perform specific error handling.

Table 7-1 lists the mapping of all possible return codes of Oracle OCI functions
and DB2 CLI functions.

Table 7-1 Return code mapping from OCI to CLI functions

OCI return code CLI return code Explanation

OCI_SUCCESS SQL_SUCCESS The function completed
successfully, no additional
SQLSTATE information is
available.
 Chapter 7. Application conversion 309

OCI_SUCCESS_WITH_INFO SQL_SUCCESS_WITH_INFO The function completed
successfully with a warning or
other information. Call
SQLGetDiagRec() or
SQLGetDiagField() to receive
the SQLSTATE and any other
informational messages or
warnings. The SQLSTATE
will have a class of '01'.

OCI_NO_DATA SQL_NO_DATA_FOUND The function returned
successfully, but no relevant
data was found. When this is
returned after the execution of
an SQL statement, additional
information may be available
and can be obtained by
calling SQLGetDiagRec() or
SQLGetDiagField().

OCI_ERROR SQL_ERROR The function failed. Call
SQLGetDiagRec() or
SQLGetDiagField() to receive
the SQLSTATE and any other
error information.

OCI_INVALID_HANDLE SQL_INVALID_HANDLE The function failed due to an
invalid input handle
(environment, connection or
statement handle). This is a
programming error. No further
information is available.

OCI_NEED_DATA SQL_NEED_DATA The application tried to
execute an SQL statement
but DB2 CLI lacks parameter
data that the application had
indicated would be passed at
execute time.

OCI_STILL_EXECUTING SQL_STILL_EXECUTING The function is running
asynchronously and has not
yet completed. The DB2 CLI
driver has returned control to
the application after calling
the function, but the function
has not yet finished
executing.

OCI_CONTINUE no equivalent

OCI return code CLI return code Explanation
310 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The OCI function OCIErrorGet() returns the diagnostic record according to the
SQLSTATE. Within a CLI application, the functions SQLGetDiagRec() and
SQLGetDiagField() return three pieces of information:

� SQLSTATE

� Native error

If the diagnostic is detected by the data source, this is the SQLCODE;
otherwise, this is set to -99999.

� Message text

This is the message text associated with the SQLSTATE.

SQLGetSQLCA() returns the SQLCA for access to specific fields, but should only
be used when SQLGetDiagRec() or SQLGetDiagField() cannot provide the
desired information.

Further information
You can find more information about CLI applications and development in:

� DB2 Call Level Interface Guide and Reference, Volume 1, SC10-4224;
Volume 2, SC10-4225

� Getting Started with Database Application Development, SC10-4252

� Web site:

http://www.ibm.com/software/data/db2/udb/ad

7.3.4 Converting ODBC applications
The Open Database Connectivity (ODBC) is similar to the CLI standard.
Applications based on ODBC can connect to the most popular databases. Thus,
the application conversion is pretty easy. You have to perform the conversion of
database-specific items in your application, such as:

� Proprietary SQL query changes
� Possible changes in calling stored procedures and functions
� Possible logical changes

And the test, roll-out, and education tasks as well. Your current development
environment will be the same. For a more detailed description of the necessary
steps, reference 7.2, “Application migration planning” on page 285.
 Chapter 7. Application conversion 311

http://www.ibm.com/software/data/db2/udb/ad

7.3.5 Converting Perl applications

In this section we discuss using Perl for connecting to Oracle and DB2
databases, and demonstrate the conversion from Oracle to DB2 by some simple
Perl programs.

We create a stored procedure and a Perl program to demonstrate the following
syntactical differences between Oracle and DB2:

� Connecting to a database using Perl
� Calling a stored procedure with an input and an output parameter
� Returning an output parameter

Example 7-14 is an Oracle stored procedure Greeting. It contains an input
parameter name, and an output parameter message.

Example 7-14 Oracle stored procedure Greeting

CREATE OR REPLACE PROCEDURE Greeting (name IN
 VARCHAR2, message OUT VARCHAR2)
 AS
 name2 varchar2(30);
BEGIN
 name2 := UPPER(name);
 message := 'Hello ' || name2 ||', the date is: ' ||

SYSDATE;
END;

Example 7-15 shows the Perl program oraCallGreeting.pl. This program
connects to the Oracle database, binds the input and output parameters,
executes the call to the Greeting stored procedure, and returns the output
parameter.

Example 7-15 Oracle Perl program oraCallGreeting.pl

#!/usr/bin/perl
use DBI;

$database='dbi:Oracle:xp10g';
$user='sample';
$password='sample';

$dbh = DBI->connect($database,$user,$password);
print " Connected to database.\n";

$name = 'Ariel';
$message;
312 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

$sth = $dbh->prepare(q{
 BEGIN
 Greeting(:name, :message);

END;
 });

$sth->bind_param(":name", $name);
$sth->bind_param_inout(":message", \$message, 100);
$sth->execute;
print "$message", "\n";

 # check for problems ...
 warn $DBI::errstr if $DBI::err;

$dbh->disconnect;

The results of the execution of oraCallGreeting.pl are displayed in Figure 7-4.

Figure 7-4 The result of executing the Perl program oraCallGreeting.pl

Converting Perl application to DB2
In this section, we demonstrate how to connect to DB2 using Perl.

Example 7-16 is a DB2 stored procedure that has the same function and same
name as the Oracle stored procedure shown in Example 7-14 on page 312. The
procedure Greeting also contains an input parameter name, and an output
parameter message.

Example 7-16 DB2 stored procedure Greeting

CREATE PROCEDURE Greeting (IN name VARCHAR(30), OUT message VARCHAR(100))
LANGUAGE SQL
 Chapter 7. Application conversion 313

RESULT SETS 0

BEGIN

 DECLARE timeofday DATE;

 set name = UPPER(name);
 values CURRENT DATE into timeofday;
 set greeting = 'Hello ' || name || ', the date is: ' ||
 char(timeofday) || '.';

END

Minor changes are necessary to convert the preceding Oracle Perl application
(Example 7-15 on page 312) to use DB2. The steps (besides entering the correct
values for user and password) are:

� Observing the syntax difference in the parameters for the connect method,
and making the necessary changes.

� Observing the syntax differences for calling stored procedures, and making
the necessary changes.

DB2 Connect method syntax
The syntax for a database connection to DB2 is shown in Example 7-17.

Example 7-17 Generic syntax for a DB2 connection string in a Perl application

$dbhandle = DBI->connect(‘dbi:DB2:dbalias’, $userID, $password)

The parameters of this connection are as follows:

� dbhandle - This represents the database handle returned by the connect
statement.

� dbalias - This represents a DB2 alias cataloged in the DB2 database
directory.

Oracle requires the sid for the database in the place where DB2 would
require dbalias; the Oracle syntax can be summarized as dbi:Oracle:sid. In
our example this is coded as dbi:Oracle:xp10g.

� userID - This represents the user ID used to connect to the database.

� password - This represents the password for the user ID that is used to
connect to the database.
314 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Syntax for calling a DB2 stored procedures
In Oracle, a stored procedure is called from an anonymous block, that is,
BEGIN...END; within a PREPARE statement. The input and output parameters
of the Oracle stored procedure are defined as host variables, for example,
::name, :message. Example 7-18 demonstrates these points.

Example 7-18 Calling a stored procedure in an Oracle Perl program

$sth = $dbh->prepare(q{
BEGIN

Greeting(:name, :message);
END;

});

In contrast, a DB2 stored procedure is executed by issuing a CALL statement
from within a PREPARE statement. Also, the stored procedure input and output
parameters are designated as parameter markers (?, ?). This is shown in
Example 7-19.

Example 7-19 Calling a stored procedure in a DB2 Perl program

$sth = $dbh->prepare(q{
 CALL Greeting(?,?);
});

The complete Perl program, converted to DB2, is shown in Example 7-20.

Example 7-20 DB2 Perl program db2CallGreeting.pl

#!/usr/bin/perl
use DBI;

$database='dbi:DB2:sample';
$user='db2inst1';
$password='db2inst1';

$dbh = DBI->connect($database, $user, $password) or die "Can’t connect to
$database: $DBI::errstr";

print " Connected to database.\n";

$name = 'Ariel';
$message;

$sth = $dbh->prepare(q{
 CALL Greeting(?,?);
 });
 Chapter 7. Application conversion 315

$sth->bind_param(1,$name);

$sth->bind_param_inout(2, \$message, 100);

$sth->execute;

 print "$message", "\n";

 # check for problems...
warn $DBI::errstr if $DBI::err;

$sth-> finish;

$dbh->disconnect;

The results of executing db2CallGreeting.pl are shown in Figure 7-5.

Figure 7-5 The results of executing the db2CallGreeting.pl program

7.3.6 Converting PHP applications

Oracle supports access to Oracle databases in a PHP application through two
extensions:

� OCI8

The functions in this extension allow access to Oracle 10, Oracle 9, Oracle 8
and Oracle 7 databases using the Oracle Call Interface (OCI). They support
binding of PHP variables to Oracle placeholders, have full LOB, FILE and
ROWID support, and allow you to use user-supplied define variables. This is
the preferred extension for PHP connections to an Oracle database.
316 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� PDO_OCI

This driver implements the PHP Data Objects (PDO) interface to enable
access from PHP to Oracle databases through the OCI library.

Information regarding the PHP extensions that are available for DB2 were
discussed in the PHP section 7.1.2, “Driver support” on page 282.

In order to demonstrate some differences between PHP programming in Oracle
and DB2, we show a sample program that demonstrates the following:

� Connecting to a database through PHP
� Calling a stored procedure with an input and an output parameter
� Returning an output parameter

The same stored procedure, Greeting, that was shown in 7.3.5, “Converting Perl
applications” on page 312, is used in the examples in this section.

Connecting to Oracle using PHP (OCI8)
Example 7-21 is the Oracle PHP program oraGreeting.php. This program
connects to the Oracle database using the OCI8 extension, binds the input and
output parameters, executes the call to the Greeting stored procedure, and
returns the output parameter.

Example 7-21 Oracle PHP program oraGreeting.php

<?php
$conn = oci_connect('sample','sample') or die;

$sql = 'BEGIN Greeting(:name, :message); END;';

$stmt = oci_parse($conn,$sql);

// Bind the input parameter
oci_bind_by_name($stmt,':name',$name,32);

// Bind the output parameter
oci_bind_by_name($stmt,':message',$message,100);

// Assign a value to the input
$name = 'Ariel';

oci_execute($stmt);

// $message is now populated with the output value
print "$message\n";
?>
 Chapter 7. Application conversion 317

The result of executing oraGreeting.php is shown in Figure 7-6.

Figure 7-6 The result of executing oraGreeting.php

Connecting PHP applications to DB2
Two extensions, ibm_db2 and PDO_ODBC, can be used to access DB2
databases from a PHP application. See “PHP extensions” on page 284 for
details. For the DB2 conversion of the preceding Oracle PHP program,
Example 7-21 on page 317, the ibm_db2 extension is used. Example 7-22
shows the source code for this converted program.

Example 7-22 DB2 PHP program db2Greeting.php

<?php
$database = 'sample';
$user = 'db2inst1';
$password = 'db2inst1';
// Next parameters used when making an uncataloged connection
// $hostname = 'localhost';
// $port = 50000;

$conn = db2_connect($database, $user, $password) or die;

// use this connection string for uncataloged connections:
//$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;
//HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;UID=$user;PWD=$passwo//rd;";

// $conn = db2_connect($conn_string, ‘’, ‘’);

if ($conn) {
 //echo "Connection succeeded.
\n";

 $sql = 'CALL Greeting(?, ?)';
 $stmt = db2_prepare($conn, $sql);

 $name = 'Ariel';
 $message = '';

 db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);
 db2_bind_param($stmt, 2, "message", DB2_PARAM_OUT);
318 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

db2_execute($stmt);

 // $message is now populated with the output value
print "$message\n";
}

?>

As can be seen in this example, there are few changes that need to completed
before the application may use DB2. These can be summarized by observing the
differences between the following functions:

� oci_connect and db2_connect
� oci_bind_by_name and db2_bind_param
� oci_parse and db2_prepare

oci_connect and db2_connect
oci_connect takes the following required and optional parameters (in []):

(string $username, string $password [, string $db [, string $charset [, int
$session_mode]]])

oci_connect will be converted to the ibm_db2 function db2_connect, which takes
the following required and optional parameters (in []):

(string database, string username, string password, [array options])

When connecting to DB2 through PHP, the connection may be made through
either a cataloged or an uncataloged database.

For an uncataloged connection to a database, the database parameter
represents a complete connection string in the format shown in Example 7-23.

Example 7-23 Connection string for an uncataloged DB2 database

DRIVER={IBM DB2 ODBC DRIVER};DATABASE=database;HOSTNAME=hostname;
PORT=port;PROTOCOL=TCPIP;UID=username;PWD=password

Note: Database ($db) is an optional parameter. If the database is not
specified, PHP uses the environment ORACLE_SID and TWO_TASK to
determine the name of the local Oracle instance and the location of
tnsnames.ora.

Note: Refer to the DB2 manual Administration Guide: Implementation,
SC10-4221, for detailed information regarding cataloging a DB2 database.
 Chapter 7. Application conversion 319

This is demonstrated by the code shown in Example 7-24.

Example 7-24 Connection string for uncataloged database used in the example

$database = 'sample';
$user = 'db2inst1';
$password = 'db2inst1';
$hostname = 'localhost';
$port = 50000;

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;
HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;UID=$user;PWD=$password;";

$conn = db2_connect($conn_string, ‘’, ‘’);

oci_bind_by_name and db2_bind_param
oci_bind_by_name takes the following required and optional parameters (in []):

(resource $statement, string $ph_name, mixed &$variable [, int $maxlength [,
int $type]])

oci_bind_by_name will be converted to the ibm_db2 function db2_bind_param
which accepts the following required and optional [] parameters:

(resource stmt, int parameter-number, string variable-name, [int
parameter-type, [int data-type, [int precision, [int scale]]]])

The parameter information is as follows:

� stmt - A prepared statement returned from db2_prepare().

� parameter-number - Specifies the 1-indexed position of the parameter in the
prepared statement.

� variable-name - A string specifying the name of the PHP variable to bind to
the parameter specified by parameter-number.

� parameter-type - A constant specifying whether the PHP variable should be
bound to the SQL parameter as an input parameter (DB2_PARAM_IN), an
output parameter (DB2_PARAM_OUT), or as a parameter that accepts input
and returns output (DB2_PARAM_INOUT). This parameter is optional.

� data-type - A constant specifying the SQL data type that the PHP variable
should be bound as: one of DB2_BINARY, DB2_CHAR, DB2_DOUBLE, or
DB2_LONG. This parameter is optional.

� precision - Specifies the precision with which the variable should be bound
to the database. This parameter is optional.

� scale - Specifies the scale with which the variable should be bound to the
database. This parameter is optional.
320 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

With this information, binding the stored procedure input and output parameters
is converted as shown in Example 7-25.

Example 7-25 Converting oci_bind_by_name to db2_bind_param

ORACLE:
// Bind the input parameter
oci_bind_by_name($stmt,':name',$name,32);

// Bind the output parameter
oci_bind_by_name($stmt,':message',$message,100);

DB2 conversion:
// Bind the input parameter
db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);

// Bind the output parameter
db2_bind_param($stmt, 2, "message", DB2_PARAM_OUT);

oci_parse and db2_prepare
The oci_parse function prepares a query. The function accepts the following
parameters:

(resource $connection, string $query)

oci_parse will be converted to db2_prepare, which accepts the following required
and optional [] parameters:

(resource connection, string statement, [array options])

The parameters are defined as follows:

� connection - A valid database connection resource variable as returned from
db2_connect() or db2_pconnect().

� statement - An SQL statement, optionally containing one or more parameter
markers.

� options - [optional] An associative array containing statement options. You
can use this parameter to request a scrollable cursor on database
management systems that support this functionality.

With this information, calling a DB2 stored procedure is converted as shown in
Example 7-26.

Example 7-26 Converting oci_parse to db2_prepare

Oracle:

$sql = 'BEGIN Greeting(:name, :message); END;';
 Chapter 7. Application conversion 321

$stmt = oci_parse($conn,$sql);

DB2 conversion:

$sql = 'CALL Greeting(?, ?)';
$stmt = db2_prepare($conn, $sql);

After the changes described above have been implemented, the application is
fully converted to DB2. The result of executing this program is shown in
Example 7-7.

Figure 7-7 The result of executing db2Greeting.php

PHPEclipse and the Developer Workbench
Developer Workbench is built on the Eclipse framework. This framework allows
the installation of IDE plug-ins that are created to support various application
development APIs. One such plug-in, PHPEclipse, is available for PHP. To
acquire the PHPEclipse plug-in, complete the following steps:

1. Open the Eclipse IDE on your development desktop.

2. From the file menu in Eclipse, select Help → Software Updates →
Find/Install.

3. Select Search for new features to install.

4. Click New Remote Site.

5. Enter PHP SourceForge as the name, and enter the URL as:

http://phpeclipse.sourceforge.net/update/releases

6. Click OK → Finish.

6. A list of features will be presented. Open the list and check the one labeled
phpeclipse. Click Next.

Note: For complete information regarding PHP, consult Developing Perl and
PHP Applications, SC10-4234.
322 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://phpeclipse.sourceforge.net/update/releases

7. Follow the on-screen instructions to finish the automatic installation.

After restarting Eclipse, switch to the IDE perspective specific to PHP:

1. Under the Window menu, choose Open Perspective.

2. Select Other.

3. Select PHP and click OK.

Example 7-8 shows the PHPEclipse IDE in Developer Workbench.

Figure 7-8 PHPEclipse IDE in Developer Workbench
 Chapter 7. Application conversion 323

7.3.7 Converting .NET applications

The supported operating systems for developing and deploying .NET Framework
1.1 applications are:

� Windows 2000
� Windows XP (32-bit edition)
� Windows Server® 2003 (32-bit edition)

The supported operating systems for developing and deploying .NET Framework
2.0 applications are:

� Windows 2000, Service Pack 3
� Windows XP, Service Pack 2 (32-bit and 64-bit editions)
� Windows Server 2003 (32-bit and 64-bit editions)

Supported development software for .NET Framework applications
In addition to a DB2 client, you need one of the following options to develop .NET
Framework applications:

� Visual Studio® 2003 (for .NET Framework 1.1 applications)

� Visual Studio 2005 (for .NET Framework 2.0 applications)

� .NET Framework 1.1 Software Development Kit and .NET Framework
Version 1.1 Redistributable Package (for .NET Framework 1.1 applications)

� .NET Framework 2.0 Software Development Kit and .NET Framework
Version 2.0 Redistributable Package (for .NET Framework 2.0 applications)

In addition to a DB2 client, the following two options are needed to deploy .NET
Framework applications:

� .NET Framework Version 1.1 Redistributable Package (for .NET Framework
1.1 applications)

� .NET Framework Version 2.0 Redistributable Package (for .NET Framework
2.0 applications)

.NET Data Providers
DB2 for Linux, AIX, and Windows includes three .NET Data Providers:

� DB2 .NET Data Provider

A high performance, managed ADO.NET Data Provider. This is the
recommended .NET Data Provider for use with DB2 family databases.
ADO.NET database access using the DB2 .NET Data Provider has fewer
restrictions, and provides significantly better performance than the OLE DB
and ODBC .NET bridge providers.
324 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� OLE DB .NET Data Provider

A bridge provider that feeds ADO.NET requests to the IBM OLE DB provider
(by way of the COM interop module). This .NET Data Provider is not
recommended for access to DB2 family databases. The DB2 .NET Data
Provider is faster and more feature-rich.

� ODBC .NET Data Provider

A bridge provider that feeds ADO.NET requests to the IBM ODBC driver. This
.NET Data Provider is not recommended for access to DB2 family databases.
The DB2 .NET Data Provider is faster and more feature-rich

In addition to the DB2 .NET Data Provider, IBM also provides a collection of
add-ins to the Microsoft Visual Studio .NET IDE. The add-ins simplify the
creation of DB2 applications that use the ADO.NET interface. The add-ins can
also be used to develop server-side objects, such as SQL stored procedures and
user-defined functions. The DB2 Visual Studio add-ins can be obtained at the
following Web site:

http://www-306.ibm.com/software/data/db2/windows/dotnet.html

The IBM.Data.DB2 namespace contains the DB2 .NET Data Provider. To use
the DB2 .NET Data Provider, you must add the Imports or using statement for
the IBM.Data.DB2 namespace to your application .DLL, as shown in
Example 7-27.

Example 7-27 Examples of the required Imports or using statement

[Visual Basic]
Imports IBM.Data.DB2

[C#]
using IBM.Data.DB2;

Also, references to IBM.Data.db2.dll and IBM.Data.DB2.Server.dll must be
added to the project.

VB .NET conversion example
In general, converting a .NET application from Oracle to DB2 is quite simple. In
most cases it will entail replacing the classes that are available in the Oracle
.NET Data Provider with functionally equivalent classes that are available in the
DB2 .NET Data Provider, for example, OracleConnection with DB2Connection or
OracleCommand with DB2Command, and so on.

In this section, we demonstrate this point using a simple VB .NET application that
connects to a database, executes a SELECT, and returns a result set. This
example is demonstrated in Oracle and then converted to DB2. In the DB2
 Chapter 7. Application conversion 325

http://www-306.ibm.com/software/data/db2/windows/dotnet.html

example, the changes that are necessary for converting from Oracle to DB2 are
outlined.

Components of the GUI for the conversion example
The GUI, used for both examples, consists of several CONTROLS:

� A RUN QUERY button - When this button is clicked, the code in the Click
event will:

– Connect to the database
– Execute the query

� A Query Results Text box (for aesthetic purposes only)

� A List Box - Once the query has been executed, the results are displayed in
this list box.

� A Quit button - Clicking this button ends the application.

Example 7-9 shows the GUI used to demonstrate the VB .NET application
conversion example.

Figure 7-9 GUI for the VB .NET application conversion example

The essential components of this application are contained within the Click Event
for the RUN QUERY control button. Example 7-28 shows the code in the
Button1_Click event as it might appear in an Oracle application.
326 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 7-28 The Button1_Click event

Imports Oracle.DataAccess.Client ' ODP.NET Oracle managed provider [1]

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim oradb As String = "Data Source=(DESCRIPTION=(ADDRESS_LIST=" _ +
"(ADDRESS=(PROTOCOL=TCP)(HOST=9.10.11.12)(PORT=1521)))" _ +
"(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=ora10g)));" _ + "User
Id=ora_usr;Password=ora_usr;" [2]

Dim conn As New OracleConnection(oradb) [3]
conn.Open()

Dim cmd As New OracleCommand [4]
cmd.Connection = conn
cmd.CommandText = "select first_name, last_name from employees

where dept_code = 'IT'"

cmd.CommandType = CommandType.Text

Dim dr As OracleDataReader = cmd.ExecuteReader() [5]

 While dr.Read()
 ListBox1.Items.Add("The name of this employee is: " +
dr.Item("first_name") + dr.Item("last_name")) [6]
 End While

 conn.Dispose()

 End Sub

Notes:
[1] IMPORT Oracle.DataAccess.Client is added to the application .DLL.

[2] A String, OraDb, is declared as the connection string for the Oracle database.

[3] A connection (conn) is defined as an OracleConnection

[4] A command (cmd) is defined as an OracleCommand and populated with the
text of the query.

[5] A DataReader (dr) is defined as an OracleDataReader and the query is
executed.
 Chapter 7. Application conversion 327

[6] The List Box is populated with the results of the query.

When the application executes, clicking RUN QUERY yields the results that are
shown in Figure 7-10.

Figure 7-10 The results of the Oracle Example are displayed in the List Box

DB2 Example (conversion)
The GUI for the DB2 conversion is shown in Figure 7-9 on page 326.

Since the essential components of this application are contained within the Click
Event for the RUN QUERY control button, the focus of the conversion centers on
this control. Example 7-29 shows the code in the Button1_Click event as it will
appear after conversion to DB2. Some explanations of the changes are
documented in the Notes that appear after the code example.

Example 7-29 The code in the Button1_Click event after conversion

Imports IBM.Data.DB2 [1]
__

Public Class Form1
328 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
Dim db2db As String = [2]
"Server=localhost:50000;Database=testdb;UID=db2inst1;PWD=db2inst1"

Dim conn As New DB2Connection(db2db) [3]

conn.Open()

Dim cmd As New DB2Command [4]
cmd.Connection = conn

cmd.CommandText = "select first_name, last_name from employees where dept_code
= 'IT'"

cmd.CommandType = CommandType.Text

Dim dr As DB2DataReader = cmd.ExecuteReader() [5]
 While dr.Read()

ListBox1.Items.Add("The name of this employee is: " +
dr.Item("first_name") + dr.Item("last_name"))

 End While [6]

conn.Dispose()
 End Sub

Notes:
[1] To use the DB2 .NET Data Provider, you must add the Imports (VB) or using
(C#) statement for the IBM.Data.DB2 namespace to your application .DLL.

[2] A String, db2db, is declared and populated as the connection string for the
DB2 database (converted from OraDb).

[3] A connection (conn) is defined as DB2Connection (converted from
OracleConnection).

[4] A command (cmd) is defined as DB2Command. (converted from
OracleCommand).

[5] A DataReader (dr) is declared as a DB2DataReader (converted from
OracleDataReader).

[6] The List Box is populated with the results of the query.
 Chapter 7. Application conversion 329

Once the changes are effected, clicking RUN QUERY yields the results shown in
Example 7-11.

Figure 7-11 The results of executing the DB2 Example application

7.4 Package applications migration planning
For package applications, the vendor delivers the application and database
based on DB2. The migration is limited to:

� Checking software and hardware availability and compatibility
� Education of developers and administrators

Note: For complete information about the DB2 .NET provider, consult the
information at the following URL:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topi
c=/com.ibm.db2.udb.dndp.doc/htm/frlrfIBMDataDB2.htm

For in-depth information on .NET programming, refer to Developing ADO.NET
and OLE DB Applications, SC10-4230.
330 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.dndp.doc/htm/frlrfIBMDataDB2.htm

� Analyzing of customized changes in the application and database
� Setting up the target environment
� Changing of customized items
� Testing of data migration and customized items
� Roll-out

To keep the support from the vendor, you have to meet the prescribed migration
plan and process. We now show the migration approach for SAP, Siebel®, and
PeopleSoft environments.

7.4.1 SAP
An SAP system is divided into layers. The application and business logic is
independent of the database. SAP uses only common database types and
functionality. However, in planning for the migration efforts, you have to take into
account your self-made customizations.

Migration requirements
For database migration, SAP requires you to use the SAP Migration Service in
order for the system to be supported after the migration is complete. The SAP
Migration Service is fee-based and will provide you with the following:

� Cross-check of the database migration project plan
� Migration tools
� Migration keys
� Remote Going Live Migration check
� Support in case of migration tool problems

The SAP R/3® software for your new IBM DB2 system is delivered by SAP after
the necessary contractual or licensing changes.

Migrating an SAP R/3 system to a different operating system or database needs
to be planned and approved by SAP, and therefore SAP requires that you use
SAP migration tools.

To perform a migration you need a migration key. This key will be provided to
you by SAP. The key is mandatory for the data export step and data import using
SAP’s tools.

The migration project plan
To successfully perform a migration, you need to follow a well-defined process
using the steps depicted in Figure 7-12. Therefore, SAP demands a project plan
for your migration project. This plan is devised by you and the migration partner.
SAP Migration Service will check this plan to ensure that your migration will be
successful.
 Chapter 7. Application conversion 331

Sample project plans can be found at:

http://service.sap.com/osdbmigration

The migration project
Figure 7-12 shows an overview of an SAP R/3 database migration project.

Figure 7-12 SAP R/3 database migration project

Because database migration comprises several tasks, we recommend that you
begin planning three to four months in advance.

Figure 7-13 provides a typical time line for planning a migration.

Request migration
via OSS

SAP sends migration
materials to customers

Customer chooses
migration partner

Customer draws up
migration project

schedule together with
migration partner

Contractual
arrangements with SAP

SAP ships migration
tools

Migration test run

Final migration

Going live check

Test the migrated
system

Going live check

SAP checks and
approves project plans
332 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://service.sap.com/osdbmigration
http://service.sap.com/osdbmigration

Figure 7-13 SAP R/3 database migration timeline

Migration test and check
Before the final migration, SAP requires at least one migration test run. This will
ensure that all your SAP R/3 data and functionality are moved correctly to the
target system.

After the first functional test of the migrated system, end users should be
involved in the test process as well. This ensures that the target system is tested
comprehensively.

The Going live migration check is part of the migration services from SAP. It
should be scheduled after the test migration, and three to four weeks before the
final migration.

3-4 months
before first
migration

Start of migration planning

SAP ships migration tools

Going live migration
verification I

Few weeks after
final migration

Hardware ordering/
contractual changes

SAP checks project plan

3-4 weeks

Migration testing

Final migration

Extensive R/3 tests

Going live migration check
 Chapter 7. Application conversion 333

Final migration and verification
This step is performed after a successful test of the target system and SAP’s
Going live migration check.

The final migration is usually scheduled for a weekend because downtime is
required while the switch to a new platform occurs. The steps are the same as
with the test run, but, in addition, you should do a full backup afterwards.

The Going live migration verification is again a part of the migration services
from SAP. The migration verification step is done twice. The first time should be
scheduled one to two weeks after the final migration; the second time it should
be scheduled six to eight weeks after the final migration. This should ensure that
all daily, monthly, and other reports and functions are operating correctly.
334 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 8. XML conversion

DB2 9 introduces a new generation of data server with its revolutionized support
for XML data alongside relational data. No longer is it necessary to store XML
data as a CLOB or shred to relational tables. The new XML data type stores XML
data in its natural hierarchy and supports both XQuery and SQL to query the
data.

In this chapter, we describe how to enable your Oracle applications to take
advantage of the new DB2 9 XML data type.

This chapter describes the following:

� The new DB2 XML data type
� Converting an Oracle XML data model to DB2
� Moving XML data from Oracle to DB2
� Converting Oracle queries on XML data to DB2
� Converting Oracle indexes on XML data to DB2
� Converting Oracle XML data accessing in Java application to DB2
� Converting Oracle stored procedures using XML to DB2
� Tools and utilities for working with XML
� Best practices

8

© Copyright IBM Corp. 2003, 2007. All rights reserved. 335

8.1 DB2 XML data type introduction

DB2 9 introduces a new XML data store that enables well-formed XML
documents to be stored in their native hierarchical form. The XML data type is
used to define columns of a table that will store the XML data, allowing for XML
data to be stored alongside relational data. This approach is significantly different
from storing XML data as text in a CLOB field or mapping (shredding) to different
relational tables.

XML support is fully integrated into DB2 9, supporting efficient search and
retrieval of XML through XQuery, SQL, or SQL/XML. SQL functions that enable
XML data to be constructed or published from values obtained from the
database, including relational data.

DB2 9 also introduces XML decomposition, where XML data can be mapped to
target relational table-column pairs. Though in this case, if the target column is
not the XML data type, the data will be considered traditional relational data and
lose its native hierarchical format.

For information about performance differences between the XML storage options
in DB2 9, see the following article:

“A performance comparison of DB2 9 pureXML and CLOB or shredded XML
storage” at:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0612nicola

The use of the DB2 9 XML data type and related native data store support is
available as a separate licensing feature of DB2 9. For details regarding this
feature, see:

http://www.ibm.com/software/data/db2/9/editions_features_purexml.html

8.1.1 DB2 pureXML native storage

Supporting DB2 9 pureXML implementation is the new XML data type. This data
type is used to define columns of a table that will store well-formed XML
documents. The XML data type can be used alongside the traditional relational
data types, such as INTEGER and VARCHAR, within the same table.

Using the XML data type allows XML documents to be stored in a true
hierarchical structure, giving DB2 a full understanding of the internal structure of
the XML document, a manner that is optimal for querying and leveraging the
flexibility inherent in XML itself.
336 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/9/editions_features_purexml.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0612nicola

In DB2 9.1, all XML data is stored in UTF-8, which currently implies that in order
to use the XML data type, the database must be created as a Unicode database.
A Unicode database can be created by issuing the following statement:

create database dbname using codeset utf-8 territory us

A table using the XML data type could then be created in the database with the
CREATE TABLE command. The following command creates a CUSTOMER
table with one INTEGER column and two XML data type columns:

create table customer(cid bigint not null primary key,
 info xml,
 history xml)

Data stored in an XML column is not stored as a CLOB, BLOB, or any other
varying-length or fixed-length character format and is not comparable to a string
value unless it is transformed to a string before the comparison. Instead, XML
data is stored in its native, preparsed, hierarchical node structure.

Native XML values can be explicitly transformed into a string value using the
XMLSERIALIZE function. Conversely, a string value representing XML data can
be transformed into a native XML value using the XMLPARSE function. XML
values are implicitly parsed or serialized when exchanged with application string
and binary data types.

There is no size restriction on the XML document stored in an XML column;
however, there are string size restrictions. XML data that is transformed to a
string cannot exceed the maximum string size of 2 GB.

XML documents can be inserted, updated, and deleted using SQL. Validation of
an XML document against an XML schema is typically performed during
IMPORT, INSERT, or UPDATE and is done using one of the schemas stored in
the XML Schema Repository (XSR), which is integrated into DB2. XML
documents are annotated with type information after having been validated
against an XML schema. XML documents stored in a single XML column can
belong to the same or different XML schemas—there is no restriction.

There are two internal system-generated indexes associated with XML columns
that are automatically created by DB2, namely an XML column path index and an
XML regions index.

An XML column path index is automatically created by DB2 for each XML
column in a table. The XML column path index records all unique paths that exist
within XML documents stored in the associated XML column. A single XML
regions index is created for all the XML columns in a table. The XML regions
index captures how an XML document is divided up internally into regions, which
 Chapter 8. XML conversion 337

are sets of nodes within a page. Both the XML column path and the XML regions
indexes are recorded in the SYSCAT.INDEXES view.

These internal indexes associated with XML columns are separate and apart
from the indexes created over XML columns for application-specific performance
improvements. These types of indexes are added or removed using the
CREATE INDEX and DROP INDEX statements.

8.1.2 DB2 decomposition

Decomposition, sometimes referred to as “shredding”, is the process of storing
content from an XML document into columns of relational tables. This storage
approach is significantly different from storing the complete XML document in a
single XML column, as discussed above.

Decomposition is primarily designed for users who have an existing relational
database (and applications running on it) and who would now like the ability to
consume data from XML documents into a relational structure. There is no
restriction on using both the pureXML and decomposition storage approaches in
the same database. Additionally, both storage techniques can even be used on
the same XML document.

Decomposition is accomplished by annotating an associated XML schema, using
annotations to instruct how decomposition is to occur. XML documents can be
wholly or partially decomposed into relational tables. These annotations are very
flexible in their mapping of XML schema structure to relational table structure,
and specify details such as the target table and column name that the XML data
is to be stored in, as well as any transformation of the content before it is stored.

Decomposition can be specified for new or existing XML schemas, can occur on
new or existing tables, and can decompose different elements or attributes (even
from different XML schemas) to the same tables or rows. Additionally, previous
decomposition annotations can be modified without affecting previously
decomposed XML data.

An XML schema is used for mapping information because it is an open standard
and requires fewer additional proprietary features in the mapping language
specification. Since annotations added to the XML schema do not participate in
the validation of the corresponding XML documents, the same XML schema can
be used for the mapping and validation of XML documents. Validation can be
performed on the entire XML document before decomposition, or it can be limited
to the decomposed elements or attributes only. Additionally, DB2 supports
multiple XML schemas in the same database, table, and even column, so
changes will not affect the existing database design.
338 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

SQL is primarily used to query the XML data that has been decomposed to
non-XML data types, since the data ceases to be XML unless stored in an XML
data type. XQuery is natively supported (not translated) and processed for XML
data stored in XML data type columns. However, XQuery can still be performed
against relational data by using the XMLTABLE function, which turns non-XML
data into XML.

Decomposition has certain advantages:

� Excellent fit into existing relational environments.
� Optimal approach for tabular data that is not required to be retained as XML.
� Easy data updates.
� Fast SQL searches of data.
� Works well with existing reporting tools.

At the same time, decomposition has certain disadvantages:

� Mapping can be complex and must be predefined for every XML document
that is to be stored.

� After the XML document is decomposed, it ceases to be XML data, loses any
digital signature, and can become difficult and expensive to reconstruct.

� Parent and child relationships inherent in an XML structure may require
generation of values to represent foreign key values for those relationships.

� Mapping typically applies only to a single schema of a document. If the
underlying relational schema changes or the XML schema changes, the
mapping might cease to be valid or it might require a complex change
process.

8.2 Converting the XML data model

Although native XML technology is supported by both DB2 and Oracle
databases, each database uses a different model to store XML data. As a result,
the term “native XML” has a different meaning for each database.

In most cases, when converting from either unstructured or structured storage in
Oracle to DB2, you will choose to use the XML data type to store your XML
documents. DB2 decomposition is also discussed for applications which also
shred XML data into relational tables.

Oracle structured storage requires that an XML schema be used. It is not
necessary to use an XML schema for storage with DB2 pureXML. If you wish to
use an XML schema with DB2, for validation purposes, in the section “Obtaining
and converting XML schemas” on page 343 and “XML schema registration in
DB2” on page 346, we look at how to convert and register XML schemas in DB2.
 Chapter 8. XML conversion 339

Conversion from both Oracle unstructured and structured storage models to DB2
XML data type is also covered. Finally, this section ends with a discussion on
DB2 decomposition.

8.2.1 XML data type differences

In DB2, the native XML data store enables collections of well-formed XML
documents to be stored in their hierarchical form within one or more columns of a
table. By “well-formed”, it is meant that the XML document must conform to
syntactical rules as specified by the World Wide Web Consortium (W3C)
standard. Collections of XML documents that contain different structures, have
different schemas, or have no schema at all, can all be stored in the same
column.

XML columns are defined using the XML data type. XML data is not stored as a
text string or shredded to a relational data model. Rather, they are stored in a
hierarchical structure of nodes in DOM-like representation. The XML data type
can also be used as a data type for host variables in languages such as C, Java,
and COBOL and can also be used as a parameter and local variable within DB2
SQL procedures, and external procedures written in C or Java.

DB2 stores and manipulates XML data into a parsed format that reflects the
hierarchical nature of the original XML document. Thus, when querying an XML
document, the internal storage model allows direct access to any portion of the
document without requiring a read of the entire document into memory. Indexing
is not based on byte offsets into a document. Therefore, index entries are only
changed for relocated nodes and not for all nodes.

Since the unit of storage is a node, a node exists on a page along with other
nodes either from the same or different documents. Each node is linked to its
parent or children. Navigating nodes amounts to pointer transversal. Nodes can
be relocated to other pages without rewriting the entire document. The
association of schemas to document is per document and not per column.

If an XML schema is registered with DB2 and used to validate data that is
inserted into a column, DB2 annotates all nodes in the XML hierarchy with
information about the schema types. Otherwise, if no XML schema exists, DB2
annotates the nodes with default type information. Upon storage, DB2 will
preserve the internal structure of the document by converting its tag names and
other information into INTEGER values as an internal representation. The
internal representation is not something that users need to be aware of when
accessing the data. The mapping of tags to INTEGER values is maintained in a
new catalog table named SYSXMLSTRINGS. Replacing tags with string IDs
reduces space consumption and allows for higher performance of navigational
queries. DB2 automatically splits nodes of a document across multiple data
340 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

pages as needed. To manage this, DB2 automatically generates and maintains a
“regions” system index to provide an efficient means of tracking the physical
representation of the entire document.

The native XML data store is fully integrated into the DB2 database system and
can be accessed and managed by leveraging DB2 functionality. XQuery, SQL or
SQL/XML can be used to query XML data alone or XML data together with
relational data. The first version of the XQuery standard focuses on only
database read activities. At the present, there is no standard within XQuery for
write activities and as a result, SQL is used to either insert or import XML into
DB2 at this time.

The Oracle XMLType data type is used for storing well-formed XML documents.
XMLType is an abstraction layer that represents two types of storage models,
structured data and unstructured data. Structured storage allows for five different
ways of dealing with repeating elements, which are called “collections” in Oracle.
These five options allow repeating elements to be stored as a collection of
CLOBs, LOBs, nested tables, separate XMLTypes, and XMLTypes in a nested
table. All of these options can be migrated to a single DB2 pureXML column, with
DB2 supporting equivalent XML usage patterns to that of Oracle.

XML data using structured storage is parsed, shredded and stored as relational
data. These operations are performed transparently to the user although storing
these types of documents is dependent on and is defined by a schema. In fact,
because the XML is shredded into object-relational tables, all collections of XML
data that is stored within a single column or table must be in the same format and
represented by the same schema. The user can specify names for the SQL
object types and tables where the XML content will be loaded. If the schema
changes, then the internal storage structure of the XML document must also
change. This is accomplished by exporting and importing the document. If XML
is stored in schema based XMLTypes, then Oracle attempts to transparently
rewrite the XPath expression into equivalent SQL, as the data is stored in a
relational format. If the XPath to SQL rewrite is not possible, then an external
Oracle Java processor is used to interpret the XPath.

The second storage model that XMLType supports is referred to as unstructured
storage. unstructured storage is stored byte for byte in text format as a CLOB.
The data is not pre-parsed and no schema is required. As a result, documents
that belong to different schemas may all be stored in the same column or table.
At runtime, these documents are converted into a document object model (DOM)
tree object and parsed in memory whenever XPath expressions or XML
functions are used to process elements of a document.

The XMLType data type is used as a column in a table or as a table itself, and
includes several proprietary member functions to create, extract, update, and
process XML data. The XMLType data type can be used to declare variables in
 Chapter 8. XML conversion 341

PL/SQL procedures, functions, and scripts and can be used in a trigger body or
as a host variable in applications such as C and Java.

8.2.2 XML schema conversion and registration

An XML Schema Definition (XSD) is an instance of an XML schema written in the
W3C XML schema language. An XSD defines a type of XML document,
specifying constraints upon what elements and attributes may appear, their data
types, relationship to each other, and more. An XSD can be used in validation to
ascertain whether a particular XML document is of that type and to produce a
Post-Schema Validation Infoset (PSVI).

In Oracle, aside from validation, XML schemas are required in order to store
XML in structured storage. Structured storage requires that the XML schema be
annotated with several Oracle XML Database-defined attributes. These
annotation attributes control the mapping of the XML document to SQL object
types, collection types, and column-table paris in the database. The XML
schema must be registered before being able to store XML data in structured
storage. If you do not manually specify the annotations, then Oracle will provide
default annotations to register the XML schema and map the elements and
attributes to an automatically generated relational schema. Unstructured storage
does not require the use of an XML schema. The
dbms_xmlschema.registerschema stored procedure is used to register an XML
schema in Oracle.

Oracle uses partial validation of XML, by default, when an XML document is
inserted into an XMLType table or column. This partial validation checks that all
mandatory elements and attributes are present and that there are no unexpected
elements and attributes. This ensures that the document can be stored in the
SQL types of the associated relational schema.

A DB2 XML schema can have components from more than one namespace and
can consist of multiple XML schema documents. XML schemas are registered in
the DB2 XML Schema Repository (XSR), which is a repository that allows DB2 to
manage dependencies on externally referenced XML artifacts in XML instance
documents within a database. Once registered with the XSR, XML schemas
have a unique identifier and can be used to validate XML instance documents.

XML schemas in DB2 are primarily used for validation. XML validation adds type
annotations to element nodes, attribute nodes, and atomic values, and strips off
ignorable whitespace in the XML document. Validation is optional. Full validation
is performed using the XMLVALIDATE function, usually on INSERT or UPDATE
of an XML document; however it can also be used to validate an XML document
that is not in a database. Before validation is possible, all schema documents
that make up the XML schema must be registered in the XSR.
342 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2 also supports annotated XML schemas for decomposition—the storing of
XML data in SQL data types belonging to a relational structure. Decomposition is
an alternative to the DB2 pureXML data type approach. Annotated XML
schemas are not necessary for DB2 to store XML documents natively.
Furthermore, XML schemas are only required if you wish to perform validation or
decomposition. To take advantage of the XML data type in DB2, all you need to
do is insert the XML document into an XML type column of a table.

This section outlines how to extract registered XML schemas from an Oracle
database, how to convert the XML schema for use in DB2, and finally, how to
register the XML schema in DB2. Again, you only need to register an XML
schema if you intend to perform validation or decomposition, otherwise, no XML
schema is required.

Obtaining and converting XML schemas
XML schema can be obtained for use in DB2 in several ways. The following are
the most typical approaches:

� Use the original XML schema that registration was performed on for the
Oracle database.

� Use the DBMS_XMLSCHEMA.generateschema function to produce an XML
schema based on an Oracle type.

� Use the Oracle Enterprise Manager (OEM) to view registered XML schemas.

� Use a third-party tool to extract the XML schema from the Oracle database.

First you need to identify which XML schemas reside in the Oracle database.
One way this can be done is by querying the DBA_XML_SCHEMAS system
catalog view. A statement similar to the following can help with that:

select owner, schema_url
 from dba_xml_schemas

You may also find it useful to identify the XML schema associated with XMLType
columns. The following query will list such details:

select owner, table_name, column_name, xmlschema, schema_owner
 from dba_xml_tab_cols

To list the XML schemas associated with XMLType tables, issue:

select owner, table_name, xmlschema, schema_owner
 from dba_xml_tables

Now that you have your inventory of XML schemas, you need the actual XML
schema document.
 Chapter 8. XML conversion 343

The first approach of simply using the same XML schema that was originally
registered with the Oracle database is the most straightforward. This approach
does not require any conversion or editing for the XML schema to work with DB2,
but requires that you still have access to the original XML schema. This is the
recommended approach.

The second approach is to use the generateschema function of the
DBMS_XMLSCHEMA package. Unfortunately, this function does not seem to
work for the more complex XML schemas that have mapped to several Oracle
types. This function can be used in a manner similar to the following:

select DBMS_XMLSCHEMA.generateschema('ORA_USR', 'CUSTOMER_T')
 from DUAL;

In this case, ORA_USR is the schema of the CUSTOMER_T type, where XML data is
stored. The output of this command can be spooled to an .xsd file, which then
needs to be edited before use in DB2.

The XML schema fragment shown in Example 8-1 is the kind of output you can
expect from the above command.

Example 8-1 generateschema function output

<?xml version="1.0"?>
<xs:schema targetNamespace="http://posample.org"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xmlns:oraxdb="http://xmlns.oracle.com/xdb"
 oraxdb:flags="291"
 oraxdb:schemaURL="http://posample.org"
 oraxdb:schemaOwner="ORA_USR"
 oraxdb:numProps="15">
 <xs:element name="customerinfo"
 oraxdb:propNumber="3234"
 oraxdb:global="true"
 oraxdb:SQLName="customerinfo"
 oraxdb:SQLType="customerinfo201_T"
 oraxdb:SQLSchema="ORA_USR"
 oraxdb:memType="258">
 <xs:complexType oraxdb:SQLType="customerinfo201_T"
 oraxdb:SQLSchema="ORA_USR">
 <xs:sequence>
 <xs:element name="name"
 type="xs:string"
 minOccurs="1"
 oraxdb:propNumber="3221"
 oraxdb:global="false"
344 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 oraxdb:SQLName="name"
 oraxdb:SQLType="VARCHAR2"
 oraxdb:memType="1"
 oraxdb:SQLInline="true"
 oraxdb:MemInline="true"
 oraxdb:JavaInline="true" />
 ...

In order for this XML schema to work with DB2, all Oracle oraxdb annotations
must be removed. For example, the same XML schema fragment shown in
Example 8-1 would look like the one shown in Example 8-2, after removing the
Oracle annotations:

Example 8-2 Converted DB2 XML schema

<?xml version="1.0"?>
<xs:schema targetNamespace="http://posample.org"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="customerinfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name"
 type="xs:string"
 minOccurs="1"/>
 ...

The third approach of using the OEM is quite similar to the
DBMS_XMLSCHEMA.generateschema approach. First, start OEM and log into
your database. Under the Administration tab, click XML schemas. On the next
panel, you can optionally restrict your search to a specific “Schema” or “Object
Name”. Fill in the details as desired, or leave them blank, and click Go. You will
now see a list of the XML schemas that matched your search criteria.

Now you need to select your XML schemas, one at a time, and click View. The
XML schema can now be copied from the Schema Text window and pasted into
a flat file with an .xsd extension. You then need to remove all Oracle oraxdb
annotations, as was done in the DBMS_XMLSCHEMA.generateschema
approach above. Repeat for each XML schema.

The fourth approach of using a third-party tool is not covered here, but should be
similar to the approaches discussed above.

Now that you have a W3C compliant XML schema, it can be registered in DB2.
 Chapter 8. XML conversion 345

XML schema registration in DB2
Before an XML schema can be used for validation or annotated decomposition, it
must first be registered with the XSR. Registration with the XSR creates an XSR
object. If you have chosen to annotate for decomposition, all tables and columns
referenced in the annotated XML schema must exist in the database before
registration will succeed. An XML schema document is not checked for
correctness when adding documents to the XSR. Document checks are
performed only when you complete schema registration.

Registration of an XML schema can be done in several ways:

� Command Line Processor (CLP)
� Stored procedure
� JDBC function

XML schema registration consists of the following steps:

1. Register the primary XML schema document in the XSR.

2. Specify additional XML schema documents to be included with the XSR
object. This step is only required if the XML schema consists of more than
one schema document.

3. Complete the registration process with the XSR.

Each of the DB2 XML schema registration approaches is illustrated.

CLP XML schema registration
From the CLP, registration would go as follows for an XML schema that consists
of only one document:

register xmlschema 'http://posample.org'
 from 'd:\XMLSchemas\customer.xsd'
 as user1.customer
 complete

In this case, 'http://posample.org' is the schema location of the XML schema
document, that is, the external name of the XML schema. The primary document
can be identified in the XML instance documents with the
xsi:http://posample.org attribute. 'd:\XMLSchemas\customer.xsd' is the
location of the XML schema document on the file system, and user1.customer is
the two-part SQL name that the registered schema will be known as.

If the XML schema had consisted of more than one schema document, the
COMPLETE option would be left off of the above command and for each
additional XML schema document (except the last), issue the add xmlschema
document command. For example:

register xmlschema 'http://posample2.org'
346 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 from 'd:\XMLSchemas\porder.xsd'
 as user1.porder

add xmlschema document to user1.porder
 add 'product.xsd'
 from 'd:\XMLSchemas\product.xsd'

When you have reached the last schema document of the XML schema, use the
COMPLETE XMLSCHEMA command to complete registration.

complete xmlschema user1.porder
 with 'd:\XMLSchemas\supplier.xsd'

In order for the above multi-XML schema document registration to succeed, the
XML schema documents themselves must be connected using an include or a
redefine and the schemaLocation should match the URL specified at
registration.

Stored procedure XML schema registration
Registration can also be performed via a stored procedure, which is useful if
performing XML schema registration from an application. An XML schema
document is registered by calling the sysproc.xsr_register stored procedure, as
the following demonstrates:

call sysproc.xsr_register(‘user1’,
 ‘porder’,
 ‘http://posample2.org’,
 :content_host_var,
 null)

The first input parameter, ‘user1’, specifies the SQL schema for the XML
schema, which is one part of the SQL identifier used to identify this XML schema
in the XSR. The second input parameter, ‘porder’, specifies the name of the
XML schema, the other part of the SQL identifier making the complete SQL
identifier user1.porder. The third parameter, ‘http://posample2.org’, specifies
the schema location of the primary XML schema document. The fourth
parameter, :content_host_var, is a BLOB that contains the content of the
primary XML schema document. Finally, the fifth parameter is a BLOB that
indicates the properties for the primary XML schema document. If there are no
associated properties for the XML document, null is provided.

If the XML schema consists of more than one schema document, call the
xsr_addschemadoc stored procedure for each of the schema documents that
have not yet been registered. The input parameters are similar to the xsr_register
stored procedure illustrated above:

call sysproc.xsr_addschemadoc(‘user1’,
 Chapter 8. XML conversion 347

 ‘porder’,
 ‘product.xsd’,
 :content_host_var,
 null)

Regardless as to whether the XML schema consists of one or multiple schema
documents, complete the registration by calling the sysproc.xsr_complete stored
procedure:

call sysproc.xsr_complete (‘user1’,
 ‘porder’,
 null,
 0)

The third parameter, null in this case, is a BLOB which represents properties
associated with the XML schema. The last parameter, isusedfordecomposition,
can be set to indicate whether the XML schema will be used for decomposition, 1
for “yes” and 0 for “no”.

Java XML schema registration
The IBM DB2 driver for JDBC and SQLJ also provides methods that let you
register XML schema documents from a Java application program. The
DB2Connection.registerDB2XMLSchema method registers an XML schema in
DB2, using one or more XML schema documents. There are two forms of this
method: one form for XML schema documents that are input from InputStream
objects, and one form for XML schema documents that are in a string.

Example 8-3 demonstrates the use of registerDB2XmlSchema to register an
XML schema in DB2 using a single XML schema document, customer.xsd, that
is read from an input stream. The SQL schema name for the registered schema
is SYSXSR.

Example 8-3 Registering XML schema using registerDB2XmlSchema

public static void registerSchema(
 Connection con,
 String schemaName)
 throws SQLException {

 // Define the registerDB2XmlSchema parameters
 String[] xmlSchemaNameQualifiers = new String[1];
 String[] xmlSchemaNames = new String[1];
 String[] xmlSchemaLocations = new String[1];
 InputStream[] xmlSchemaDocuments = new InputStream[1];
 int[] xmlSchemaDocumentsLengths = new int[1];
348 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 java.io.InputStream[] xmlSchemaDocumentsProperties = new
InputStream[1];
 int[] xmlSchemaDocumentsPropertiesLengths = new int[1];
 InputStream xmlSchemaProperties;
 int xmlSchemaPropertiesLength;

 //Set the parameter values
 xmlSchemaLocations[0] = "";
 FileInputStream fi = null;
 xmlSchemaNameQualifiers[0] = "SYSXSR";
 xmlSchemaNames[0] = schemaName;
 try {
 fi = new FileInputStream("customer.xsd");
 xmlSchemaDocuments[0] = new BufferedInputStream(fi);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 try {
 xmlSchemaDocumentsLengths[0] = (int) fi.getChannel().size();
 System.out.println(xmlSchemaDocumentsLengths[0]);
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 xmlSchemaDocumentsProperties[0] = null;
 xmlSchemaDocumentsPropertiesLengths[0] = 0;
 xmlSchemaProperties = null;
 xmlSchemaPropertiesLength = 0;
 DB2Connection ds = (DB2Connection) con;

 // Invoke registerDB2XmlSchema
 ds.registerDB2XmlSchema(
 xmlSchemaNameQualifiers,
 xmlSchemaNames,
 xmlSchemaLocations,
 xmlSchemaDocuments,
 xmlSchemaDocumentsLengths,
 xmlSchemaDocumentsProperties,
 xmlSchemaDocumentsPropertiesLengths,
 xmlSchemaProperties,
 xmlSchemaPropertiesLength,
 false);
}
 Chapter 8. XML conversion 349

Additional Information
For more information on XML schema registration in DB2, refer to the technical
article “XML Schema Registration and Validation” at:

http://www.ibm.com/developerworks/wikis/download/attachments/1824/XMLSc
hema+Registration+and+Validation.pdf

8.2.3 Oracle unstructured and structured storage to DB2 pureXML

This section outlines the steps necessary to move from Oracle unstructured and
structured storage to the DB2 XML data type. In the case of unstructured
storage, this applies to cases where XML data is being stored in an XMLType
column or table that is not associated with a registered XML schema. This also
applies to cases where XML data is being stored in a CLOB in Oracle. Structured
storage requires a registered XML schema in Oracle. The conversion of XML
schemas is outlined in 8.2.2, “XML schema conversion and registration” on
page 342. DB2 does not require a registered XML schema to be able to store
XML documents in an XML data type column. Registered XML schemas are only
necessary to perform validation or decomposition.

The first step you need to perform is to make an inventory of all the Oracle tables
that are storing XML documents. If you already know the tables, then you may
decide to skip the queries below. If you are unaware of the tables, as a user with
a DBA role (so that you can see all tables), you can use the following commands.

To list user tables using unstructured storage XMLType columns:

select distinct table_name, owner
 from dba_xml_tab_cols
 where storage_type = 'CLOB' and owner not in ('MDSYS','XDB')
 and table_name not like 'BIN$%';

To list unstructured storage XMLType user tables:

select distinct table_name, owner
 from dba_xml_tables
 where storage_type = 'CLOB' and owner != 'XDB'
 and table_name not like 'BIN$%';

If you are storing XML in any CLOB columns, the following query will identify user
tables making use of a CLOB column. These tables may not necessarily contain
XML data—you will need to query their contents to make sure:

select distinct table_name, owner
 from dba_tab_columns
 where data_type = 'CLOB' and owner not like '%SYS%'
 and owner != 'OUTLN';
350 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/developerworks/wikis/download/attachments/1824/XMLSchema+Registration+and+Validation.pdf
http://www.ibm.com/developerworks/wikis/download/attachments/1824/XMLSchema+Registration+and+Validation.pdf

To list tables with structured storage XMLType columns:

select distinct table_name, owner
 from dba_xml_tab_cols
 where storage_type = 'OBJECT-RELATIONAL'
 and owner not in ('MDSYS','XDB')
 and table_name not like 'BIN$%'

And finally, to list structured storage XMLType tables

select distinct table_name, owner
 from dba_xml_tables
 where storage_type = 'OBJECT-RELATIONAL'
 and owner != 'XDB' and table_name not like 'BIN$%';

Using these queries, we can take things one step further, to generate the Oracle
DDL of such tables. It is important to note that this is Oracle DDL and will not run
in DB2 as-is. In order to store the XML content in DB2, make sure to create the
columns that will store the XML documents with the DB2 XML data type.

Example 8-4 creates a file with the Oracle DDL of all tables using structured or
unstructured storage XMLType column, as well as XMLType tables using
structured or unstructured storage.

Example 8-4 Creating Oracle DDL of all tables using XMLType columns

set pagesize 0
set long 90000
set feedback off
set echo off
spool all_xml_tables.sql
select dbms_metadata.get_ddl('TABLE',u.table_name)
 from dba_tables u
 where u.table_name in (select distinct table_name
 from dba_xml_tab_cols
 where storage_type in
 ('CLOB','OBJECT-RELATIONAL')
 and owner not in ('MDSYS','XDB')
 and table_name not like 'BIN$%'
 union
 select distinct table_name
 from dba_xml_tables
 where storage_type in
 ('CLOB','OBJECT-RELATIONAL')
 and owner != 'XDB'
 and table_name not like 'BIN$%');
 Chapter 8. XML conversion 351

spool off

For example, as a result, one of the tables we might get the DDL for is the
customer_us table shown in Example 8-5.

Example 8-5 customer_us table DDL

CREATE TABLE “ORA_USR”.“CUSTOMER_US”
 (“CID” NUMBER(*,0) NOT NULL ENABLE,
 “INFO” “ORA_USR”.“XMLTYPE”,
 “HISTORY” “ORA_USR”.“XMLTYPE”
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE “USER_DATA_TBS”
 XMLTYPE COLUMN “INFO” STORE AS CLOB (
 TABLESPACE "USER_DATA_TBS" ENABLE STORAGE IN ROW CHUNK 8192 PCTVERSION 10
 NOCACHE LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT))
 XMLTYPE COLUMN “HISTORY” STORE AS CLOB (
 TABLESPACE “USER_DATA_TBS” ENABLE STORAGE IN ROW CHUNK 8192 PCTVERSION 10
 NOCACHE LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT))

Since we are only concerned with the table structure, you can remove all other
information. This leaves the following:

CREATE TABLE “ORA_USR”.“CUSTOMER_US”
 (“CID” NUMBER(*,0) NOT NULL ENABLE,
 “INFO” “ORA_USR”.“XMLTYPE”,
 “HISTORY” “ORA_USR”.“XMLTYPE”)

An equivalent table in DB2, using the XML data type, may look like the following:

create table “customer_us”
 (cid integer not null,
 info xml,
 history xml)

The XMLType columns (or CLOB columns storing XML) have been mapped to
the DB2 XML data type.
352 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

8.2.4 Oracle structured storage to DB2 decomposition

DB2 XML decomposition (or shredding) is the process of breaking down an XML
document into corresponding columns of one or more relational tables based on
the annotations specified in a registered annotated XML schema. The XML data
that is decomposed to non-XML data types ceases to be XML. DB2 does not
require decomposition to be able to store XML documents.

With decomposition, DB2 gives you the flexibility of controlling exactly what your
relational schema will look like and how elements and attributes from the XML
documents will be mapped to tables and columns. In most cases, users usually
decompose various parts of the XML document to the same table, or small
number of tables, which eliminates the need for complex and timely joins later on
and also allows the data to be easily worked with using SQL. DB2 annotations
are extremely flexible in controlling mapping, so you can decompose XML to any
table-column in the database. XML data can be decomposed to any supported
SQL type, for example: XML, VARCHAR, INTEGER, TIMESTAMP, and CLOB.

The primary reason you would use decomposition in DB2 is to allow preexisting
applications that expect relational data to be able to process XML data as
relational. Decomposition can also be used alongside storing the entire XML
document in an XML column, by extracting important fields of the XML document
to be stored separately. By extracting important fields and storing them alongside
the entire XML document in the same table row, you can create relationships
among data, such as referential integrity.

DB2 decomposition is a multi-step process:

1. Create the tables that the XML document will be decomposed into.

2. Annotate the XML schema with mapping instructions on how to decompose
the XML document into relational tables.

3. Register the XML schema in the DB2 XSR and enable for decomposition.

4. Decompose XML documents with the CLP command or a stored procedure
call.

In Oracle, XML schema annotations allow the developer to influence the objects
and tables that XML data is decomposed into. There is no direct mapping
between the Oracle structured storage and DB2 decomposition approaches, as
they serve different purposes. Oracle structured storage is best mapped to the
DB2 pureXML implementation, using the XML data type, which was discussed in
8.2.3, “Oracle unstructured and structured storage to DB2 pureXML” on
page 350.

The following articles provide details on how to use decomposition in DB2 9:

� “XML tooling for DB2”
 Chapter 8. XML conversion 353

Provides information on how to use the DB2 Developer Workbench to
graphically define annotations, that is, denote relationships between the XML
schema elements and attributes and SQL table and columns. This article can
be found at:

http://www.ibm.com/developerworks/wikis/download/attachments/1824/XM
L+tooling+in+DB2+DWB.pdf?version=1

� “Introduction to annotated XML schema decomposition using the DB2 Visual
Studio 2005 Add-in”

Details how to graphically define XML schema annotations using DB2 Visual
Studio 2005, as opposed to the DB2 Developer Workbench. This article can
be found at:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0611far
ahbod/

� “Default mapping for annotated XML schema”

Demonstrates how to use a Java tool to perform default annotation mappings,
which is great for an initial starting point to annotating complex XML schemas.
This article can be found at:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0604pra
dhan2/index.html

8.3 XML data movement

In this section, we discuss the steps involved in moving the XML documents that
were stored in the Oracle tables to DB2 target tables. Due to some special
considerations for both Oracle and DB2, this step can be somewhat tricky for the
beginner.

8.3.1 Exporting XML data from Oracle

Since Oracle does not provide an export utility to generate Comma Separated
Value (CSV) files, extracting XML data requires some extra effort. If the
combined size of your XML documents and other relational data, per row, is less
than 2 MB in size, you can use Oracle to generate SQL INSERT statements for
DB2. By spooling these INSERT statements to a file, it makes it possible to bulk
insert such data in DB2. If your row size with the XML documents and other
relational data is greater than 2 MB in size, per row, an alternate approach is
needed.

First, examine the case where the row size is less than 2 MB each. Using the
CUSTOMER_SS table as an example, you need to create a SELECT statement
354 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0611farahbod/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan2/index.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan2/index.html
http://www.ibm.com/developerworks/wikis/download/attachments/1824/XML+tooling+in+DB2+DWB.pdf?version=1
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan2/index.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan2/index.html

in Oracle that can be used as an insert statement in DB2. This involves the
escaping of single quote characters. The SQL to export the CUSTOMER_SS
table would look like the following:

select 'insert into customer values
 (',cid,',''',info,''',''',history,''');' from customer_ss;

Now, to generate a bulk inserting script that will run in DB2, the following can be
issued from SQLPlus:

set long 2000000
set heading off
set null NULL
set echo off
set feedback off
spool customer_bulk_insert.sql
select 'insert into customer values
 (',cid,',''',info,''',''',history,''');' from customer_ss;
spool off

The resulting file, customer_bulk_insert.sql, needs some minor modifications
before being able to run in DB2. First, the SELECT statement in the first line of
the spooled file needs to be removed. Next, the spool off command at the end
of the file needs to be removed.

Example 8-6 shows one of the insert statements contained in the spooled file
customer_bulk_insert.sql.

Example 8-6 Oracle insert statement for table customer_test

insert into customer_test values (1000 ,'
<customerinfo xmlns="http://posample.org" Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
</customerinfo>
','NULL');

By default, when Oracle displays a NULL, nothing is displayed. Through the
environment command set null NULL (above), we instructed Oracle to display
nulls as the text NULL. In such cases, the single quotes will need to be removed
from around the NULL before the value can be inserted into DB2. After a search
 Chapter 8. XML conversion 355

and replace, the record illustrated in Example 8-6 will now look like the one in
Example 8-7.

Example 8-7 Converted DB2 insert statement for customer_test table

insert into customer_test values (1000 ,'
<customerinfo xmlns="http://posample.org" Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
</customerinfo>
',NULL);

The script containing the insert statements will be used in 8.3.2, “Inserting XML
data into DB2” on page 356 to populate the DB2 target table.

As mentioned previously, there are considerations that need to be made if the
entire row size of the INSERT (including target XML and non-XML columns) of
your data exceeds 2 MB. This stems from the DB2 Command Line Processor
(interface) only allowing the full INSERT statement along with string literal data
(XML and other relational) to not exceed 2 MB in size. In other words, if an
INSERT statement generated above exceed 2 MB, you will not be able to issue
that INSERT from a DB2 command window.

In such cases, you could break the insert statements into separate inserts and
updates. First, perform the INSERT (that is less than 2 MB) and use updates (of
less than 2 MB each) to update the columns that were not populated by the initial
INSERT. Another approach would be to create an application that can connect to
Oracle and DB2, select the Oracle data and insert it into DB2. Using this
approach, you can insert data up to the maximum allowable size for the target
column data type. The XML data type in DB2 supports XML documents up to
2 GB in size.

8.3.2 Inserting XML data into DB2

The SQL INSERT statement is used to populate the XML column of a DB2 table.
In order for the INSERT to succeed, the XML document being inserted must be
well-formed according to the XML 1.0 specification. If the INSERT is being
issued from an application, the application data type containing the XML can be
XML, character, or binary. Host variables are preferred to using literals, as host
356 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

variables automatically provide encoding information to DB2 that would
otherwise need to be specified when using literals.

Since XML data coming from an application is in a serialized string format, DB2
must convert it to its XML hierarchical format for storage in an XML column. This
process is known as XML parsing. DB2 performs implicit parsing when using an
XML data type in the application, or when you assign a host variable, parameter
marker, or SQL expression with a string data type (character, graphic or binary)
to an XML column in an INSERT, UPDATE, DELETE, or MERGE statement. In
all other cases, a call to the XMLPARSE scalar function will be required in your
statement. Explicit use of XMLPARSE is not covered here.

Using the bulk-insert script that was generated in 8.3.1, “Exporting XML data
from Oracle” on page 354, we can now insert our data into DB2. Since the target
column for our XML data uses the XML data type, DB2 will perform the parsing
implicitly. Use the following steps to insert the generated data into DB2:

1. Connect to the target DB2 database:

db2 connect to dbname
2. Change to the directory containing the bulk-insert file.

3. Execute the script using the statement delimiter “;” (semi-colon):

db2 -td; -vf customer_bulk_insert.sql

As mentioned, another approach to populate DB2 may involve a custom-built
application. Example 8-8 shows a code fragment of a JDBC application that pulls
a well-formed customer XML document from a file and inserts it into the
CUSTOMER table.

Example 8-8 Moving data using JDBC application

PreparedStatement insertStmt = null;
String sqlstmt = null;
int cid = 1005;
sqlstmt = "INSERT INTO customer (CID, INFO) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqlstmt);
insertStmt.setInt(1, cid);
File file = new File("customer1005.xml");
insertStmt.setBinaryStream(2, new FileInputStream(file),
(int)file.length());
insertStmt.executeUpdate();

By default, all XML data that is implicitly parsed will have its whitespace stripped
out. Specifically, this means that text nodes containing only whitespace
characters up to 1000 bytes in length will be stripped, unless the nearest
 Chapter 8. XML conversion 357

containing element has the attribute xml:space='preserve'. If any text node
begins with more that 1000 bytes of whitespace, an error is returned
(SQLSTATE 54059).

The INSERT shown in Example 8-9 is used to illustrate the default behavior of
stripping whitespace.

Example 8-9 Default behavior of stripping whitespace

INSERT INTO customer VALUES (1001 ,'
<customerinfo xmlns="http://posample.org" Cid=" 1001">
 <name> Kathy Smith</name>
 <addr country="Canada">
 <street >25 EastCreek</street>
 <city>Markham</city>
 <prov-state> </prov-state>
 <pcode-zip>N9C 3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
</customerinfo>
',NULL);

The resulting XML document is as follows:

<customerinfo xmlns="http://posample.org" Cid=" 1001">
<name> Kathy Smith</name><addr country="Canada">
<street>25 EastCreek</street><city>Markham</city>
<prov-state/><pcode-zip>N9C 3T6</pcode-zip>
</addr><phone type="work">905-555-7258</phone></customerinfo>

In Example 8-9, text nodes containing only whitespace have been stripped, as
shown by the prov-state element (it has also been collapsed into the single
element <prov-state/>). Additionally, the whitespace stripping has removed any
whitespace between the different elements. However, it did not remove any
whitespace of text nodes that contained text.

You can change this behavior by using the CURRENT IMPLICIT XMLPARSE
OPTION special register. To instead preserve whitespace, the following
command can be issued to DB2 (treated like SQL in applications):

set current implicit xmlparse option = 'PRESERVE WHITESPACE'

This will now preserve whitespace in any subsequent SQL, until the special
register is changed. In this case, the XML document shown in Example 8-10
would have been the result. In this example, the prov-state element's whitespace
has been preserved, as well as the whitespace between the elements.
358 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 8-10 Behavior of preserving whitespace

<customerinfo xmlns="http://posample.org" Cid=" 1001">
<name> Kathy Smith</name> <addr country="Canada">
<street>25 EastCreek</street> <city>Markham</city>
<prov-state> </prov-state> <pcode-zip>N9C 3T6</pcode-zip>
</addr> <phone type="work">905-555-7258</phone> </customerinfo>

8.3.3 Importing XML data into DB2

The use of the IMPORT utility in DB2 is to be able to import data into a DB2 table
from data that had been previously exported with the DB2 EXPORT utility. The
IMPORT utility can be used to insert XML documents into a table. Only
well-formed XML documents can be imported.

XML data involved in the EXPORT and IMPORT utilities must be stored in files
separate from the main data file. The XML data, however, is represented in the
main data file with an XML Data Specifier (XDS). The XDS is a string
represented as an XML tag named XDS, which has attributes that describe
information about the actual XML data in the column. This information includes
the name of the file that contains the actual XML data, and the offset and length
of the XML data within that file.

Specifically, the attributes of the XDS are:

� FIL - The name of the file that contains the XML data

� OFF - The byte offset of the XML data in the file named by the FIL attribute,
where the offset begins from 0

� LEN - The length in bytes of the XML data in the file named by the FIL
attribute

� SCH - The fully qualified SQL identifier of the XML schema that is used to
validate this XML document

The following is an example of an XDS as it would appear in a delimited ASCII
data file:

“<XDS FIL = ““xmldocs.xml.001”” OFF=““100”” LEN=““300”” />”

This entry indicates that the XML data is stored in the file xmldocs.xml.001
beginning at byte offset 100 with a length of 300 bytes. Since this XDS is within an
ASCII file delimited with double quotation marks, the double quotation marks
within the XDS tag itself must be doubled.

When importing data into an XML table column, you can use the XML FROM
option to specify the paths of the input XML data file or files. For example, for an
 Chapter 8. XML conversion 359

XML file /home/user/xmlpath/xmldocs.001.xml that had previously been
exported, the following command could be used to import the data back into the
table.

IMPORT FROM t1export.del OF DEL
 XML FROM /home/user/xmlpath
 INSERT INTO USER.T1

The XMLVALIDATE option allows XML documents to be validated against XML
schemas as they are imported. In the following example, incoming XML
documents are validated against schema information that was saved when the
XML documents were exported:

IMPORT FROM t1export.del OF DEL
 XML FROM /home/user/xmlpath
 XMLVALIDATE USING XDS
 INSERT INTO USER.T1

You can use the XMLPARSE option to specify whether whitespace in the
imported XML documents is preserved or stripped. In the following example, all
imported XML documents are validated against XML schema information that
was saved when the XML documents were exported, and these documents are
parsed with whitespace preserved.

IMPORT FROM t1export.del OF DEL
 XML FROM /home/user/xmlpath
 XMLPARSE PRESERVE WHITESPACE
 XMLVALIDATE USING XDS
 INSERT INTO USER.T1

8.3.4 XML validation

XML validation is the process used to determine whether the structure, content,
and data types of an XML document are valid according to an XML schema. It is
also used to add type annotations to element nodes, attribute nodes, and atomic
values, and to strip off ignorable whitespace in the XML document. XML
validation is not required, but is quite useful in many cases.

XML validation is performed using the DB2 XMLVALIDATE function. Usually, it is
used on the INSERT or UPDATE of an XML document. It can also be used on
XML documents not stored in the database, but that is not discussed here.

In order to use XMLVALIDATE, the XML schema document must be registered
in the DB2 XSR. This section assumes that the Oracle XML schemas have
already been registered in DB2. Registering XML schemas in DB2 was covered
in “XML schema registration in DB2” on page 346.
360 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

If you do not know what XML schemas to use to validate the XML documents
that came from the Oracle database, you can create an inventory of XML
schemas related to XMLType tables and columns as mentioned in “Obtaining and
converting XML schemas” on page 343.

To list the registered XML schema used for XMLType tables, issue:

select owner, table_name, xmlschema, schema_owner
 from dba_xml_tables

Similarly, for XMLType columns, issue:

select owner, table_name, column_name, xmlschema, schema_owner
 from dba_xml_tab_cols

With the DB2 XMLVALIDATE function, you have the option of explicitly
specifying the XML schema to be used for XML validation. If no XML schema is
specified, DB2 will use the input document’s xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute as hints to identify an XML schema to
use for validation. Specifying the XML schema explicitly to XMLVALIDATE will
override the xsi:schemaLocation or xsi:noNamespaceSchemaLocation attributes.

Using the customer example again, we have previously registered the customer
XML schema, customer.xsd, with the following command:

register xmlschema 'http://posample.org'
 from 'd:\XMLSchemas\customer.xsd'
 as user1.customer
 complete

To demonstrate XML validation, imagine a dynamic SQL application. It inserts
customer XML documents into a customer table, and performs validation against
the user1.customer XML schema. The SQL would look like the following:

insert into customer (cid, info)
 values (1005,
 XMLVALIDATE(? ACCORDING TO XMLSCHEMA ID user1.customer))

In this case, the XML document is bound to the parameter marker (?) and
validated at insert time. You could also have provided a string literal representing
the XML document in place of the parameter marker, as long as the XML
document is well formed.

If you need to ensure that you only insert XML documents that are validated into
an XML column, you can create a check constraint on the table. The customer
table could be altered in the following way to enforce this:

alter table customer add constraint ck_xml_valid (info is validated)
 Chapter 8. XML conversion 361

Now, only XML documents that have been validated will be allowed to be
inserted into the info column of the customer table.

8.4 Converting XML queries

Although both SQL/XML and XQuery are each defined by their own particular
standards, there are still differences in how Oracle and DB2 have adhered to
those standards and as a result, there are differences in how the features that
query, access, and generate XML content have been implemented.

8.4.1 SQL/XML

SQL/XML functions are SQL functions that invoke XPath or XQuery expressions
and are used in SQL statements such as SELECT. They are used to access
portions of an XML document or to generate XML data. Without these functions,
an SQL statement can only access a column of XML data at the row level and
cannot query at the sub document level.

SQL/XML functions can be categorized into two groups:

� Those that query and access XML content
� Those that generate XML content from SQL data

For those SQL/XML functions that query and access XML content, Oracle
provides a set of proprietary functions that use XPath to access XML content.
Included in these functions are what are known as XMLType methods. The
XMLType functions belong to the XMLType data type. Some examples are
getStringVal(), getClobVal(), getNumberVal(), getNamespace() and
getBlobVal(). Besides the XMLType methods, Oracle also provides additional
proprietary SQL/XML functions. The more important of these are extract(),
existsNode(), and extractValue().

To query XML data, Oracle also supports the ISO/IEC standard SQL/XML
functions, XMLQuery and XMLTable. These functions, known as the XQuery
functions, are supported on DB2 as well and along with the XMLExists predicate
are the only SQL/XML functions used on DB2 for XML querying.

In addition to the SQL/XML querying functions, DB2 also supports several other
types of functions. Included in these are three casting functions: XMLCast,
XMLParse and XMLSerialize. Oracle supports two of these, XMLParse and
XMLSerialize. Oracle also supports the proprietary casting function XMLType,
which converts an XML string value to an XMLType value. XMLType is most
similar to DB2’s XMLParse function. Oracle also supports XMLType methods
362 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

(such as getStringVal) to cast XML values to scalar string values. The closest
DB2 equivalent to these is the XMLCast function.

For those SQL/XML functions that are used to generate XML from relational
data, Oracle supports many of the same standard SQL/XML functions that are
supported by DB2. These functions are referred to as the “publishing” functions
and include: XMLElement, XMLAgg, XMLAttribute, XMLConcat, and XMLForest.
Oracle also provides an additional set of proprietary functions that generate XML
from SQL data.

Although none of the Oracle-provided SQL/XML functions and methods are
found on DB2, their functionality can be mapped to DB2.

Table 8-1 lists some of the more important SQL/XML functions supported by
Oracle and maps them to DB2 equivalents.

Table 8-1 SQL/XML function mapping

Oracle
SQL/XML

SQL/XML
category

Oracle
specific

Closest DB2
equivalent

DB2 SQL/XML behavior

existsNode Access Yes XMLEXISTS Used in WHERE clause to filter rows
returned.

extract Access Yes XMLQUERY Returns an XML sequence.

extractValue Access Yes XMLQUERY &
XMLCAST

Returns an XML value and converts to a
number or string scalar value.

getstringVal Access Yes XMLCAST Converts an XML value to a string or
numeric scalar value.

getNumberVal Access Yes XMLCAST Converts an XML value to a string or
numeric scalar value.

XMLQUERY Access No XMLQUERY Returns an XML sequence.

XMLTABLE Access No XMLTABLE Returns XML values as a table.

XMLPARSE Casting No XMLPARSE Casts an XML string into the XML data
type.

XMLTYPE Casting Yes XMLPARSE Casts an XML string into the XML data
type.

XMLSERIALIZE Casting No XMLSERIALIZE Casts an XML sequence into an XML
string value.

XMLCONCAT Generate No XMLCONCAT Returns a sequence that concatenates
XML values.
 Chapter 8. XML conversion 363

To convert Oracle SQL/XML functions to DB2, find the most equivalent
function(s) on DB2 and then refer to DB2 9 XML Guide, SC10-4254 and DB2
SQL Reference manual Part 1, SC10-4249 to assist you with constructing the
appropriate syntax for your particular conversion. Syntax differences may even
exist when the function is shared by both Oracle and DB2 and part of the
ISO/IEC or W3C standard.

The following are some examples that demonstrate these differences.

A sample conversion involving Oracle and DB2 SQL/XML functions is shown in
Example 8-11 and Example 8-12.

In this example, both the extract() and existsNode() functions are Oracle
proprietary SQL/XML functions; the reference to the namespace value differs
from how DB2 references the namespace.

The example for DB2 uses the wildcard notation (*:), which is prefixed to the XML
elements. The wildcard will match any namespace specified. Although the
wildcard notation is part of the W3C standard, it is not supported by Oracle.

Example 8-11 Using SQL/XML functions in Oracle

SELECT
extract(info,'/customerinfo//addr','xmlns="http://posample.org"')
FROM customer_us
WHERE
 existsnode(info,'/customerinfo//addr[city="Aurora"]',
 'xmlns="http://posample.org"')=1;

Example 8-12 DB2 conversion of using SQL/XML functions

SELECT XMLQUERY('$R/*:customerinfo//*:addr' PASSING info AS "R")
FROM customer
WHERE XMLEXISTS('$R/*:customerinfo//*:addr[*:city="Aurora"]'
 PASSING info as "R");;

XMLELEMENT Generate No XMLELEMENT Returns an XML element.

XMLAGG Generate No XMLAGG Returns a sequence containing non null
XML values.

XMLATTRIBUTES Generate No XMLATTRIBUTES Generates attribute for an element.

XMLFOREST Generate No XMLFOREST Returns a sequence of element nodes.

Oracle
SQL/XML

SQL/XML
category

Oracle
specific

Closest DB2
equivalent

DB2 SQL/XML behavior
364 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The following example shows how to specify a namespace in DB2’s XMLQuery
when not using the wildcard notation:

SELECT XMLQUERY ('declare default element namespace
"http://posample.org"; $R/customerinfo//addr' PASSING INFO AS "R")

The next example demonstrates casting of XML values on Oracle and DB2.

On Oracle:

cityxml := incust.extract('/customerinfo//city');
city := cityxml.extract('//text()').getstringval();

On DB2:

SET cityXml = XMLQUERY('$cust/customerinfo//city' passing inCust as
"cust");
SET city = XMLCAST(cityXml as VARCHAR(100));

When you specify an XPath or XQuery expression in an Oracle SQL/XML
function, Oracle executes the expression based on the type of XMLType storage
used. If XML is stored in XMLType unstructured storage as a CLOB, then Oracle
builds a DOM tree of the XML document in memory to process the XPath
expression. If XML is stored in XMLType structured storage which under the
covers is represented as object-relational data structures, Oracle rewrites the
XPath expression into equivalent SQL statements.

Unlike Oracle, on DB2 the XPath or XQuery expressions are not rewritten into
SQL statements and the XML document does not have to be loaded into memory
as a DOM tree in order for XML processing by these functions to occur. This is
due to the DB2 storage model where each node is already parsed and in a
DOM-like, hierarchical format on disk and can easily be traversed by the XPath
and XQuery languages.

8.4.2 XQuery

Although standardization was a goal of the World Wide Web Consortium (W3C)
when designing the XQuery language, there are differences in how Oracle and
IBM have implemented XQuery within their respective database products.

With DB2, XQuery is a case-sensitive, primary language that can be embedded
directly within applications that access a DB2 database, or issued interactively

Note: Refer to the Oracle procedures that have been converted to DB2 in 8.6,
“Converting XML in stored procedures” on page 374 for additional conversion
examples on XMLSerialize and some publishing functions.
 Chapter 8. XML conversion 365

from the DB2 Command Line Processor. An XQuery statement is prefixed with
the keyword XQUERY and is not limited to being invoked only from an SQL/XML
function. The keyword indicates that the primary language is XQuery. In XQuery,
two DB2-defined functions, db2-fn:xmlcolumn and db2-fn:sqlquery, are used in a
query to obtain input XML data from a DB2 database. The db2-fn:xmlcolumn
function is used to retrieve an XML sequence from the input of an XML column.
The db2-fn:sqlquery function is used to retrieve a sequence of XML values based
on the input of an SQL fullselect statement.

In Oracle, the XQuery statement cannot be embedded directly within SQL
applications. In applications, the XQuery language is executed from the functions
XMLQuery() and XMLtable(). The XQuery command can only be executed
natively from the SQL*PLUS environment. However, before executing XQuery
from SQL*PLUS, the environment must be properly initialized; this is
accomplished by running an Oracle-provided script. After running this script and
setting some additional parameters, the XQuery command can be used.

Oracle provides several XQuery and XPath extension functions that have a
prefix of ora. Some of these are ora:view, ora:contains, and ora:replace. The
Oracle XQuery extension functions do not map to the 2 DB2-defined XQuery
functions mentioned previously. To convert the Oracle XQuery extension
functions to DB2, you will need to rewrite the XQuery expression. For example,
ora:view is used to create XML views on relational data so that the data can be
manipulated as an XML document. On DB2, this is accomplished by using the
SQL/XML publishing functions.

Oracle supports the standard XQuery functions fn:doc and fn:collection. These
functions are used to retrieve a single document or a collection of documents
that are stored in files on the Oracle XML DB repository. On DB2, since the XML
document is always stored in tables, the db2-fn:xmlcolumn function can be used
instead.

DB2 supports the use of the XQuery command interactively as well. The XQuery
command can be run from the Command Line Processor (CLP). When run from
the CLP, no additional setup is required to run XQuery commands.

Example 8-13 compares the differences between an XMLQuery function on
Oracle and DB2.

Example 8-13 XQuery differences

-- In Oracle --
SELECT XMLQUERY('$i/customerinfo//city'
 PASSING incust AS "i" RETURNING CONTENT) INTO cityxml
 FROM DUAL;
366 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

-- In DB2 ---
SET cityxml = XMLQUERY('$cust/customerinfo//city' PASSING inCust as
"cust") FROM customer;

Example 8-14 shows how looping through XML content may be done in an
Oracle application.

Example 8-14 Looping through XML content in Oracle

CURSOR cur1(vcity IN VARCHAR2) IS
SELECT info from customer_us
WHERE
existsnode(info,'/customerinfo//addr[city="'||vcity||'"]','xmlns="http:
//posample.org"') = 1;
...
FOR c IN cur1(city) LOOP
customer := c.info.extract('//name','xmlns="http://posample.org"');
...
END LOOP;

In the DB2 application, the same iterating through XML content may be done
using the FLWOR expression of the XQuery statement. See Example 8-15.

Example 8-15 Looping through XML content in DB2

SET stmt_text = 'XQUERY for $cust
in db2-fn:xmlcolumn("CUSTOMER.INFO")
/*:customerinfo/*:addr[*:city="'||city||'"]
return $cust/../*:name';
...
PREPARE stmt FROM stmt_text;
OPEN cur1;
FETCH cur1 INTO customer;
WHILE (SQLSTATE = '00000') DO
...
FETCH cur1 INTO customer;
END WHILE;

Example 8-16 and Example 8-17 compare the use of XQuery when used in the
XMLTABLE function on Oracle and DB2. Note that since the XMLTABLE function

Note: XQuery is executed as a dynamically prepared statement when
embedded in DB2 applications.
 Chapter 8. XML conversion 367

is a standard SQL/XML function, the same namespace declaration is used for
both.

Example 8-16 Using the XMLTABLE function in Oracle

select X.*
from customer_us,
 xmltable (XMLNAMESPACES (DEFAULT 'http://posample.org'),
 'for $m in $col/customerinfo
 return $m'
 passing customer_us.info as "col"
 columns
 "CUSTNAME" char(30) path 'name',
 "phonenum" xmltype path 'phone')
as X;

Example 8-17 Using the XMLTBLE function in DB2

select X.*
 from xmltable (XMLNAMESPACES (DEFAULT 'http://posample.org'),
 'db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo'
 columns
 "CUSTNAME" char(30) path 'name',
 "phone" xml path 'phone')
as X;

8.4.3 Updates and deletes

The initial release of the XQuery language only provided for querying XML at the
subdocument level and did not provide for updating or deleting portions of XML
content. Because IBM has chosen to conform to the W3C protocols, DB2 does
not yet provide for an XQuery approach to update and delete portions of XML
content. Currently, the entire document must be retrieved and subdocument
updates and deletes are performed outside of the database. The entire
document can be updated, deleted, and inserted using the SQL UPDATE,
DELETE and INSERTstatements.

For convenience, IBM has developed a procedure called XMLUpdate that can be
used to facilitate updating a portion of an XML document. Refer to DB2 9
PureXML Guide, SG24-7315 for details on how to use this procedure or go to:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605singh/

Another way to update portions of XML content is by storing XML in shredded
format and using the DB2 XML extender, which is delivered with DB2.
368 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605singh

Oracle provides the proprietary SQL/XML functions updateXML and deleteXML
for purposes of updating and deleting portions of XML content. As a proprietary
implementation, it is not part of the ISO/IEC or W3C standard.

8.4.4 Referential Integrity

Since decomposition is typically used to store XML data in non-XML SQL types
(for example, INTEGER, VARCHAR, and so on), all SQL modes of enforcing
constraints and referential integrity are supported when XML is decomposed into
relational data.

For example, if you are decomposing a <CustomerID> element to the ID (INT
NOT NULL) column of the table CUSTID_TAB, you could define a unique
constraint as follows:

ALTER TABLE custid_tab ADD CONSTRAINT uniq_id UNIQUE (id);

If you have decomposed fragments of the XML document into XML type
columns, there are some restrictions, such as not being able to define referential
integrity or use triggers; however, decomposing to non-XML type columns
removes that problem.

It is important to realize that in terms of referential integrity, the order of insertion
based on referential integrity constraints is not observed. Instead, the following
method ensures that rows are inserted in the correct order for the referential
integrity:

1. Create your primary key:

ALTER TABLE custid_tab ADD CONSTRAINT id_pk PRIMARY KEY (id);

2. Create your foreign key:

ALTER TABLE orders ADD CONSTRAINT custid_fk FOREIGN KEY (custid)
REFERENCES custid_tab (id);

3. With two copies of the document's XML schema, annotate one to map only to
the table with the primary key and annotate the other to map only to the table
with the foreign key.

4. Register both XML schemas with the XSR.

5. Decompose the XML document using the schema that maps to the table with
the primary key.

6. Decompose the same XML document with the schema that maps to the table
with the foreign key.
 Chapter 8. XML conversion 369

8.5 Converting XML indexes

Oracle supports three kinds of indexes on XML documents:

� B-Tree, which indexes the underlying SQL types and can be created on
XMLType tables and columns that use structured storage.

� Function-based, which indexes a function or expression and can be defined
on structured and unstructured storage XMLType tables and columns.

� Text-based, which indexes text within an XML document and can be defined
on structured and unstructured storage XMLType tables and columns.

At index creation time, Oracle uses the provided XPath expression and
determines whether it can rewrite the XPath to map to the underlying SQL data
types. If the XPath can map to the SQL types, the index will be created as a
B-Tree index on the SQL objects. If the XPath cannot be rewritten, a
function-based index will instead be created.

In DB2, XML documents are stored with their native tree-based structure intact
and DB2 is fully aware of the parent and child relationships among the various
XML elements. The new DB2 9 index structure for XML data speeds access to
specific XML elements and attributes, including those with repeating groups.

In contrast to traditional relational indexes, where index keys are composed of
one or more table columns, a DB2 index over XML data uses a particular XML
pattern expression to index paths and values in XML documents stored within a
single column. The data type of that column must be XML.

Instead of providing access to the beginning of a document, index entries in an
index over XML data provide access to nodes within the document by creating
index keys based on XML pattern expressions. Since multiple parts of a XML
document can satisfy an XML pattern, DB2 may generate multiple index keys
when it inserts values for a single document into the index. DB2 fully supports
XML indexes on repeating elements and attributes, and performs no parsing at
run-time.

Due to the underlying differences between how Oracle and DB2 store XML data,
there are some differences in indexing approaches. DB2 does not support
function-based indexes, but does create indexes based on an XPath expression.

You create an index over XML data using the CREATE INDEX statement, and
drop an index over XML data using the DROP INDEX statement. The
path-specific value index allows indexing of elements and attributes frequently
used in predicates and cross-document joins. The GENERATE KEY USING
XMLPATTERN clause you include with the CREATE INDEX statement specifies
what path-specific value you want to index. Some of the keywords used with the
370 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

CREATE INDEX statement for indexes on non-XML columns do not apply to
indexes over XML data.

In DB2, the UNIQUE keyword has a different meaning for indexes over XML
data. For indexes over XML data, the UNIQUE keyword enforces uniqueness
within a single XML column across all documents whose nodes are qualified by
the XML pattern. The insertion of a single document may cause multiple values
to be inserted into a unique index; these values must be unique in that document
and in all other documents in the same XML column. Note also that the insertion
of some documents may not result in any values being inserted into an index;
uniqueness is not enforced for these documents.

To help illustrate the XML indexing available in DB2, we again look at the
customer table:

create table customer (cid bigint not null, info xml, history xml)

Example 8-18 shows a sample customer XML document that is stored in the info
XML column of the customer table.

Example 8-18 Sample customer XML document

<customerinfo xmlns="http://posample.org"
 Cid="1005">
 <name>Larry Menard</name>
 <addr country="Canada">
 <street>223 NatureValley Road</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M4C 5K8</pcode-zip>
 </addr>
 <phone type="work">905-555-9146</phone>
 <phone type="home">416-555-6121</phone>
 <assistant>
 <name>Goose Defender</name>
 <phone type="home">416-555-1943</phone>
 </assistant>
</customerinfo>

Currently, XML index keys can only be stored as VARCHAR, DOUBLE, DATE,
and TIMESTAMP. You must ensure that you pick the proper storage type based
on the queries you will be issuing. For example, if you have a query that
evaluates the Cid attribute of the customerinfo element and uses the string ‘1005’
as the search predicate, index keys will only match if the index is stored as a
VARCHAR. If instead your queries search for the number 1005, then your XML
index must store the Cid attribute index keys as a DOUBLE.
 Chapter 8. XML conversion 371

Example 8-19 illustrates indexing the Cid attribute of the customerinfo element
and to store the index keys as a DOUBLE. This index is also created to only
index those elements belonging to the default namespace of http://posample.org.

Example 8-19 Indexing the Cid attributes

create unique index cust_cid_xmlidx1
 on customer (info asc)
 generate key using xmlpattern
 'declare default element namespace "http://posample.org";
 /customerinfo/@Cid'
 as sql double allow reverse scans

A similar index, which will index elements and attributes belonging to any
namespace, is shown in Example 8-20.

Example 8-20 Indexing elements and attributes belonging to any namespace

create unique index cust_cid_xmlidx2
 on customer (info asc)
 generate key using xmlpattern
 '/*:customerinfo/@Cid'
 as sql double allow reverse scans

The following are some common examples used to create indexes in Oracle on
XML documents stored in the XMLType data type. The equivalent DB2 XML
index is also shown. The main point being illustrated here is that the XPaths used
in the Oracle indexes should be the same XPaths provided to the GENERATE
KEY USING XMLPATTERN clause in the DB2 indexes.

Oracle indexing a text node:

create index cust_name_idx
 on customer_ss
 (extractValue(info, '/customerinfo/name'))

DB2 indexing a text node:

create index cust_name_idx
 on customer (info asc)
 generate key using xmlpattern
 '/*:customerinfo/*:name'
 as sql varchar(30) allow reverse scans

Oracle indexing an attribute node:

create index cust_cid_at_idx
372 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 on customer_ss
 (extractValue(info,'/customerinfo/@Cid'))

DB2 indexing an attribute node:

create index cust_cid_at_idx
 on customer (info asc)
 generate key using xmlpattern
 '/*:customerinfo/@Cid'

 as sql double allow reverse scans

Oracle unique index:

create unique index cust_cid_uniq_idx
 on customer_ss
 (extract(info,'/customerinfo/@Cid').getStringVal());

DB2 unique index:

create unique index cust_cid_uniq_idx
 on customer (info asc)
 generate key using xmlpattern
 '/*:customerinfo/@Cid'
 as sql double allow reverse scans

The sample code shown in Example 8-21 can be used to collect the important
XPaths used in the Oracle indexes defined on structured or unstructured storage
XMLType columns and tables.

Example 8-21 Collecting XPaths used in Oracle Indexes

set pagesize 0
set long 90000
set feedback off
set echo off
spool all_xml_related_indexes.ddl
select index_name, column_expression, table_name
 from dba_ind_expressions
 where table_name in (select distinct table_name
 from dba_xml_tab_cols
 where storage_type in
 ('CLOB','OBJECT-RELATIONAL')
 and owner not in ('MDSYS','XDB')
 and table_name not like 'BIN$%'
 union
 select distinct table_name
 from dba_xml_tables
 where storage_type in
 Chapter 8. XML conversion 373

 ('CLOB','OBJECT-RELATIONAL')
 and owner != 'XDB'
 and table_name not like 'BIN$%');
spool off

These captured XPaths can be provided to DB2 in the GENERATE KEY USING
XMLPATTERN clause of the CREATE INDEX statement, as demonstrated
above. XML index conversion is usually very straightforward.

For more information on DB2 XML indexes, it is recommended that you review
the following developerWorks articles:

� “Exploit XML indexes for XML query performance in DB2 9”

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0611nic
ola

� “Indexing XML documents with DB2 9 pureXML”

http://www.ibm.com/developerworks/wikis/download/attachments/1824/in
dexingXMLdocuments.pdf

DB2 also provides an equivalent to Oracle text-based indexes, DB2 Net Search
Extender (NSE). Though it comes with DB2 9, NSE is a separate install product
and is not covered in detail here. XML full text search is provided by the DB2 Net
Search Extender, which has been enhanced for XML. Full-text indexes with
awareness of XML document structures can be defined on any native XML
column. The documents in an XML column can be fully indexed or partially
indexed, for example, if it is known in advance that only a certain part of each
document will be subject to full-text search, such as a description or comment
element node. Correspondingly, text search expressions can be applied to
specific paths in a document. Administration and management is integrated in
the DB2 Control Center. For more details, refer to “XML full-text search in DB2”
at the developerWorks Web site:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606seuber
t/index.html

8.6 Converting XML in stored procedures

With stored procedures come the advantages of expanding SQL with
programming constructs such as variables, looping, and if_then_else logic, along
with the efficiency of sharing and executing code on the server. So it comes as
no surprise that Oracle and DB2 both support XML in their respective procedure
languages, PL/SQL and SQL PL.
374 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0611nicola
http://www.ibm.com/developerworks/wikis/download/attachments/1824/indexingXMLdocuments.pdf
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606seubert/index.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606seubert/index.html

In this section we compare some of the differences and similarities of XML
support in Oracle and DB2 stored procedures.

8.6.1 Comparison overview

Here we demonstrate the following XML processing features, which are common
to both procedure languages:

� Passing and returning XML values as parameters

� Local XML data type declarations

� Assignment of XML variables

� SQL/XML functions such as XMLQUERY, XMLTABLE, XMLSERIALIZE,
XMLCONCAT

� XQuery or XPath expressions

� Cursor processing of XML documents

� Passing and returning XML values to XQuery or XPath expressions

We also demonstrate how Oracle and DB2 differ with respect to the processing
of XML data in procedures. Some of these differences include:

� PL/SQL and SQL PL construct differences

– Looping and declaring cursors

� XML data type declaration differences

– XMLTYPE versus XML

� Database-specific XML-extension differences

– PL/SQL uses ExistsNode() versus the XMLExists predicate used in SQL
PL.

� Differences in embedded XQuery support

– XMLQuery with XQuery expressions in PL/SQL versus embedded XQuery
statements in SQL PL

� Differences in the way that namespaces are referenced

– In PL/SQL the namespace declaration is passed as a parameter in the
XMLType function.

– In SQL PL the namespaces are referenced using a wildcard notation of
“*:”.
 Chapter 8. XML conversion 375

8.6.2 Converting an Oracle procedure with XML to DB2

In the following two sections, stored procedure examples are used to specifically
show the XML processing differences just described between Oracle and DB2.

The Oracle and DB2 examples use the same logic flow, input parameter values,
and XML documents that are stored in relational tables on each database. As
expected, the output produced from each procedure is identical also. The
differences are found in the SQL and XML constructs that were used to create
each procedure.

The Oracle procedures are written using two different techniques that are
available with Oracle:

� The first procedure demonstrates the proprietary extract() function to retrieve
data.

� The second procedure demonstrates the standard XMLQuery function to
retrieve the data.

The DB2 procedure is written using a single approach, which consists of an
embedded XQuery statement using dynamic cursors and standard SQL/XML
functions.

Description of the procedure logic
The Oracle and DB2 procedures are called with identical XML data passed as
input parameters.

Each procedure extracts the City (“Markham”) from the XML data passed as
input. The City is used to find XML documents in the INFO column of the
CUSTOMER table that contains a match to the city of “Markham”. When a match
is found, the customers’ Names are extracted and concatenated to each other
and to the City value.

The final result is constructed with a <result> tag and returned.

Note: DB2’s XML data type does not include methods to manipulate XML
data. Oracle only supports the use of the XQuery language as expressions
within SQL/XML functions. Oracle does not support the embedded XQuery
statement. Oracle 10g R2 supports the native XQuery statement as an
interactive command in the SQLPLUS environment.
376 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

8.6.3 The Oracle procedures

The table, CUSTOMER_US, is created using unstructured storage for XMLType
as shown in Example 8-22.

Example 8-22 Creating a Oracle table

CREATE TABLE CUSTOMER_US
(
 cid integer not null,
 info xmltype,
 history xmltype
);

We use the statements shown in Example 8-23 to insert six rows of XML data
into the Oracle table CUSTOMER.

Example 8-23 Inserting XML data

INSERT INTO customer_us(cid,info)
 VALUES (1000,
 XMLTYPE('
 <customerinfo xmlns="http://posample.org"
Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
 </customerinfo>'));
INSERT INTO customer_us(cid,info)
 VALUES (1001,
 XMLTYPE('
 <customerinfo xmlns="http://posample.org"
Cid="1001">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C 3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 Chapter 8. XML conversion 377

 </customerinfo>'));
INSERT INTO customer_us(cid,info)
 VALUES (1002,
 XMLTYPE('
 <customerinfo xmlns="http://posample.org"
Cid="1002">
 <name>Jim Noodle</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C 3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 </customerinfo>'));
INSERT INTO customer_us(cid,info)
 VALUES (1003,
 XMLTYPE('
 <customerinfo xmlns="http://posample.org"
Cid="1003">
 <name>Robert Shoemaker</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Aurora</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N8X 7F8</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 <phone type="home">416-555-2937</phone>
 <phone type="cell">905-555-8743</phone>
 <phone type="cottage">613-555-3278</phone>
 </customerinfo>'));
INSERT INTO customer_us(cid,info)
 VALUES (1004,
 XMLTYPE('
 <customerinfo xmlns="http://posample.org"
Cid="1004">
 <name>Matt Foreman</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M3Z 5H9</pcode-zip>
 </addr>
 <phone type="work">905-555-4789</phone>
378 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 <phone type="home">416-555-3376</phone>
 <assistant>
 <name>Gopher Runner</name>
 <phone type="home">416-555-3426</phone>
 </assistant>
 </customerinfo>'));
INSERT INTO customer_us(cid,info)
 VALUES (1005,
 XMLTYPE('
 <customerinfo xmlns="http://posample.org"
Cid="1005">
 <name>Larry Menard</name>
 <addr country="Canada">
 <street>223 NatureValley Road</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M4C 5K8</pcode-zip>
 </addr>
 <phone type="work">905-555-9146</phone>
 <phone type="home">416-555-6121</phone>
 <assistant>
 <name>Goose Defender</name>
 <phone type="home">416-555-1943</phone>
 </assistant>
 </customerinfo>'));

Creating Oracle procedure #1 - with XMLType methods
Example 8-24 shows the stored procedure with XMLType methods. This
procedure is created using SQLPLUS.

Example 8-24 Oracle stored procedure with XMLType methods

CREATE OR REPLACE PROCEDURE xmlproc (incust IN XMLTYPE)
IS
customer xmltype;
vcustomer varchar2(100);
cityxml xmltype;
city varchar2(100);
resxml xmltype;
vresxml varchar2(200);
CURSOR cur1(vcity IN VARCHAR2) IS
SELECT info from customer_us
 Chapter 8. XML conversion 379

WHERE
existsnode(info,'/customerinfo//addr[city="'||vcity||'"]','xmlns="http:
//posample.org"') = 1;
BEGIN
cityxml := incust.extract('/customerinfo//city');
city := cityxml.extract('//text()').getstringval();
DBMS_OUTPUT.put_line('city is '||city);
resxml := cityxml;
FOR c IN cur1(city) LOOP
customer := c.info.extract('//name','xmlns="http://posample.org"');
SELECT XMLCONCAT(resxml,customer) INTO resxml FROM dual;
END LOOP;
SELECT XMLELEMENT("result",resxml) into resxml FROM dual;
SELECT XMLSERIALIZE(CONTENT resxml AS VARCHAR2(200)) INTO vresxml FROM
dual;
DBMS_OUTPUT.put_line('resxml is '||vresxml);
end;
/

Creating Oracle procedure #2 - with SQL/XML functions
Example 8-25 is an Oracle procedure that uses a slightly different technique.

Example 8-25 Oracle stored procedure with SQL/XML functions

CREATE OR REPLACE PROCEDURE xmlproc (incust IN XMLTYPE)
IS
customer xmltype;
vcustomer varchar2(100);
cityxml xmltype;
city varchar2(100);
resxml xmltype;
vresxml varchar2(200);
CURSOR cur1(vcity IN VARCHAR2) IS
SELECT info from customer_us
WHERE
existsnode(info,'/customerinfo//addr[city="'||vcity||'"]','xmlns="http:
//posample.org"') = 1;
BEGIN
SELECT XMLQUERY('$i/customerinfo//city'
 PASSING incust AS "i" RETURNING CONTENT) INTO cityxml
 FROM DUAL;
city := cityxml.extract('//text()').getstringval();
DBMS_OUTPUT.put_line('city is '||city);
resxml := cityxml;
380 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

FOR c IN cur1(city) LOOP
customer := c.info.extract('//name','xmlns="http://posample.org"');
SELECT XMLCONCAT(resxml,customer) INTO resxml FROM DUAL;
END LOOP;
SELECT XMLQUERY('<result> {$res} </result>' PASSING resxml AS "res"
RETURNING CONTENT)
 INTO resxml FROM DUAL;
commit;
SELECT XMLSERIALIZE(CONTENT resxml AS VARCHAR2(200)) INTO vresxml FROM
dual;
DBMS_OUTPUT.put_line('resxml is '||vresxml);
end;
/

The Oracle Call procedure statement
The procedure was called from SQLPLUS as shown in Example 8-26.

Example 8-26 Calling Oracle stored procedure

CALL xmlproc(xmltype('<customerinfo Cid="5002"><name>Jim
Noodle</name><addr country="Canada"><street>25
EastCreek</street><city>Markham</city><prov-state>Ontario</prov-state><
pcode-zip>N9C-3T6</pcode-zip></addr><phone
type="work">905-566-7258</phone></customerinfo>'));

The output from both Oracle procedures is the same and is displayed using the
Oracle package DBMS_OUTPUT.put_line() shown in Example 8-27.

Example 8-27 Output of Oracle stored procedures

DBMS_OUTPUT.put_line():
resxml is <result><city>Markham</city><name
xmlns="http://posample.org">Kathy Smith</name><name
xmlns="http://posample.org">Jim Noodle</name></result>

8.6.4 DB2 stored procedure

The procedure uses the CUSTOMER table on the DB2 SAMPLE database. The
table’s definition is displayed using the DB2 CLP shown in Example 8-28.

Example 8-28 DB2 table CUSOTMER

C:\redprocs>db2 describe table customer
Column Type Type
name schema name Length Scale Null
 Chapter 8. XML conversion 381

-------------------------- --------- ---------- -------- ----- ----
CID SYSIBM BIGINT 8 0 No
INFO SYSIBM XML 0 0 Yes
HISTORY SYSIBM XML 0 0 Yes
3 record(s) selected.

The data shown in Example 8-29 is stored in the CUSTOMER table and used by
the DB2 procedure. The data is displayed by issuing a SELECT statement from
the DB2 CLP.

Example 8-29 Data in the CUSTOMER table

SELECT CID, INFO FROM CUSTOMER;

CID INFO
---- ---
1000 <customerinfo xmlns="http://posample.org" Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
 </customerinfo>
1001 <customerinfo xmlns="http://posample.org" Cid="1001">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C 3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 </customerinfo>
1002 <customerinfo xmlns="http://posample.org" Cid="1002">
 <name>Jim Noodle</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C 3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
382 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 </customerinfo>
1003 <customerinfo xmlns="http://posample.org" Cid="1003">
 <name>Robert Shoemaker</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Aurora</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N8X 7F8</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 <phone type="home">416-555-2937</phone>
 <phone type="cell">905-555-8743</phone>
 <phone type="cottage">613-555-3278</phone>
 </customerinfo>
1004 <customerinfo xmlns="http://posample.org" Cid="1004">
 <name>Matt Foreman</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M3Z 5H9</pcode-zip>
 </addr>
 <phone type="work">905-555-4789</phone>
 <phone type="home">416-555-3376</phone>
 <assistant>
 <name>Gopher Runner</name>
 <phone type="home">416-555-3426</phone>
 </assistant>
 </customerinfo>
1005 <customerinfo xmlns="http://posample.org" Cid="1005">
 <name>Larry Menard</name>
 <addr country="Canada">
 <street>223 NatureValley Road</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M4C 5K8</pcode-zip>
 </addr>
 <phone type="work">905-555-9146</phone>
 <phone type="home">416-555-6121</phone>
 <assistant>
 <name>Goose Defender</name>
 <phone type="home">416-555-1943</phone>
 </assistant>
 </customerinfo>
 Chapter 8. XML conversion 383

6 record(s) selected.

DB2 stored procedure
The DB2 procedure is created from the DB2 CLP using the following command:

db2 -td@ -vf crtproc.txt -z out

The procedure shown in Example 8-30 was contained in the file crtproc.txt.

Example 8-30 DB2 stored procedure

CREATE PROCEDURE xmlProc(IN inCust XML, OUT resXML XML)
SPECIFIC xmlProc
LANGUAGE SQL
BEGIN
DECLARE SQLSTATE CHAR(5);
DECLARE stmt_text VARCHAR (1024);
DECLARE customer XML;
DECLARE cityXml XML;
DECLARE city VARCHAR (100);
DECLARE stmt STATEMENT;
DECLARE cur1 CURSOR FOR stmt;
-- Get the city of the input customer
SET cityXml = XMLQUERY('$cust/customerinfo//city' passing inCust as
"cust");
SET city = XMLCAST(cityXml as VARCHAR(100));
-- Iterate over all the customers from the city using an XQUERY cursor
-- and collect the customer name values into the output XML value
SET stmt_text = 'XQUERY for $cust
in db2-fn:xmlcolumn("CUSTOMER.INFO")
/*:customerinfo/*:addr[*:city="'||city||'"]
return $cust/../*:name';
-- Use the name of the city for the input customer data as a prefix
SET resXML = cityXml;
PREPARE stmt FROM stmt_text;
OPEN cur1;
FETCH cur1 INTO customer;
WHILE (SQLSTATE = '00000') DO
SET resXML = XMLCONCAT(resXML, customer);
FETCH cur1 INTO customer;
END WHILE;
set resXML = XMLQUERY('<result> {$res} </result>'
passing resXML as "res");
END@
384 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2 Call procedure statement
The procedure shown in Example 8-30 is called from the DB2 CLP as illustrated
in Example 8-31.

Example 8-31 Calling a DB2 stored procedure

CALL xmlProc(xmlparse(document '<customerinfo Cid="5002">
<name>Jim Noodle</name>
<addr country="Canada">
<street>25 EastCreek</street>
<city>Markham</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9C-3T6</pcode-zip>
</addr>
<phone type="work">905-566-7258</phone>
</customerinfo>' PRESERVE WHITESPACE),?)@

The output of the DB2 procedure is shown in Example 8-32. This output is the
same as the output from the Oracle procedures.

Example 8-32 Output of the DB2 stored procedure

Value of output parameters

 Parameter Name : RESXML
 Parameter Value : <result><city>Markham</city><name
xmlns="http://posample.org">Kathy Smith</name><name
xmlns="http://posample.org">Jim Noodle</name></result>

8.6.5 Other restrictions or limitations

DB2 SQL procedures support the XQuery language in two forms:

� As an argument to a SQL/XML function such as XMLQUERY:

XMLQUERY('$cust/customerinfo//city' PASSING inCust AS "cust")

In this case, the XQuery expression appears within single quotes and uses a
PASSING clause to pass variables into the XQuery expression.

� As an XQuery query with dynamic cursors, as shown in Example 8-33.

Example 8-33 DB2 XQuery support - with dynamic cursors

DECLARE stmt_text VARCHAR (1024);
DECLARE stmt STATEMENT;
DECLARE cur1 CURSOR FOR stmt;
……
 Chapter 8. XML conversion 385

SET stmt_text = 'XQUERY
for $cust in db2-fn:xmlcolumn("CUSTOMER.INFO")
/*:customerinfo/*:addr[*:city="'||city||'"]
return $cust/../*:name';
……
PREPARE stmt FROM stmt_text;
OPEN cur1;

In this case, the XQuery query is defined as a string, assigned to a
VARCHAR variable and prepared dynamically before opening the cursor.

The static statement as shown in Example 8-34 cannot be embedded within a
DB2 SQL procedure.

Example 8-34 Static statement

DECLARE cur1 CURSOR FOR
XQUERY for $cust
in db2-fn:xmlcolumn("CUSTOMER.INFO")
/*:customerinfo/*:addr[*:city="'||city||'"]
return $cust/../*:name;

Oracle XML DB support for the XQuery language in stored procedures is
provided through a native implementation of the SQL/XML functions, XMLQuery
and XMLTable. Unlike DB2, Oracle only supports using XQuery within
XMLQuery and XMLTable functions. Using XQuery as a query without SQL/XML
functions is only available in Oracle when using SQL*Plus.

A restriction to be aware of when using DB2 SQL procedures with XML
parameters and variables involves the use of commits and rollbacks. During the
execution of SQL procedures, the values assigned to XML parameters and
variables will no longer be available after a commit or rollback. Any attempt to
reference an XML variable after a commit or rollback will raise an error
(SQL1354N 560CE).

8.7 Converting XML in Java applications

Oracle JDBC drivers enable you to access and update XMLType tables and
columns, and call PL/SQL procedures that access Oracle XML DB Repository.
For DOM-based applications, Oracle XML DB supports the use of the DOM API
to access and update XMLType columns and tables. Programming to a DOM
API is more flexible than programming through JDBC, but it may require more
resources at runtime.
386 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DB2 also provides JDBC support to access and update DB2 tables containing
XML columns either directly through SQL or via stored procedure calls. The
DOM API is also supported with DB2, using classes provided in the xml.jar file.
When the JDBC 4.0 draft specification becomes a standard, IBM intends to
support this specification. JDBC4.0 will include an SQLXML type and will provide
integration with DOM processing.

This section briefly compares JDBC drivers provided by Oracle and IBM, and
then discuss retrieval, insert, and update of XML documents with Java
applications.

The content of this section is based on Oracle 10G R2.

8.7.1 JDBC drivers

Oracle provides two client side JDBC drivers. The Oracle Call Interface (OCI),
also called thick JDBC driver is a Type 2 driver that utilizes C libraries. The thin
JDBC driver is a Type 4 driver. Non-schema based XMLType processing can
use either driver, while schema-based XMLType processing requires the thick
JDBC driver. The only way to use the thin driver with schema-based XMLType is
to force a cast from schema-based to non-schema-based XMLType. This can be
done by invoking the createNonSchemaBasedXMLType() method on the
Schema-Based XMLType object. The Oracle JDBC driver is implemented in
classes12.jar.

The DB2 Universal JDBC driver (known as the JCC driver) also provides Type 4
and Type 2 JDBC connectivity. The DB2 JDBC driver is implemented in
db2jcc.jar. In the case of the Type 2 driver, the Java classes invoke the native
libraries shipped with the DB2 Client. The DB2 JDBC driver is implemented in
db2jcc.jar. There is no functional advantage to using the DB2 Type 2 driver over
the Type 4 driver, and Type 4 connectivity is recommended. The primary reason
for Type 2 connectivity is an application carryover when Type 4 connectivity was
not available with DB2.

A simple Oracle JDBC connection, using the DriverManager interface, is as
follows:

DriverManager.registerDriver (new oracle.jdbc.OracleDriver());
 Connection connection = DriverManager.getConnection(
 "jdbc:oracle:thin:localhost:1521:orcl", "username",
"password");

Here 1521 is the listening port and orcl is the System Instance ID (SID).
 Chapter 8. XML conversion 387

A simple DB2 JDBC connection, using the DriverManager interface, is as
follows:

� Type 4 connection:

DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver());
 connection = DriverManager.getConnection(
"jdbc:db2://hostname:50000/mydb","userid","password");

Here 50000 is the listening port and sample is the DB2 database.

� Type 2 connection:

DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver());
 connection = DriverManager.getConnection(
"jdbc:db2:mydb ","userid","password");

8.7.2 XML retrieval

XML data from Oracle tables and columns of type XMLType are typically
retrieved into an XMLType object in Java, or directly to one of several Java
output data types. XML data from DB2 XML columns can be retrieved into a
DB2XML object in Java, or directly to one of several Java output data types. Note
that the purpose of the DB2XML Java object is only to provide convenience
methods for conversion of the XML document to various output data types. The
DB2XML class does not offer comparable features to the Oracle XMLType class
with regard to DOM processing and does not provide performance optimization
versus using standard ResultSet methods.

DB2 XML retrieval summary
Before discussing approaches for migration of Oracle Java code, the available
DB2 JDBC techniques to retrieve XML data need to be summarized. The JDBC
result set methods and data types are found at the following Web site and are
summarized below:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.apdv.java.doc/doc/c0021817.htm

� Use a ResultSet.getXXX method other than ResultSet.getObject to retrieve
the data into a compatible data type.

Example: resultset.getString

� Use the ResultSet.getObject method to retrieve the data, and then cast it to
the DB2Xml type and assign it to a DB2Xml object. Then use a
DB2Xml.getDB2XXX or DB2Xml.getDB2XmlXXX method to retrieve the data into a
compatible output data type.

DB2Xml.getDB2XmlXXX methods add XML declarations with encoding
specifications to the output data.
388 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/c0021817.htm

For example:

DB2Xml data = (DB2Xml) resultset.getObject(1);
String xmlstring1 = data.getDB2XmlString();

getDB2XmlString results in the following XML declaration being added:

<?xml version="1.0" encoding="ISO-10646-UCS-2"?>

DB2Xml.getDB2XXX methods do not add XML declarations with encoding
specifications to the output data.

For example:

DB2Xml data = (DB2Xml) resultset.getObject(1);
String xmlstring1 = data.getDB2String();

resultset.getString and data.getDB2String return the same result and do
not have an added XML declaration.

Table 8-2 lists the ResultSet methods and the data types for retrieving XML data.

Table 8-2 ResultSet methods and data types for retrieving XML data

Table 8-3 list DB2Xml methods, their output data types, and the type of XML
internal encoding declaration added.

Table 8-3 DB2Xml methods, data types, and added encoding specifications

Method Output data type

ResultSet.getAsciiStream InputStream

ResultSet.getBinaryStream InputStream

ResultSet.getBytes byte[]

ResultSet.getCharacterStream Reader

ResultSet.getObject DB2Xml

ResultSet.getString String

Method Output data
type

Type of XML internal
encoding declaration added

DB2Xml.getDB2AsciiStream InputStream No XML declaration added,
the encoding is US-ASCII

DB2Xml.getDB2BinaryStream InputStream No XML declaration added,
the encoding is UTF-8

DB2Xml.getDB2Bytes byte[] No XML declaration added,
the encoding is UTF-8
 Chapter 8. XML conversion 389

Simple Oracle XMLType retrieval into a String/BLOB/CLOB
If Oracle XMLType data is retrieved into a String, BLOB, or CLOB in JDBC using
the methods getClobVal(), getStringVal(), or getBlobVal(csid) to obtain the result
as an oracle.sql.CLOB, java.lang.String, or oracle.sql.BLOB, you can use DB2
function xmlserialize for CLOB retrieval and resultset.getBinaryStream for binary
stream retrieval, to convert the code.

The code in Example 8-35 and Example 8-36 demonstrates this.

Example 8-35 Retrieving XML data into CLOB in Oracle

OraclePreparedStatement stmt =
(OraclePreparedStatement)conn.prepareStatement(
"select e.poDoc.getClobVal() poDoc, e.poDoc.getStringVal() poString
from po_xml_tab e");

ResultSet rset = stmt.executeQuery();
OracleResultSet oracleset = (OracleResultSet) rset;
while(oracleset.next())
{
// the first argument is a CLOB

DB2Xml.getDB2CharacterStream Reader No XML declaration added,
the encoding is the native
character encoding of Java
(UTF-16)

DB2Xml.getDB2String String No XML declaration added,
the encoding is the native
character encoding of Java
(UTF-16)

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by
getDB2XmlBinaryStream
targetEncoding parameter

DB2Xml.getDB2XmlBytes byte[] Specified by
DB2Xml.getDB2XmlBytes
targetEncoding parameter

DB2Xml.getDB2XmlCharacterStrea
m

Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

Method Output data
type

Type of XML internal
encoding declaration added
390 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

oracle.sql.CLOB clb = resultset.getCLOB(1);
// the second argument is a string..
String poString = oracleset.getString(2);
…
}

Example 8-36 performs CLOB retrieval in DB2.

Example 8-36 CLOB retrieval in DB2

PreparedStatement stmt =
conn.prepareStatement(
" Select xmlserialize(e.poDoc as clob(2m)) from po_xml_tab1 e");

ResultSet rs = stmt.executeQuery();
while(rs.next())
{
Clob clob = rs.getClob(1);
…
}

Example 8-37 does a BinaryStream retrieval in DB2, which is recommended for
XML Parser processing.

Example 8-37 Binary stream retrieval in DB2

PreparedStatement stmt =
conn.prepareStatement(
"select e.poDoc from po_xml_tab e");

ResultSet rs = stmt.executeQuery();
while(rs.next())
{
InputStream inputstream = rs.getBinaryStream(1);
…
}

Oracle retrieval into an XMLType object
In Oracle, XMLType data can be retrieved into a Java XMLType object. Once the
XML data is assigned to the XMLType Java object, a number of XMLType
methods are available against the XML data. For example, the getOPAQUE()
call might be used in conjunction with the XMLType.createXML method to create
a Java XMLType object, which might then be converted to a DOM document. To
do the equivalent in DB2, the XML column would be retrieved as a BinaryStream,
and parsed using a DOMParser.
 Chapter 8. XML conversion 391

Example 8-38 shows an Oracle code example that retrieves an XML column into
a DOM document.

Example 8-38 Oracle - retrieving an XML object

OraclePreparedStatement stmt =
(OraclePreparedStatement) conn.prepareStatement(
"select e.poDoc from po_xml_tab e");

ResultSet rset = stmt.executeQuery();
OracleResultSet oracleset = (OracleResultSet) rset;

// get the XMLType
XMLType poxmltype = XMLType.createXML(oracleset.getOPAQUE(1));

// now do something with the XMLType object, like creating a DOM
document
Document document = poxmltype.getDocument()

The equivalent functionality in DB2 can be accomplished as illustrated in
Example 8-39.

Example 8-39 DB2 - retrieving an XML column into a DOM document

PreparedStatement selectStmt = conn.prepareStatement("Select poDoc from
po_xml_tab");
ResultSet rs = selectStmt.executeQuery();

InputStream xmlbinarystream = rs.getBinaryStream(1);
DOMParser p = new DOMParser();
p.parse(new InputSource(xmlbinarystream));
Document doc = p.getDocument();

Guidelines
When retrieving the XML document from the database to be processed by an
XML Parser, use ResultSet.getBinaryStream(). Detailed migration mapping for
the XMLType methods including the mapping for Oracle
XMLType.getDocument() as well as a code example can be found in 8.7.5,
“XMLType object method mapping” on page 404.

Table 8-4 shows the methods and retrieved data type mapping of Oracle and
DB2.
392 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 8-4 Summary of data type mappings against a resultset object

8.7.3 Java XML insert

Oracle JDBC programs typically insert XML documents into the database using
String, CLOB, and XMLType objects. Some of the older JDBC drivers for Oracle
have trouble with Strings that are larger then 4K and use CLOB instead. DB2
does not have a size limit on String length, so there is no need to convert a string
to a CLOB prior to insert.

A common way of inserting an XML document from Java is to use the setObject()
or setOPAQUE() call in the PreparedStatement to set the whole XMLType
instance as shown in Example 8-40. The createXML method accepts a variety of
data types for the second parameter besides String. These are enumerated in
the mapping table shown in 8.7.5, “XMLType object method mapping” on
page 404.

Example 8-40 Oracle - insert XML document

import oracle.xdb.XMLType;
 ...
 OraclePreparedStatement stmt =
 (OraclePreparedStatement) conn.prepareStatement(
 "insert into po_xml_tab (docid, xmlpo) values (?,?) ");
 int docid = 1;

Oracle Method Oracle retrieved data
type

DB2 Method DB2 retrieved data type

Resultset.getClobV
al()

oracle.sql.CLOB CLOB not supported -
consider using
getBinaryStream

java.io.ByteArrayInputStr
eam if getBinaryStream
used

Resultset.getString
Val()

oracle.sql.String getString java.lang.String

ResultSet.getBlobV
al(csid)

oracle.sql.BLOB BLOB not supported -
consider using
getBinaryStream

java.io.ByteArrayInputStr
eam if getBinaryStream
used

Resultset.getOPAQ
UE()

Typically used to create an
XMLType object as:
XMLType poxml =
XMLType.createXML(orset
.getOPAQUE(1));

Depends on the
XMLType method
subsequently used
against the XMLType
object - see 8.7.5,
“XMLType object
method mapping” on
page 404.

Depends on the
XMLType method
subsequently used
against the XMLType
object - see 8.7.5,
“XMLType object method
mapping” on page 404.
 Chapter 8. XML conversion 393

 stmt.setInt(1, docid);

 // the second argument to createXML is a string
 String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";
 XMLType poXML = XMLType.createXML(conn, poString);

 // now bind the string..
 stmt.setObject(2,poXML);

 stmt.execute();

With DB2, the string insert could be done using the program shown in
Example 8-41.

Example 8-41 DB2 - insert XML document as string

import java.sql.*;
import java.io.*;
public class insertpo
{
public static void main (String[] parameters){
 try {
 int docid = 1;
 String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";
 String query = "insert into po_xml_table (docid, xmlpo) values (?,
?)";

 DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver());
 Connection conn = DriverManager.getConnection
("jdbc:db2://localhost:50000/mydb","userid","password");

 PreparedStatement insertStmt = conn.prepareStatement(query);
 insertStmt.setInt(1, docid);
 insertStmt.setString(2, poString);

 // execute the statement
 if (insertStmt.executeUpdate() != 1) {
 System.out.println("No record inserted."); }

 conn.close();
 }
 catch (Exception e) {}
 }
}

394 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

With DB2, the insert could also have been done using a character stream (useful
for large data volumes) as shown in Example 8-42.

Example 8-42 DB2 - insert XML document using a character stream

import java.sql.*;
import java.io.*;
public class insertpo_xml_table_characterstream
{
public static void main (String[] parameters){
 try {
 int docid = 1;
 String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";
 String query = "insert into po_xml_table (docid, xmlpo) values (?,
?)";

 StringReader xmlReader = new StringReader(poString);

 DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver());
 Connection conn = DriverManager.getConnection
("jdbc:db2://localhost:50000/mydb","userid","password");

 PreparedStatement insertStmt = conn.prepareStatement(query);

 insertStmt.setInt(1, docid);
 insertStmt.setCharacterStream(2, xmlReader, poString.length());

 System.out.println ("about to execute insert statement");
 // execute the statement
 if (insertStmt.executeUpdate() != 1) {
 System.out.println("No record inserted."); }

 conn.close();
 }
 catch (Exception e) {}
 }
}

Example 8-43 shows how a file containing an XML document can be inserted
into a DB2 XML column, using PreparedStatement.setBinaryStream.

Example 8-43 DB2 - insert XML document from a file

import java.sql.*;
import java.io.*;
 Chapter 8. XML conversion 395

public class insertpo_xml_table_file
{

public static void main (String[] parameters){
 try {
 int docid = 1885;
 String fn = "E:/OracleXML/DB2-Java/Client1885.xml"; // input file
 String query = "insert into po_xml_table (docid, xmlpo) values (?,
?)";

 File file = new File(fn);

 DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver());
 Connection conn = DriverManager.getConnection
("jdbc:db2://localhost:50000/mydb","userid","password");

PreparedStatement insertStmt = conn.prepareStatement(query);

 insertStmt.setInt(1, docid);
 insertStmt.setBinaryStream(2, new FileInputStream(file),
(int)file.length());
// execute the statement
 if (insertStmt.executeUpdate() != 1) {
 System.out.println("No record inserted."); }

 conn.close();
 }
 catch (Exception e) {}
 }
}

The DB2 JDBC options available to insert XML data into DB2 are summarized in
the DB2 9 Online help at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.apdv.java.doc/doc/c0021816.htm

A brief summary of the DB2 JDBC insert options is shown in Table 8-5.

Table 8-5 Methods and data types for updating XML columns

Method Input data type

PreparedStatement.setAsciiStream InputStream

PreparedStatement.setBinaryStream InputStream
396 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/c0021816.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/c0021816.htm

Table 8-6 shows the Oracle to DB2 data type and method mappings for XML
Insert processing. This table represents the DB2 method that most closely maps
to the Oracle source data type. However, the following are best practice
guidelines to be followed, when possible:

� If there is a large volume of data, and it is already character-based in the Java
application, use setCharacterStream.

� To insert large data with internal encoding, use setBinaryStream.

� To insert data from a file, a message, or any other data source from outside
the application, use setBinaryStream, because it avoids transcoding.

� To insert small character data, use setString.

� When possible, avoid BLOB and CLOB due to extra conversion cost in the
JDBC driver.

Table 8-6 Oracle to DB2 data type/method mappings for XML Insert processing

PreparedStatement.setBlob BLOB

PreparedStatement.setBytes byte[]

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob CLOB

PreparedStatement.setObject byte[], BLOB, CLOB, DB2Xml,
InputStream, Reader, String

PreparedStatement.setString String

Oracle Method Oracle source
data type

DB2 Method

preparedStatement.setStri
ng(string)

String PreparedStatement.setString()

preparedStatement.setObj
ect(clob);

oracle.sql.CLOB PreparedStatement.setClob()

XMLType.createXML(con
n, String);

String PreparedStatement.setString()

XMLType.createXML(con
n, InputStream);

InputStream PreparedStatement.setAsciiStrea
m()
or
PreparedStatement.setBinaryStre
am()

Method Input data type
 Chapter 8. XML conversion 397

8.7.4 Java XML update

Oracle allows a schema-based XML document to have the XML document in the
database updated, that is, change an existing XML document without replacing
the entire document. Because there is not yet an XQuery standard for XML
updates, DB2 does not provide an update mechanism at this time. However, the
DB2 stored procedure DB2XMLFUNCTIONS.XMLUPDATE provides the
functional ability to change an XML document. Internally, the stored procedure is
retrieving the entire XML document into a DOM tree, making the requested
document changes, and re-inserting the entire document. This is the
recommended approach, when possible.

Example 8-44 shows a sample Oracle code for performing partial update of an
XML document, which changes the discount amount to 10.

Example 8-44 Oracle code - XML partial document update

stmt = (OraclePreparedStatement)conn.prepareStatement(
"UPDATE po_xml_tab " +
"SET OBJECT_VALUE = updateXML(OBJECT_VALUE," +
"'/PurchaseOrder/PONO/LINEITEMS/LINEITEM_TYP/DISCOUNT/text()','10'," +
"WHERE existsNode(OBJECT_VALUE, '/PO/[PONO=\"200\"]') = 1)";
stmt.execute();

Example 8-45 is an Oracle example that shows the same resulting database
change by first retrieving an XML document from the database, performing DOM
manipulation, and then updating the document in the database.

Example 8-45 Oracle - XML full document update

Statement s = conn.createStatement();
OraclePreparedStatement stmt;
ResultSet rset = s.executeQuery(qryStr);
OracleResultSet oracleset = (OracleResultSet) rset;
while(oracleset.next()){

//retrieve PurchaseOrder xml document from database
XMLType xtype = XMLType.createXML(oracleset.getOPAQUE(1));

stmt.setObject(1,xtype); // bind the XMLType instance

XMLType.createXML(con
n, CLOB);

Oracle.sql.CLOB PreparedStatement.setClob()

Oracle Method Oracle source
data type

DB2 Method
398 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

stmt.execute();

//update "DISCOUNT" element
String newXML = updateXML(xt.getStringVal());

// create a new instance of an XMLtype object from the updated value
xtype = XMLType.createXML(conn,newXML);

// update PurchaseOrder xml document in database
stmt = (OraclePreparedStatement)conn.prepareStatement(
"update po_xml_tab x set x.poDoc =? where "+
"x.poDoc.extract('/PurchaseOrder/PO/PONO/text()').getNumberVal()=200");

// bind the XMLType object
stmt.setObject(1,xtype);
stmt.execute();

The Oracle application updateXML method, which manipulates the document, is
as shown in Example 8-46.

Example 8-46 Oracle application using the updateXML method

static String updateXML(String xmlTypeStr)
{
String outXML = null;
try{
DOMParser parser = new DOMParser();
parser.setValidationMode(false);
parser.setPreserveWhitespace (true);
parser.parse(new StringReader(xmlTypeStr));
XMLDocument doc = parser.getDocument();
NodeList nl = doc.getElementsByTagName("DISCOUNT");
for(int i=0;i<nl.getLength();i++){
XMLElement discount = (XMLElement)nl.item(i);
XMLNode textNode = (XMLNode)discount.getFirstChild();
textNode.setNodeValue("10");
}
StringWriter sw = new StringWriter();
doc.print(new PrintWriter(sw));
outXML = sw.toString();
return outXML;
}

 Chapter 8. XML conversion 399

Example 8-47 shows the XML document being updated.

Example 8-47 XML document

<?xml version = "1.0"?>
<PurchaseOrder>
<PONO>200</PONO>
<CUSTOMER>
<CUSTNO>2</CUSTNO>
<CUSTNAME>Bob Sylvers</CUSTNAME>
</CUSTOMER>
<ORDERDATE>20-June-06</ORDERDATE>
<SHIPDATE>25-June-07 12.00.00.000000 AM</SHIPDATE>
<LINEITEMS>
<LINEITEM_TYP LineItemNo="1">
<ITEM StockNumber="20010">
<PRICE>6750</PRICE>
</ITEM>
<QUANTITY>1</QUANTITY>
<DISCOUNT>5</DISCOUNT>
</LINEITEM_TYP>
<LINEITEM_TYP LineItemNo="2">
<ITEM StockNumber="20255">
<PRICE>499.00</PRICE>
</ITEM>
<QUANTITY>5</QUANTITY>
<DISCOUNT>5</DISCOUNT>
</LINEITEM_TYP>
</LINEITEMS>
</PurchaseOrder>

The use of DB2XMLFUNCTIONS.XMLUPDATE to perform the same update in
DB2 is shown in Example 8-48. As a Java stored procedure, XMLUPDATE
requires that the following DB2 registry variable be set:

db2set DB2_USE_DB2JCCT2_JROUTINE=YES

Example 8-48 DB2 - XML update using the procedure DB2XMLFUNCTIONS.XMLUPDATE

import java.sql.*;
import java.io.*;

public class xmlupdate
{

public static void main (String[] parameters){
400 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 try {

int errorCode;
String errorMsg ;

Connection conn = null;
DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver());
conn = DriverManager.getConnection
("jdbc:db2:mydatabase","userid","passwrod");

/* parameters to procedure DB2XMLFUNCTIONS.XMLUPDATE in this example
are as follows
(1) Command XML string encapsulating the update command:
 '<updates
(2) SQL statement retrieving the document(s) to be updated:
 'Select poDoc from ...
(3) SQL statement to update the documents if they updated documents are
to be
 placed in a different column. Since the documents are being
replaced into
 the same column, an update is not needed and an empty string ''
 is specified.
(4) Output parameter for error Code information: ? is bound to
errorCode
 variable
(5) Output parameter for error Message information: ? is bound to
errorMsg
 variable
*/

CallableStatement cstmt = conn.prepareCall("Call
DB2XMLFUNCTIONS.XMLUPDATE (" +
"'<updates> "
+
"<update col=\"1\"
path=\"/PurchaseOrder/LINEITEMS/LINEITEM_TYP/DISCOUNT/text()\"> 10
</update>" +
"</updates>',"
+
"'Select poDoc from po_xml_tab where
XMLExists(''$doc/PurchaseOrder/PONO[text() = 200]'' passing poDoc as
\"doc\")','',?,?)");
/* XMLEXISTS XQUERY argument above must be surrounded with 2 single
quotes */
 Chapter 8. XML conversion 401

// Register output parms
cstmt.registerOutParameter (1, Types.INTEGER);
cstmt.registerOutParameter (2, Types.VARCHAR);

//Execute the stored procedure
cstmt.execute();

//get error information
errorCode= cstmt.getInt(1) ;
errorMsg = cstmt.getString (2);
System.out.println ("errorCode" + errorCode + " errorMsg " + errorMsg);

 } //end try
catch (Exception e) {System.out.println ("ERROR: " + e.getMessage());}
} //end main
} //end public class

If the XMLUPDATE stored procedure will not be used to update a document, an
alternative is to replace the entire document with an SQL UPDATE statement.
See Example 8-49. The same JDBC driver methods and Java data types
described in 8.7.3, “Java XML insert” on page 393 apply.

Example 8-49 DB2 - full XML document update

import java.sql.*;
import java.io.*;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.xml.sax.InputSource;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.OutputKeys;

public class xmlupdate
{
 public static void main(String[] args) throws Exception, SQLException
 {

 try {
 Connection conn = null;
402 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 String xmlstring = null;
 DocumentBuilderFactory dbf =

 DocumentBuilderFactory.newInstance();
DocumentBuilder builder = dbf.newDocumentBuilder();

DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver());
 conn = DriverManager.getConnection
 ("jdbc:db2://localhost:50000/mydb","userid","password");

 //create query on an updateable statement so each XML Document can
be retrieved, altered via DOM, and re-inserted
 String query = "Select poDoc from po_xml_tab where
XMLExists('$xmldoc/PurchaseOrder/PONO[text() = 200]' passing poDoc as
\"xmldoc\")";
 Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
ResultSet.CONCUR_UPDATABLE);
 ResultSet rs = stmt.executeQuery (query);

 // iterate over the results
 while(rs.next()){

 InputStream inputstream = rs.getBinaryStream(1);
 Document doc = builder.parse(new InputSource (inputstream));

/**
/* Perform DOM processing here to update XML Document
/* Details not shown
/**

 /* convert the DOM document back to a string */

Transformer serializer =
TransformerFactory.newInstance().newTransformer();

 /* choose XML Declaration, encoding, and indentation options */
 serializer.setOutputProperty(OutputKeys.ENCODING,"utf-8");
 serializer.setOutputProperty(OutputKeys.INDENT,"no");

 /* write Document back to String */
 StringWriter writer = new StringWriter();
 serializer.transform(new DOMSource(doc), new StreamResult(writer));
 String updatedXMLString = writer.toString();

 /* insert updated XML Document into the row */
 Chapter 8. XML conversion 403

 rs.updateString(1, updatedXMLString);

 } // end while loop processing result set

 conn.close();

 } //end try
catch (Exception e) { e.printStackTrace();
 } //end catch
 } //end main
} //end public class

8.7.5 XMLType object method mapping

The following are Oracle Java DOM API classes documented in Oracle XML DB
Developers Guide (Oracle 10g Release 2).

� oracle.xdb.dom.XDBDocument
� oracle.xdb.dom.XDBCData
� oracle.xdb.dom.XDBComment
� oracle.xdb.dom.XDBProcInst
� oracle.xdb.dom.XDBText
� oracle.xdb.dom.XDBEntity
� oracle.xdb.dom.DTD
� oracle.xdb.dom.XDBNotation
� oracle.xdb.dom.XDBNodeList
� oracle.xdb.dom.XDBAttribute
� oracle.xdb.dom.XDBDOMImplementation
� oracle.xdb.dom.XDBElement
� oracle.xdb.dom.XDBNamedNodeMap
� oracle.xdb.dom.XDBNode

These classes are used in conjunction with the XMLType class. For example, if
xmldoc is an XMLType object, then xmldoc.getDocument results in a DOM
document object whose class (in the case of the thick client) is
oracle.xdb.dom.XDBDocument.

DB2 provides all these classes in the org.w3c.dom package in the
sqllib/java/jdk/jre/lib/xml.jar file.

The DB2XML class is not comparable to the Oracle XMLType class, and
provides completely different functionality than XMLType. The following are code
suggestions for providing the functionality of most XMLType methods, if needed.
There are some important considerations:
404 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� The code snippets below show a possible approach to achieving the
functionality of the XMLType methods but do not represent a complete
program. Also, some code snippets provide more functionality than the
XMLType method, because when applicable, for purposes of clarity and
additional guidance, they show retrieval of the XML document from the
database and reinsertion of the XML document into the database.

� Some XMLType methods do not have an equivalent in DB2 because of
differences in Oracle XML and DB2 pureXML implementation. For example,
the object-relational XML mapping in Oracle requires a specific schema to be
associated with an XML column or XML table. Therefore, an XML document
is associated with a specific schema. With DB2, there is no mandatory
association of an XML document to a specific schema, although use of a
schema hint in the instance document will dictate the schema used. These
differences are noted as appropriate.

� An XMLType object may have originated outside the database, for example,
a DOM document, and is going to be inserted into the database. Alternatively,
an XMLType object may have been retrieved from the database. As such, the
proper mapping of the Oracle XMLType method to DB2 may depend on how
the XML object is being used.

createSchemaBasedXML(schemaURL)
This Oracle method associates an XMLType object with a schema.

DB2 approach
In DB2, you can either explicitly or implicitly validate the XML instance document
upon insertion as the following:

Explicit:

INSERT INTO purchaseOrder VALUES XMLVALIDATE (XMLPARSE(DOCUMENT
:document) ACCORDING TO XMLSCHEMA URI 'http://www.test.com/po')

Implicit:

INSERT INTO purchaseOrder VALUES XMLVALIDATE (XMLPARSE(DOCUMENT
:document))

createXML(java.sql.Connection conn, oracle.sql.CLOB xmlval)
This Oracle method creates an XMLType object from a CLOB.

DB2 approach
If the objective is to retrieve the CLOB from the database into a DOM document,
do the following:

xmlstring = ResultSet.getString(1);
 Chapter 8. XML conversion 405

DOMParser p = new DOMParser();
p.parse(new InputSource(new StringReader(xmlstring)));
Document doc = p.getDocument();

getStringVal()
This Oracle method gets the string value containing the XML data from the
XMLType object.

DB2 approach
In DB2, you can do the following:

� If no internal encoding is needed:

String string = ResultSet.getString(1);

� To retrieve a string with an XML declaration including an internal encoding
declaration, which will always be ISO-10646-UCS-2:

DB2Xml data = (DB2Xml) ResultSet.getObject(1);
String string = data.getDB2XmlString();

� To retrieve a string with no XML declaration:

String string = ResultSet.getString(1);

getClobVal()
This Oracle method gets the CLOB value containing the XML data from the
XMLType object

DB2 approach
There is no DB2 JCC driver method to retrieve the data into a CLOB object.
Instead, retrieve the XML data into an alternative data type depending on
subsequent use. For example, to retrieve a String with or without an internal
encoding declaration, see “getStringVal()” on page 406.

getBlobVal(character_set_id)
This Oracle method gets the BLOB value containing the XML data from the
XMLType object.

DB2 approach
There is no DB2 JCC driver method to retrieve the data into a BLOB object.
However, the following will retrieve the XML column from the database into a
binary stream with the specified encoding:

DB2Xml data = (DB2Xml) ResultSet.getObject(1);
InputStream inputstream = getDB2XmlBinaryStream(targetEncoding);
406 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

where targetEncoding is a valid encoding name that is listed in the IANA
Charset Registry. The encoding names that are supported by the DB2 server,
and the mappings to Codices are found at the following Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.apdv.embed.doc/doc/r0022549.htm

getInputStream()
This Oracle method gets an InputStream from the XMLType to allow applications
to read XML data from the stream.

DB2 approach
For Data Retrieval, there are four input stream options:

� ResultSet.getAsciiStream - No XML internal encoding declaration is
generated.

� ResultSet.getBinaryStream - No XML internal encoding declaration is
generated.

� DB2Xml data = (DB2Xml) ResultSet.getObject(1);
DB2Xml.getDB2XmlAsciiStream;

XML internal encoding declaration of US-ASCII is added.

� DB2Xml data = (DB2Xml) ResultSet.getObject(1);
InputStream inputstream = getDB2XmlBinaryStream(targetEncoding);

See “getBlobVal(character_set_id)” on page 406 for the targetEncoding
description.

writeToOutputStream
This Oracle method writes the contents of the XMLType object to an
OutputStream.

DB2 approach
The following code will create an OutputStream for the retrieved XML document:

InputStream inputStream = resultSet.getBinaryStream(1);
BufferedOutputStream stream = new BufferedOutputStream (System.out);
byte b = -1;
try {
while ((b = (byte) inputStream.read ()) != -1) stream.write
(b);
}

 Chapter 8. XML conversion 407

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.embed.doc/doc/r0022549.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.embed.doc/doc/r0022549.htm

createXML(connection, domdocument)
This Oracle method creates an XMLType object from an instance of a DOM
document.

DB2 approach
In DB2, there are three ways to implement this method:

� If the objective is to retrieve an XML document from the database, update the
document via DOM manipulation, then reinsert into the database.

Consider using the DB2XMLFUNCTIONS.XMLUPDATE stored procedure to
update the XML document without requiring DOM manipulation (the stored
procedure performs the necessary DOM manipulation internally). See 8.7.4,
“Java XML update” on page 398 for an example.

� If an XML document must be retrieved from the database, changed through
DOM processing, re-inserted to the database, and the XMLUPDATE stored
procedure cannot be used:

//doc is of type Document
//example below assumes 2nd parameter marker is an integer and
uniquely identifies row to be updated
StringWriter out = new StringWriter();
XMLSerializer serializer = new XMLSerializer(out,
 new OutputFormat(doc, "utf-8", true));
serializer.serialize(doc);
String updatedXMLString = out.toString();
PreparedStatement updatestmt = conn.prepareStatement("update
xmltable set xmlcolumn = ? where keycolumn = ?");
updateStmt.setString(1, updatedXMLString);
updatestmt.setInt(2, keycolumn_value);
stmt.executeUpdate();

� If a DOM document must be inserted into the database and a procedure
cannot be used:

//doc is of type Document
//example below assumes the 1st parameter is an integer which
uniquely identifies row to be inserted and the 2nd parameter marker
is the XML document
StringWriter out = new StringWriter();
XMLSerializer serializer = new XMLSerializer(out,
 new OutputFormat(doc, "utf-8", true));
serializer.serialize(doc);
String updatedXMLString = out.toString();
PreparedStatement updatestmt = conn.prepareStatement("insert into
xmltable values (?,?)");
updatestmt.setInt(1, keycolumn_value);
408 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

updateStmt.setString(2, updatedXMLString);
stmt.executeUpdate();

extract(xpath_expression, nsmap)
This Oracle function is available only with the thick client to extract the specified
set of nodes from the XMLType object. This set of nodes is specified by
xpath_eexpression. nsmap. The map of namespaces that resolves the prefixes
in the xpath_expression whose format is
"xmlns:a=abc.com xmlns:b=xyz.com".

DB2 approach
If the objective is to update the XML document in the database with the specified
nodes, use the DB2XMLFUNCTIONS.XMLUPDATE stored procedure to update
the document. The format of the XMLUPDATE call is:

DB2XMLFUNCTIONS.XMLUPDATE (commandXML, querySQL, updateSQL,
errorCode, errorMsg)

Using the xpath_expression and nsmap parameters for the Oracle extract
procedure above, the commandXML parameter of the XMLUPDATE procedure
will look like the following:

<updates namespaces="a:abc.com; b:xyz.com">
<update using="" col="" action="" path="xpath_expression">update
value</update>
</updates>

existsNode(xpath_expression, nsmap)
This Oracle method is a Boolean function to check for the existence of the given
set of nodes in the XMLType object. The set of nodes is specified by the
xpath_expression. nsmap. The map of namespaces that resolves the prefixes in
the xpath expression and whose format is
"xmlns:a=abc.com xmlns:b=xyz.com".

DB2 approach
In this example, two namespaces are declared, and are assigned prefixes a and
b. xpath_expression is an XPath expression. db2_table is a DB2 table name.
xmlcolumn is a DB2 XML column name. The data type of fn: boolean is an
XQuery Boolean value of true or false, which is returned as a string to the Java
program. The parseBoolean Java method converts this to a Java Boolean data
type.

String querystring = "select xmlquery('declare namespace
a=\"abc.com\"; declare namespace b=\"xyz.com\";
 Chapter 8. XML conversion 409

fn:boolean($i/xpath_expression)' passing xmlcolumn as \"i\") from
db2_table";
ResultSet rs = select.executeQuery (querystring);
boolean boolvar = Boolean.parseBoolean(rs.getString (1));

XMLType transform(XMLType xsldoc, String parammap)
This Oracle function transforms the XMLType object to a new XMLType object
using the given XSL document. xsldoc (data type is XMLTYPE) is the XSL
document to be applied to the original XMLType object parammap (data type is
string)—the top level parameters to be passed to the XSL transformation. This
should be of the format "a=b c=d e=f". This can be NULL.

The return from the method is the transformed XMLType.

DB2 approach
To ensure that the XSL transformation works properly, the XSL document should
be inserted into the database with whitespace being preserved.

The code in Example 8-50 assumes the following:

� No parameters passed to the XSL transformation.

� The XSL document is retrieved from the database.

� The transformed document will be reinserted to the database as an XML
document.

Example 8-50 DB2 approach for XMLType transform()

//(1) if the XML instance document undergoing transformation must first
 be retrieved from the database, then retrieve the document as
 ResultSet1, else proceed to (2)
InputStream xmlbinarystream = rs.getBinaryStream(1);
DOMParser p = new DOMParser();
p.parse(new InputSource(xmlbinarystream));
Document doc = p.getDocument();

//(2) retrieve the XSL document in ResultSet2 from the database
InputStream xslstream = ResultSet2.getBinaryStream(1);
Source inputXSL = new StreamSource(xslstream);

//(3) create empty target Document
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document outdoc = db.newDocument();

//(4) Set up XSL transformer, use of templates for precomile
410 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 is optional but recommended
TransformerFactory factory = TransformerFactory.newInstance();
Templates templates = factory.newTemplates(inputXSL);
Transformer transformer = templates.newTransformer();

//(5) Apply XSL transformation
Source domSource = new DOMSource(doc);
Result domResult = new DOMResult(outdoc);
transformer.transform(domSource, domResult);

//(6) Convert transformed document to a string for insertion to the
database
StringWriter out = new StringWriter();
XMLSerializer serializer = new XMLSerializer(out, new
OutputFormat(outdoc, "utf-8", true));
serializer.serialize(outdoc);
String updatedXMLString = out.toString();

//(7) Insert transformed document into database.
 1st parameter is an integer which uniquely identifies row to be
 inserted and the 2nd parameter marker is the XML document
PreparedStatement updateStmt = conn.prepareStatement
("insert into xmltable (keycolumn, xmlcolumn) values (?, ?)");
updateStmt.setInt(1, keyvalue);
updateStmt.setString(2,updatedXMLString);
updateStmt.executeUpdate();

 isFragment()
This Oracle Boolean function checks if the XMLType is a regular document or a
document fragment.

DB2 approach
A well-formed XML document is retrieved from DB2 and a well-formed XML
document must be inserted into DB2. An XML document retrieved from DB2 can
be manipulated by converting to a DOM document and performing Document or
DocumentFragment processing. Although not specifically related to DB2
processing, the following code will return a Boolean indicating if a document
node is a document fragment. In this example mydocnode is a document node.
Note that getNodeType returns 9 for a Document Node and 11 for a Document
Fragment Node.

import org.w3c.dom.Node;
boolean boolvar = (mydocnode.getNodeType() == 11);
 Chapter 8. XML conversion 411

getDocumentFragment ()
This Oracle function returns a XDBDocFragment if the XMLType instance is a
fragment, else null is returned.

DB2 approach
Use the same approach as shown in “isFragment()” on page 411.

isSchemaValid(schema_url, root_element)
This Oracle Boolean function checks if the XMLType is schema-based. It returns
TRUE if doc is schema based, else FALSE. The input parameter schema_url is
the URL of the schema to be validated against. If this is null then the document's
own schema URL is used (if one exists). The parameter root_element is the
name of the root element of the schema.

DB2 approach
As with Oracle, an XML document can be validated prior to being inserted into
the database. This can be done by implicit validation (via schema hints in the
instance document using the attributes xsi:schemaLocation or
xsi:noNamespaceSchemaLocation) or by explicit validation (there are several
options to explicitly specify the schema).

The following example explicitly validates an XML document in a file by validating
against the schema URI, without inserting the document:

String xmlfile = "E:/OracleXML/DB2-Java/Client1900.xml";
File file = new File(xmlfile);
stmt.setBinaryStream(1, new FileInputStream(file),
(int)file.length());
String query = "VALUES XMLVALIDATE (XMLPARSE (DOCUMENT CAST(? AS
BLOB(10K))) ACCORDING TO XMLSCHEMA URI
'http://www.test.com/client')";
ResultSet rs = stmt.executeQuery();

createSchemaBasedXML(schemaURL)
This Oracle method creates an XMLType object with schema schemaURL.

DB2 approach
DB2 does not have a mandatory association of an XML document to a schema.
Rather, an XML document can be explicitly validated against a schema, or
implicitly validated against a schema using schema hints in the instance
document. See DB2 schema validation techniques discussed in
“schemaValidate()” on page 413.
412 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

schemaValidate()
This Oracle method validates the schema-based document against its own
schema. The method has a void data type.

DB2 approach
DB2 does not have an inherent association of an XML document to a schema
prior to validation. Schema validation can occur during insert, either by explicit
validation against a specified schema or implicit validation against a schema
using schema hints in the instance document. Schema validation can also occur
after the document already resides in the database. Finally, schema validation
can occur for a document that is not in the database. See the code snippet in
“isSchemaValid(schema_url, root_element)” on page 412.

Schema validation during insert
The following example has these characteristics:

� Explicit validation is done by specifying the URI of the schema.
� The document is being inserted into column CLIENTS2.XMLCOL.
� The URL of the schema is

http://www.test.com/client
� The input file is specified in string xmlfile.

String xmlfile = "E:/OracleXML/DB2-Java/Client1900.xml";
File file = new File(xmlfile);
String query = "INSERT INTO CLIENTS2 (XMLCOL) VALUES(XMLVALIDATE(?
ACCORDING TO XMLSCHEMA URI 'http://www.test.com/client')) ";
PreparedStatement stmt = conn.prepareStatement(query);
stmt.setBinaryStream(1, new FileInputStream(file),
(int)file.length());
stmt.executeUpdate();

Schema validation after document insert
String query = "select XMLVALIDATE (XMLCOL ACCORDING TO XMLSCHEMA
URL 'http://www.test.com/client') from CLIENTS3 WHERE ID=1";
PreparedStatement stmt = conn.prepareStatement(query);
ResultSet rs = stmt.executeQuery();

getSchemaURL()
This Oracle method returns the schema URL (the location of the schema to
which this XMLType conforms).

DB2 approach
After an XML document has been validated against a schema, information about
the schema used for validating the document is stored in the system catalog. The
 Chapter 8. XML conversion 413

http://www.test.com/client

following example shows how to obtain the location of the schema. In this
example, the XML document for which the schema location is needed is in
column user_table.xmlcolumn and the row determined by keycolumn =
user_keyvalue. The location of this schema will be retrieved into value1.

DB2_TABLE.XMLCOLUMN
String query = "SELECT schemalocation from syscat.xsrobjects where
objectid = (SELECT XMLXSROBJECTID(xmlcolumn) FROM db2_table WHERE
keycolumn = ?)";
PreparedStatement stmt = conn.prepareStatement(query);
updatestmt.setInt(1, keyvalue);
ResultSet rs = stmt.executeQuery();
while (rs.next ())
 {String value1 = rs.getString (1);}

getRootElement()
This Oracle method returns the root element name of the XMLType object.

DB2 approach
If the document has already been retrieved from DB2, the root element name
can be obtained as follows:

InputStream inputstream = db2xml.getDB2XmlBinaryStream("utf-8");
Document doc = builder.parse(new InputSource (inputstream));
String rootelementname = doc.getDocumentElement().getNodeName();

Alternatively, the root element name can be obtained for an XML document in
DB2 as follows (where the XML document is in column db2_table.xml_column):

Select XMLQUERY('$d/name(/*)' passing t.xml_column as "d") from
db2_table t;

isSchemaBased()
This Oracle Boolean function checks if the XMLType object is schema based.

DB2 approach
DB2 provides the IS VALIDATED predicate. The following example is
functionally correct only when a single XML document is evaluated. This
example presumes that a single row in the clients table will match the predicate
id = 1885. ID is an integer column and CONTACTINFO is the XML column.

String query = "select case count(*) when 1 then 'true' else 'false'
end from clients where id = 1885 and contactinfo is validated";
PreparedStatement stmt = conn.prepareStatement(query);
 ResultSet rs = stmt.executeQuery();
 while (rs.next ())
414 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 {
 boolean boolvar = rs.getBoolean(1);
 }

getNamespace()
This Oracle method returns a string as the default namespace of the XMLType
document.

DB2 approach
The following example obtains the target namespace for the XML document(s) in
db2_table.xmlcolumn.

String query = "SELECT targetnamespace from syscat.xsrobjects where
objectid = (SELECT XMLXSROBJECTID(xmlcolumn) FROM db2_table)";
PreparedStatement stmt = conn.prepareStatement(query);
ResultSet rs = stmt.executeQuery();
while (rs.next ())
 {String value1 = rs.getString (1);}

isSchemaValidated
This Oracle Boolean method returns TRUE if the document has been validated
against its schema. This method does not validate the document, but checks to
see if it is validated. Method setSchemaValidated sets the validated flag for an
XMLType to indicate the document is validated. This method is implicitly called
by Oracle when the document passes schema validation via explicit calls to
either schemaValidate or isSchemaValid.

DB2 approach
DB2 provides the IS VALIDATED predicate. See the code example in
“isSchemaBased()” on page 414.

setSchemaValidated (boolean validateFlag)
This Oracle Boolean function sets the VALIDATED flag of the XMLType object
(using the value of validateFlag) to indicate whether the XMLType has been
validated or not.

DB2 approach
The XML document must go through the validation process to be validated. See
code examples for Oracle methods “isSchemaValid(schema_url, root_element)”
on page 412 and “schemaValidate()” on page 413, showing validation without
inserting the document, validation during document insertion, and validation after
document insertion.
 Chapter 8. XML conversion 415

getNumberVal()
This Oracle method returns the value of the XMLType instance as a NUMBER.
This is only valid if the input XMLType instance contains a simple text node and
is convertible to a number.

DB2 approach
Since getNumberVal returns an Oracle NUMBER, the assumption made here is
that the Java program needs a numerical representation of the text node. Oracle
NUMBER maps to DB2 DOUBLE and most closely maps to Java Double. Thus
we map the numerical text node to a Java Double. Although DB2 SQL can
perform an XMLCAST of an XML text node to a DB2 DOUBLE, it cannot be
directly returned by the JCC driver as a Java Double output type. Therefore, we
return the text node as a Java string and use the Java method Double.valueOf to
cast the string to a Java Double.

The example here uses a simple XML document of <root> 5.5 </root> stored in
table clients3.xmlcol.

String query = "SELECT xmlquery('$c/root/text()' passing xmlcol as
\"c\") from clients3 where id = 2";
PreparedStatement selectStmt = conn.prepareStatement(query);
ResultSet rs = selectStmt.executeQuery();
while(rs.next()){
Double double_var = Double.valueOf(rs.getString(1));

getDocument() and getDOM()
This Oracle method returns the DOM document associated with the XMLType
object. This document is the org.w3c.dom.Document. The caller can perform any
DOM operations on the document. The getDOM function returns Null if the
document is a binary document. getDOM() is for use with the old Java APIs while
getDocument() is for the unified APIs.

DB2 approach
An XML document or portion of an XML document can be retrieved from DB2
using XQuery and converted to a DOM document as shown in Example 8-51.

Example 8-51 DB2 - retrieving document

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
DocumentBuilderFactory dbf =

 DocumentBuilderFactory.newInstance();
documentBuilder builder = dbf.newDocumentBuilder();
416 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

String query = "Select poDoc from po_xml_tab where
XMLExists('$xmldoc/PurchaseOrder/PONO[text() = 200]' passing poDoc as
\"xmldoc\")";
PreparedStatement selectStmt = conn.prepareStatement(query);
ResultSet rs = selectStmt.executeQuery();
while(rs.next())
 {
 InputStream inputstream = rs.getBinaryStream(1);
 Document doc = builder.parse(new InputSource (inputstream));
 //Do desired DOM manipulation
 }

Alternatively, the Xerces DOM parser can be used as shown in Example 8-52.

Example 8-52 Alternative way of using Xerces DOM parser

import org.apache.xerces.parsers.DOMParser;
import org.xml.sax.InputSource;
String query = "Select poDoc from po_xml_tab where
XMLExists('$xmldoc/PurchaseOrder/PONO[text() = 200]' passing poDoc as
\"xmldoc\")";
PreparedStatement selectStmt = conn.prepareStatement(query);
ResultSet rs = selectStmt.executeQuery();
while(rs.next())
 {
 InputStream inputstream = rs.getBinaryStream(1);
DOMParser p = new DOMParser();

 p.parse(new InputSource(inputstream));
 Document doc = p.getDocument();

 //Do desired DOM manipulation
 }

8.8 XML tools and utilities

In this section, we introduce the tools and utilities for working with XML in both
database management systems.

8.8.1 Oracle Enterprise Manager, DB2 Control Center

Oracle Enterprise Manager (OEM) can be used to manage Oracle XML DB.
Through the use of the hierarchical navigational features of OEM, you can:
 Chapter 8. XML conversion 417

� Create and manage objects that use the XMLType, including tables, columns,
views, indexes and schemas

� Manage DML operations on XMLType objects

� Manage security for your XMLType objects

� Manage configuration of XMLtype parameters and resources

The DB2 Control Center is similar to the Oracle Enterprise Manager in that it is
an interactive, graphical tool that can be used to create, manage, manipulate,
and view relational objects. Along with administrating relational data, the Control
Center is used to manage native XML features as well.

Control Center support for the native XML data store includes:

� Creating tables with XML columns

� Creating indexes over XML columns using the new Create Index wizard

� Viewing the contents of XML documents

� Working with XML schemas, DTDs, and other entities to validate XML
documents

� Collecting statistics on tables containing XML columns

� Performing Visual Explain on XML queries including XQuery statements

The Control Center includes an XML Document Viewer that can be used to view
the structure of an XML document stored in an XML column.

Figure 8-1 shows an example of the INFO column of the CUSTOMER table on
the sample database displayed in the Tree View. The Viewer supports to ability to
find and examine elements and other characteristics of the document.
418 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 8-1 XML document Tree View

In addition, the Source View offers a view of the original document as shown in
Figure 8-2 on page 420.
 Chapter 8. XML conversion 419

Figure 8-2 XML document Source View

8.8.2 Oracle JDeveloper, DB2 Developer Workbench

JDeveloper is used to support all phases of the application development life
cycle for J2EE applications. JDeveloper allows developers to create, edit, and
transform XML documents and simplifies the task of working with Java and XML
data at the same time.

The DB2 Developer Workbench (DWB) is an Eclipse-based tool that is used for
developing, managing, debugging, tuning, and deploying Java applications,
stored procedures and user defined functions. In addition, the DWB includes
support for XML data in the following ways:

� Building and running stored procedures using the XML data type
� Viewing and manipulating XML data
� Validating and managing XML documents
� Viewing and managing XML schemas
� Annotate XML schema for decomposition
� Run queries using the XML data type
� Providing a drag and drop visual XQuery Builder
420 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

8.9 Best practices

For information on best practices and performance considerations with using
DB2 9 pureXML, refer to the article “15 best practices for pureXML performance
in DB2 9” at:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0610nicola
 Chapter 8. XML conversion 421

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0610nicola
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0610nicola

422 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 9. Script conversion

In this chapter, we discuss the administration script conversion from an Oracle
environment to a DB2 environment. We cover the following:

� Data load script conversion
� Data Pump script conversion
� Administration script conversion
� Report tools available to DB2

9

© Copyright IBM Corp. 2003, 2007. All rights reserved. 423

9.1 Data load scripts

Data from other systems with no direct connection are mostly loaded into the
database with a load utility. Oracle uses the SQL*Loader in combination with a
control file. With DB2 you can use:

� DB2 Load utility

The load utility is capable of efficiently moving large quantities of data into
newly created tables, or into tables that already contain data. The load
process consists of four phases:

– Load data

– Build indexes

– Delete rows with a unique key violation or a DATALINK violation

– Copy index data from a system temporary table space to the original table
space

� DB2 Import utility

The import utility inserts data from an input file into a table or updatable view.
If the table or view receiving the imported data already contains data, you can
either replace it or append it to the existing data.

The load utility is faster than the import utility, because it writes formatted pages
directly into the database, while the import utility performs SQL INSERTs. The
load utility does not fire triggers, and does not perform referential or table
constraints checking (other than validating the uniqueness of the indexes).

The Oracle loader utility has two modes: direct path and conventional path.
Oracle's direct path closely resembles the DB2 load utility while the conventional
path closely resembles the DB2 import utility.

Oracle defines its own Data Definition Language (DDL) to load data from a file
into the database. The DDL is different from the DB2 syntax.

For the most frequently used commands in an Oracle SQL*Loader control file,
this chapter describes scripts to convert the control files to DB2 load or DB2
import files.

We recommend that you migrate the more complex Oracle control files manually
and implement workarounds for the functionality not available in the DB2 load
command. For detailed information about the DB2 load command and DB2
import command, see Chapter 6, “Data conversion” on page 265.
424 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

9.1.1 Data load migration approach

We propose the following approach in converting Oracle load commands:

1. Examine the Oracle control file, the datafile format, and the target table.

2. Check for alternatives, such as the use of database links, DB2 WebShpere
Federation Server, and so on, to improve the data import.

3. Convert the Oracle control file to the proper DB2 command.

In the next section we show an easy way to convert the scripts automatically.
Note the variety of DB2 load options.

9.1.2 Loading fixed-format fields

Example 9-1 shows a simple control file to load data into the table accounts of
the ORA_EMP database. The file contains a reference to the accounts.dat
datafile, the target table, the fixed data positions, and its data types.

Example 9-1 SQL*Loader control file with fixed-format fields

LOAD DATA
INFILE '/home/ora_usr/accounts.dat'
INTO TABLE accounts
(acct_id POSITION(0001:0003) NUMBER
 ,dept_code POSITION(0004:0006) CHAR
 ,acct_desc POSITION(0009:0100) VARCHAR2
 ,max_employees POSITION(0101:0103) NUMBER
 ,current_employees POSITION(0104:0106) NUMBER
 ,num_projects POSITION(0107:0107) NUMBER)

Example 9-2 shows the corresponding DB2 load command. The details of the
load command are almost the same. The most sensitive part during the migration
is the correct conversion of the POSITION() specification. To avoid errors, we
recommend that you migrate at least this part of the control file automatically. In
Appendix E, “Converter for SQL*Loader” on page 673 is the Perl script
conv_ctl.pl to convert simple SQL*Loader files to DB2 load files.

Example 9-2 DB2 Load file for table ACCOUNTS

LOAD FROM '/home/ora_usr/accounts.dat' of ASC
METHOD L
 (0001 0003
 ,0004 0006
 ,0009 0100
 ,0101 0103
 ,0104 0106)
INSERT INTO accounts
 Chapter 9. Script conversion 425

 (acct_id
 ,dept_code
 ,acct_desc
 ,max_employees
 ,current_employees);

9.1.3 Loading variable-length data

Example 9-3 is a simple Oracle control file to load data with a variable length into
the ACCOUNTS table. The delimiter in this sample is a comma, the fields may be
enclosed in double quotes. The accounts.dat datafile looks like this:

101,"ACT","Major Bank Co.",30,11,4
301,"ACT","Large Telco Inc.",30,0,4
101,"IT","Huge Software Co.",50,0,4
203,"MKT","Basic Insurance Co.",15,0,3

Example 9-3 SQL*Loader control file with variable-length fields

LOAD DATA
INFILE '/home/ora_usr/accounts.dat'
INTO TABLE accounts
FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
(acct_id
 ,dept_code
 ,acct_desc
 ,max_employees
 ,current_employees
 ,num_projects)

The Perl script conv_ctl.pl in Appendix E, “Converter for SQL*Loader” on
page 673 converts the control file to a proper DB2 Load file. Modify the
generated DB2 load command if you need additional features. Example 9-4
shows the DB2 load command.

Example 9-4 DB2 load commend with variable-length fields

LOAD FROM '/home/ora_usr/accounts.dat' of ASC
MODIFIED BY COLDEL,
METHOD P (1, 2, 3, 4, 5)
INSERT INTO accounts
 (acct_id
 ,dept_code
 ,acct_desc
 ,max_employees
 ,current_employees)!
426 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

9.1.4 Initializations in the Oracle SQL*Loader control file

In the Oracle SQL*Loader file you are able to specify initialization values for
defined data.

Example 9-5 shows the same sample as in Example 9-3, but with conditions for
the columns dept_code and current_employees.

Example 9-5 SQL*Loader control file with conditions for the ACCOUNTS table

LOAD DATA
CHARACTERSET we8pc850
INFILE '/home/ora_usr/accounts.dat'
INTO TABLE accounts
(acct_id POSITION(0001:0003) NUMBER
 ,dept_code POSITION(0004:0006) CHAR DEFAULTIF dept_code=" "
 ,acct_desc POSITION(0009:0100) VARCHAR2
 ,max_employees POSITION(0101:0103) NUMBER
 ,current_employees POSITION(0104:0106) NUMBER NULLIF current_employees="0"
 ,num_projects POSITION(0107:0107) NUMBER)

The column dept_code is set to its default value if the loaded data is blank and
the variable current_employees is set to null if the loaded data is 0. Such data
manipulations are not allowed with DB2 load. To achieve the data manipulation,
run a separate UPDATE command after the data is loaded:

UPDATE accounts
SET dept_code=DEFAULT
WHERE dept_code=" ");

UPDATE accounts
SET current_employees=NULL
WHERE current_employees="0");

In Appendix E, “Converter for SQL*Loader” on page 673 is the Perl script
gen_load_update.pl used to generate DB2 UPDATE commands from Oracle
control files.

9.1.5 Loading data into multiple tables

To achieve data loads into multiple tables, migrate the Oracle commands in this
sequence:

1. Separate the load commands to single commands per script and file.

2. Convert the separated load commands. Consider the suggestions we made
in the previous chapters.
 Chapter 9. Script conversion 427

3. Control the DB2 commands with scripts (sh, batch, and so on.) according to
the needs of your system.

9.2 Oracle Data Pump scripts

Oracle provides Data Pump API for data manipulation between 10g databases.
The Data Pump API can be accessed through the expdp and impdb utilities, and
the interface closely resembles the export (EXP) and import (IMP) utilities,
respectively.

Data Pump can only read and write to a proprietary format file that cannot be
read either by Oracle 9i databases or DB2. For flat text file operations, you have
to use the UTL_FILE package or SQLPlus utility to unload data, and SQL*Loader
or external tables using the DATA_LOADER driver to load data. Data Pump API
generates server-side dump files, and it is necessary to use Oracle directories as
a storage destination for Data Pump jobs.

The majority of Oracle Data Pump functions can be accomplished using the DB2
data move utility db2move. In conjunction with other DB2 utilities such as
db2look, you can convert the scripts using DATA Pump features to DB2. DB2
utilities that provide similar Data Pump functionality are as follows:

� db2move

db2move is used for data movement between DB2 databases through the
use of PC/IXF format files. DB2 db2move has four actions:

– EXPORT - Exports all tables that meet the filtering criteria.
– IMPORT - Imports all tables listed in the internal staging file db2move.lst.
– LOAD - Loads all tables listed in the internal staging file db2move.lst.
– COPY - Duplicates one or more schemas into a target database.

db2move calls EXPORT, IMPORT, and LOAD APIs depending on the
requested operation. Therefore, the user must have the authorization
required by those APIs or the operation will fail.

db2move COPY action is used to directly transfer one schema from a source
database to a target database. When using db2move with COPY action, the
following are required:

– A list of schemas to copy
– Target database connection with username and password
– Copy mode:

• DDL_ONLY - Only the objects DDL will be transferred.
• LOAD_ONLY - Only the data will be transferred.
• DDL_AND_LOAD - Both DDL and data will be transferred,

– Copy modifier
428 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

You can also remap the schema owner of the objects, or even the table
spaces that the objects will be stored in. db2move with COPY action
facilitates the creation of schema templates that could be easily transferred
between different servers. db2move COPY action does not transfer object
privileges and statistics. If necessary, you can use db2look to generate
scripts for the object privileges and statistics and then apply these scripts into
the target database.

DB2 db2move does not allow to transfer schemas within the same database.
For this situation, DB2 provides the ADMIN_COPY_SCHEMA procedure.

� db2look

db2look is used for object Data Definition Language (DDL) extraction. It can
also extract authorization DDL (grants, for example), database manager
configuration parameters, and database configuration parameters.

� EXPORT

EXPORT unloads data from DB2 to one or more files stored outside the
database.

� IMPORT

IMPORT reads data from a file stored outside the DB2 database and inserts it
into the database using SQL INSERT statements.

� LOAD

LOAD reads data from a file stored outside the DB2 database and writes the
formatted data pages directly into the database.

Data Pump dumpfiles can also be considered as logical backups. If Data Pump
scripts are used for logical backup operations, we recommend that you use DB2
BACKUP and RESTORE commands for performance and flexibility reasons,
although the utilities listed above can also be used for this purpose. An example
of conversion of Data Pump scripts to DB2 BACKUP commands can be found in
9.3.4, “Backup scripts conversion” on page 441.

Both Data Pump and DB2 utilities provide support for parallel data unload and
reload. Import jobs can be restarted in both Data Pump and DB2 utilities.

There is no general rule for converting Data Pump scripts to DB2 utilities.
Depending on how the Data Pump function is used in a script, one or more DB2
utilities may be required to achieve similar functionality. We recommend that you
migrate the Oracle Data Pump scripts manually using correspondent DB2 tools
to perform similar activities.
 Chapter 9. Script conversion 429

9.2.1 Data Pump migration approach

We propose the following approach to convert Data Pump scripts to DB2:

1. Examine all the operations performed by the Data Pump jobs.

2. Check for alternatives, such as DB2 BACKUP and RESTORE commands for
logical backup operations, or DB2 Information Integrator for federated data
movement.

3. Rewrite Data Pump scripts using DB2 utilities to achieve similar functionality.

In the following sections, we show how you can convert Oracle Data Pump
scripts that perform schema transfer and data export and import to DB2 using a
full schema transfer example. We illustrate the full schema transfer using
db2move with EXPORT, LOAD, and COPY actions as well as using DB2 function
ADMIN_COPY_SCHEMA. You can use db2move COPY, EXPORT, or LOAD
options to perform schema transfer. Using db2move with COPY action is more
straightforward than the other two actions. Along with the discussion on import
and export operations, we list the Data Pump usages and how to implement
these tasks using DB2 utilities.

In order to use Oracle Data Pump, you need to use an Oracle directory with
proper privileges. We created an Oracle directory called data_pump_dir1 in both
source and target databases to be used in our examples using the following
commands:

create directory data_pump_dir1 as '/oradata/dpump';
grant read, write on directory data_pump_dir1 to ora_usr;

9.2.2 Transferring a schema

db2move can be used to transfer a schema between DB2 databases. To
duplicate schemas within a database, the ADMIN_COPY_SCHEMA procedure
can be used.

db2move with COPY action
db2move with COPY action can be used to transfer a schema between different
databases. The great benefit of COPY action over EXPORT and LOAD actions is
that you can perform both the unload and the load of the data with a single
command, and you can also specify different schemas and table spaces in the
target database.

Example 9-6 shows an example of schema export using Data Pump. Two files
will be generated: dp_export.dmp for data and dp_export.log for the log of the
export operation.
430 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 9-6 Full database export using Data Pump

expdp ora_usr/ora_usr@DSV dumpfile=dp_export.dmp logfile=dp_export.log
schemas=ORA_USR directory=data_pump_dir1

Once the export is completed, the dumpfile must be transferred to the target
database server if source and target databases reside on different machines.
Moreover, the dumpfile must be accessible through an Oracle directory at the
target database, and the user performing the import must have the proper
privileges to access the Oracle directory.

Example 9-7 shows an example of Data Pump schema import using the dumpfile
generated in Example 9-6.

Example 9-7 Importing a full schema using Data Pump

impdb ora_usr/ora_usr@PRD dumpfile=dp_export.dmp logfile=dp_import.log
directory=data_pump_dir1

Using DB2 db2move utility with COPY action, you can transfer the schema using
a single command, as show in Example 9-8. In this example, the schema ora_usr
will be copied from db2_dsv database to db2_prd database using username
user_prd and password pwd_prd in the target database.

Example 9-8 Transfer a schema using db2move with COPY action

db2move db2_dsv copy -sn ora_usr -co target_db db2_prd user user_prd
using pwd_prd

db2move with COPY action does not transfer grants or statistics from the source
database to the target database. If you need this information, you can use the
db2look utility in conjunction with db2move, as shown in Example 9-9 .

Example 9-9 Using db2look and db2copy to transfer schema and privileges

--1. To extract objects DDL in the source database, execute:

db2look -d db2_src -z ora_usr -xd -m -o ora_usr.sql

--2. To transfer the schema ora_usr, execute, in the source database:
db2move db2_dsv copy -sn ora_usr -co target_db db2_prd user user_prd using
pwd_prd

--3. Change the connection string in the DDL file
-- to connect to the target database.
-- For example, change “CONNECT TO DB2_DSV” to “CONNECT TO DB2_PRD”

--4. To include statistics and authorizations to the schema transfered,
 Chapter 9. Script conversion 431

-- execute the DDL in the target database:
db2 -tvf ora_usr.sql > create_ddl.log

The db2look -xd parameter specifies that all the authorization DDL, including
object authorizations that were granted by SYSIBM at the object creation time,
will be generated. The db2look parameter -m specifies the UPDATE statements
required to replicate the statistics on tables, statistical views, columns, and will
generate indexes.

The following files are generated by db2move with COPY action:

� COPYSCHEMA.timestamp.msg - Contains the log messages generated
during the db2move copy operation.

� COPYSCHEMA.timestamp.err - Contains the errors generated during the
db2move copy operation.

� LOADTABLE.timestamp.msg - Contains the log messages generated during
the LOAD phase of the db2move copy operation.

� LOADTABLE.timestamp.err - Contains the errors generated during the LOAD
phase of the db2move copy operation.

For more information about the db2move command, refer to Data Movement
Utilities Guide and Reference, SC10-4227.

ADMIN_COPY_SCHEMA procedure
The ADMIN_COPY_SCHEMA procedure, introduced in DB2 9, is used to
duplicate schemas within the same database. The new target schema objects
are created using the same object names as the source with the new schema
qualifier. You can transfer tables with or without the original data.

In order for the schema duplication to be successful, the user ID calling this
procedure must have the appropriate object creation authorities, including both
the authority to select from the source tables, and the authority to perform a load.

You must provide a table schema name and a table name to store error
information about objects that cannot be copied during the
ADMIN_COPY_SCHEMA execution. If the error information table cannot be
created or already exists, the procedure fails and an error message is returned.
The error information table must be dropped between ADMIN_COPY_SCHEMA
executions, or a new error table must be chosen.

Example 9-10 shows an example of schema copy within a database. In this
example, we use COPYSCHEMA table space and the COPYERROR table to
store error log messages.
432 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 9-10 Transfer a schema using the ADMIN_COPY_SCHEMA procedure

CALL SYSPROC.ADMIN_COPY_SCHEMA('ORA_USR', 'ORA_USR2',
 'COPY', NULL, null, null, 'COPYSCHEMA', 'COPYERROR')

The output should be similar to the one shown in Example 9-11.

Example 9-11 ADMIN_COPY_SCHEMA function output

CALL SYSPROC.ADMIN_COPY_SCHEMA('ORA_USR', 'ORA_USR2', 'COPY', NULL, null, null,
'COPYSCHEMA', 'COPYERROR')
Value of output parameters

 Parameter Name : ERRORTABSCHEMA
 Parameter Value : -
 Parameter Name : ERRORTABNAME
 Parameter Value : -
 Return Status = 0

For more information about the ADMIN_COPY_SCHEMA procedure, refer to
Administrative SQL Routines and Views, SC10-4293.

9.2.3 Export data operations

Table 9-1 shows some Data Pump usage in exporting table data or database
metadata, and how it can be implemented in DB2.

Table 9-1 Export functionality mapping

Data Pump usage DB2 conversion recommended

Full database export � db2move with EXPORT action for data
� db2look for objects DDL

Full schema export � In the same database:
ADMIN_COPY_SCHEMA procedure

or
� db2move with COPY action for data a

� db2look for privileges and statistics
or
� db2move with EXPORT action for data
� db2look for objects DDL

Full table export � db2move with EXPORT action for data
� db2look for objects DDL

Partial table export � db2move with EXPORT for data
� db2look for objects DDL
 Chapter 9. Script conversion 433

Example 9-12 shows how to perform a full schema export using db2move with
EXPORT action and db2look for the privileges associated with the objects. In
contrast to Example 9-8, the data will be exported to the local file system where
the db2move command is being executed, and will not be automatically
transferred to the target database.

Example 9-12 Full schema export using DB2 db2move and db2look

--Export the objects DDL using db2look:
db2look -d db2_dsv -e -z ora_usr -o ora_usr.sql

--Export the data using db2move:
db2move db2_dsv export -sn ora_usr

In Example 9-12, the db2move utility generates an EXPORT.out file for the
operation log, the db2move.lst file for the internal staging information, and
several files for the exported objects. The parameter -sn was specified to export
only the tables under the schema ora_usr.

The db2look utility will generate the ora_usr_ddl. file containing the DDL for
database objects. The parameter -e was specified to extract the database object
DDL, and the parameter -z was specified to limit DDL generation for objects
under the schema ora_usr.

The DB2 db2move and db2look utilities provide several parameters to control the
scope of the data being exported. For more information about the db2move
command, refer to Data Movement Utilities Guide and Reference, SC10-4227.
For more information about the db2look command, refer to Troubleshooting
Guide, GC10-4240.

DB2 also provides the DB2 High Performance Unload (HPU) tool for high-speed
unloading operations. It is designed for ease of use and flexibility, allowing you to
unload and extract data for movement across enterprise systems.

Tablespace export � db2move with EXPORT action for data
� db2look for objects DDL

Generate DDL files db2look

Direct path export DB2 High Performance Unload (HPU) utility

a. db2move with COPY action will perform both export and import operations in a
single command. If you only want to export the data, you must use db2move with
EXPORT action.

Data Pump usage DB2 conversion recommended
434 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information on DB2 HPU features, refer to:

http://www.ibm.com/software/data/db2imstools/db2tools/db2hpu/

9.2.4 Import data functionality

Table 9-2 shows some Data Pump usage in import operations and how it can be
implemented in DB2.

Table 9-2 Import functionality mapping

Data Pump usage DB2 conversion recommended

Full database import � Execute the DDL file generated by db2look to create
all required objects and privileges.

� Use db2move with LOAD action to move data.

Full schema import � In the same database:
ADMIN_COPY_SCHEMA procedure.

or
� db2move with COPY action for schema and data.
� Execute the DDL file generated by db2look for

privileges and statistics. a

or
� Execute the DDL file generated by db2look to create

all required objects and privileges.
� Use db2move utility to move data.

Partial table import � Execute the DDL file generated by db2look to create
all required objects and privileges.

� Use LOAD or IMPORT utilities to move data.

Table space import � Execute the DDL file generated by db2look to create
all required objects.

� Use db2move with LOAD action to move the data.

Transportable table space Not supported coping the table space containers as in
Data Pump. To achieve similar functionality in DB2:
� Execute the DDL file generated by db2look to create

all required objects.
� Use db2move to move the data.

Direct path import db2move with LOAD action or LOAD utility.
 Chapter 9. Script conversion 435

http://www.ibm.com/software/data/db2imstools/db2tools/db2hpu/
http://www.ibm.com/software/data/db2imstools/db2tools/db2hpu/

Full schema import using db2move
To perform a full schema import using DB2 db2look and db2move with LOAD
action utilities, perform the following steps:

1. Review the DDL generated by db2look. In Example 9-12, the generated file
was ora_usr.sql. If necessary, modify any statement in this file for your
environment.

2. Run the DDL schema using the DB2 Command Line Processor (CLP) to
create objects.

3. Run the db2move command to load the data into the database.

Remap datafile during
import

� Change the DDL file generated by db2look to
reference the new table space containers.

� Execute the modified DDL file to create all required
objects.

� Use db2move with LOAD action to move the data.

Similar functionality can be achieved using DB2
BACKUP and RESTORE utilities.

Remap table space during
import

� db2move with COPY action,
tablespace_map clause for data

� Execute the DDL file generated by
db2look for privileges and statistics

or
� Change the DDL file generated by db2look to

reference the new table spaces.
� Execute the modified DDL file to create all required

objects.
� Use db2move with LOAD action to move the data.

Remap schema during
import

� db2move with COPY action,
schema_map clause for data

� Execute the DDL file generated by db2look for
privileges and statistics

or
� Change the DDL file generated by db2look to

reference the new schema.
� Execute the modified DDL file to create all required

objects.
� Use db2move with LOAD action to move the data.

a. db2move with COPY action performs both export and import operations in a
single command. If you already have the data exported, you must use db2move
with LOAD or IMPORT actions to load or import the data.

Data Pump usage DB2 conversion recommended
436 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 9-13 shows an example of schema import using DB2 utilities.

Example 9-13 Importing full schema using DB2 utilities

--Create all objects using:
db2 -tvf ora_usr.sql > create_ddl.log

--Import the data using:
db2move db2_prd load -sn ora_usr

The DB2 db2move utility provides several parameters to control the scope of the
data being imported. For more information on the db2move command, refer to
Data Movement Utilities Guide and Reference, SC10-4227.

9.3 Administration scripts

Database administrators use many administration scripts to schedule and run
their day-to-day activities. Conversion of these scripts from Oracle to DB2 also
plays an important role in migration. This section discusses how certain
administration commands and DDLs can be converted to DB2 commands and
DDLs.

9.3.1 Dynamic performance views and table function

Oracle provides dynamic performance views that are updated dynamically by the
Oracle instance. Dynamic performance views are prefixed with V_$ and have
public synonyms created with the V$ prefix. Dynamic performance views are
accessed by the database administrators, and are listed in V$FIXED_TABLE.
These views are used by the database administrators to monitor the database.
The information provided by these views is not static, and is dynamically updated
by the database and instance. Examples of such views are V$INSTANCE,
V$DATABASE, V$TABLESPACE, V$DATAFILE, and so on.

DB2 administrative views provide an easy-to-use application programming
interface to DB2 administrative functions through SQL. The administrative views
fall into three categories:

� Views based on catalog views
� Views based on table functions with no input parameters
� Views based on table functions with one or more input parameters

The administrative views are the preferred and only documented interfaces for
the views based on catalog views and the views based on table functions, with
no input parameters because the table functions do not provide any additional
 Chapter 9. Script conversion 437

information or performance benefits. For administrative views based on table
functions with one or more input parameters, both the administrative view and
the table function can be used, each achieving a different goal.

The DB2 administrative views can be considered to be equivalent to V$ views in
Oracle. Though the information provided by the V$ views and the administrative
views cannot be exactly the same, some information is common, and both return
dynamic data.

For example, to obtain the information about applications connected to the
database form Oracle V$ views, use the following query:

SELECT * FROM V$SESSION

An equivalent query to query data from DB2 administrative views is as follows:

SELECT * FROM SYSIBMADM.SNAPAPPL

An equivalent query to query data from DB2 administrative views is as follows:

SELECT * FROM TABLE (SNAP_GET_APPL(CAST(NULL AS VARCHAR(128)),-1))
AS T

Table 9-3 shows some of the V$ views and the equivalent administrative views or
table functions.

Table 9-3 Oracle V$ views and DB2 administrative views and table functions

Oracle DB2

V$INSTANCE SNAPDBM administrative view
or
SNAP_GET_DBM table function

V$DATABASE SNAPDB administrative view
or
SNAP_GET_DB_V91 table function

V$TABLESPACE SNAPTBSP administrative view
or
SNAP_GET_TBSP_V91 table function

V$DATAFILE SNAPCONTAINER administrative view
or
SNAP_GET_CONTAINER_V91 table function

V$SESSION SNAPAPPL administrative view
or
SNAP_GET_APPL table function
438 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information on DB2 administrative views and table functions, refer to
Administrative SQL Routines and Views, SC10-4293.

9.3.2 System catalog views

It is common that database administrators (DBAs) have administrative scripts to
retrieve information about data dictionary objects. Table 9-4 shows some of the
commonly used views available in Oracle Data Dictionary and their DB2 catalog
equivalents.

Table 9-4 Useful data dictionary views

V$SQLTEXT SNAPSTMT administrative view
or
SNAP_GET_STMT table function

V$LOCK SNAPLOCK administrative view
or
SNAP_GET_LOCK table function

V$SYSSTAT
-- information for data buffer

SNAPBP administrative view
or
SNAP_GET_BP table function

V$SESSION_LONGOPS LONG_RUNNING_SQL administrative view

Note: The administrative views are catalogued in the SYSIBMADM schema,
and table functions are cataloged in the SYSPROC schema. You need
SELECT privileges to access these objects.

Oracle DB2

Oracle DB2

DBA_TABLESPACES SYSCAT.TABLESPACES

DBA_DATA_FILES SYSIBMADM.CONTAINER_UTILIZATION

DBA_TABLES SYSCAT.TABLES

DBA_TAB_COLUMNS SYSCAT.COLUMNS

DBA_TAB_PRIVS SYSCAT.TABAUTH

DBA_INDEXES SYSCAT.INDEXES

DBA_IND_COLUMNS SYSCAT.INDEXCOLUSE

DBA_TRIGGERS SYSCAT.TRIGGERS
 Chapter 9. Script conversion 439

9.3.3 Frequently used commands and DDLs by DBA

It is useful for DBAs to know how certain important administrative commands and
DDLs are used in Oracle and their equivalents in DB2. Table 9-5 lists a few
frequently used DDLs and commands frequently used by DBAs on a day-to-day
basis. This is helpful for the DBAs to create certain maintenance scripts in the
DB2 environment.

Table 9-5 Commands and DDL conversion

DBA_VIEWS SYSCAT.VIEWS

DBA_SEQUENCES SYSCAT.SEQUENCES

DBA_PROCEDURES SYSCAT.ROUTINES

DBA_CONSTRAINTS SYSCAT.TABCONST

DBA_CONS_COLUMNS SYSCAT.COLCHECKS

DBA_TAB_PRIVS SYSIBMADM.PRIVILEGES

Oracle DB2

Oracle DB2

CREATE DATABASE ORA_EMP
MAXLOGFILES 2 MAXLOGMEMBERS 3
LOGFILE GROUP 1
(‘/disk1/log1a.log’,’/disk1/log1b.log’,’/disk
1/log1c.log’) SIZE 1M,
GROUP 2
(‘/disk2/log2a.log’,’/disk2/log2b.log’,’/disk
2/log2c.log’) SIZE 1M
DATAFILE ‘/disk1/system01.dbf’ SIZE
100M;

CREATE DATABASE DB2_EMP
CATALOG TABLESPACE MANAGED BY
DATABASE USING (FILE
‘/disk1/syscatspace.dbf’ 25600);
UPDATE DB CFG FOR DB2_EMP
USING LOGPRIMARY 2;
UPDATE DB CFG FOR DB2_EMP
USING NEWLOGPATH ‘/disk1’;
UPDATE DB CFG FOR DB2_EMP
USING MIRRORLOGPATH ‘/disk2’;
UPDATE DB CFG FOR DB2_EMP
USING LOGFILSIZ 256;

CREATE TABLESPACE
USER_DATA_TBS
DATAFILE '/disk1/user_data_tbs_01.dbf'
SIZE 50M MINIMUM EXTENT 1M
PERMANENT

CREATE REGULAR TABLESPACE
USER_DATA_TBS MANAGED BY
DATABASE USING (FILE
‘/disk1/user_data_tbs_01.dbf’ 12800)
EXTENTSIZE 1M
440 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

9.3.4 Backup scripts conversion

Oracle uses two levels of backups: datafile backup and logical backup using the
export or expdp utilities. DB2 uses the BACKUP database command to back up
the database. This can be considered as being equivalent to the Oracle export or
expdb utilities. So, the logical backup scripts using export or expdp utilities in

CREATE TABLESPACE
USER_TEMP_TBS
DATAFILE '/disk1/user_temp_tbs_01.dbf'
SIZE 50M MINIMUM EXTENT 1M
TEMPORARY

CREATE USER TEMPORARY
TABLESPACE USER_TEMP_TBS
MANAGED BY DATABASE USING (FILE
‘/disk1/user_data_tbs_01.dbf’ 12800)
EXTENTSIZE 1M

CREATE TABLESPACE
USER_LOB_TBS
DATAFILE '/disk1/user_lob_tbs_01.dbf'
SIZE 100M MINIMUM EXTENT 1M
PERMANENT

CREATE LARGE TABLESPACE
USER_TEMP_TBS MANAGED BY
DATABASE USING (FILE
‘/disk1/user_data_tbs_01.dbf’ 25600)
EXTENTSIZE 1M

CREATE USER ORA_USR IDENTIFIED
BY EXTERNALLY

CREATE SCHEMA DB2_USR
AUTHORIZATION DB2_USR
-- identifies o/s user db2_usr

GRANT CREATE SESSION, CREATE
TABLE TO ORA_USR;

GRANT CONNECT, CREATETAB ON
DATABASE TO USER DB2_USR

REVOKE CONNECT FROM ORA_USR REVOKE CONNECT ON DATABASE
FROM USER DB2_USR

ALTER SYSTEM KILL SESSION
(‘sid’,’serial’) IMMEDIATE

FORCE APPLICATION (appl handle)
MODE ASYNC

ALTER SYSTEM SUSPEND SET WRITE SUSPEND FOR DB

ALTER SYSTEM QUIESCE
RESTRICTED

QUIESCE DB database name

ALTER SYSTEM ARCHIVE LOG ARCHIVE LOG FOR DB database name

ALTER SYSTEM FLUSH
SHARED_POOL

FLUSH PACKAGE CACHE DYNAMIC

DBMS_SPACE_ADMIN package INSPECT database

SET TRANSACTION ISOLATION LEVEL CHANGE ISOLATION LEVEL

ANALYZE TABLE command RUNSTATS ON TABLE

Oracle DB2
 Chapter 9. Script conversion 441

Oracle can be converted to DB2 backup scripts. Example 9-14 shows a sample
shell script used to export the database using the export utility.

Example 9-14 Export script in Oracle using the export utility

#!/usr/bin/ksh
-- Oracle daily logical backup script --
today=`date +%C%y%m%d`
dumpfile=/oracle/backup/exp_$today.dmp
logfile=/oracle/backup/exp_$today.log

ORACLE_HOME=/u01/app/oracle/product/10.2.0/db_1
ORACLE_SID=ORA_EMP
NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1
export ORACLE_SID
export ORACLE_HOME
export PATH=$ORACLE_HOME/bin:$PATH
export NLS_LANG

exp system/manager file=$dumpfile log=$logfile buffer=10485760 full=y

Example 9-15 shows a sample shell script used to export the database using the
expdp utility.

Example 9-15 Export script in Oracle using expdp utility

#!/usr/bin/ksh
-- Oracle daily logical backup script using expdpb --
today=`date +%C%y%m%d`
dumpfile=expdp_$today.dmp
logfile=expdp_$today.log
directory=data_pump_dir1

ORACLE_HOME=/u01/app/oracle/product/10.2.0/db_1
ORACLE_SID=ORA_EMP
NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1
export ORACLE_SID
export ORACLE_HOME
export PATH=$ORACLE_HOME/bin:$PATH
export NLS_LANG

expdp system/manager dumpfile=$dumpfile logfile=$logfile

Example 9-16 shows the equivalent shell script used in the DB2 environment for
both Example 9-14 and Example 9-15 to back up the database.
442 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 9-16 BACKUP database script in DB2

#!/usr/bin/ksh
DB2 daily backup script
today=`date +%C%y%m%d`
logfile=/db2/backup/db2bkup_log$today.log
BACKUPDIR=/db2/backup
db1=DB2_EMP

DB2INSTANCE=db2inst1
export DB2INSTANCE

db2 backup db $db1 online to $BACKUPDIR with 4 buffers buffer 512>> $logfile;

The examples show how to back up the database onto disk. Like Oracle, DB2
also supports backing up the database directly to tape. For more information,
refer to Data Recovery and High Availability Guide and Reference, SC10-4227.

9.4 Tools and wizards

DB2 ships with many tools and wizards that help the database administrators to
maintain and administer the database. These wizards and tools are also used to
generate the scripts for database administration. Examples of such wizards are
Backup Wizard, Create Database Wizard, Create Tablespace Wizard, Design
Advisor, Load Wizard, and more. These wizards and tools can be accessed from
the DB2 Control Center. Figure 9-1 shows how the Backup Wizard is used to
generate the backup script. The generated script can be exported to the output
file using the Export Scripts option.
 Chapter 9. Script conversion 443

Figure 9-1 Backup Wizard

The scripts or jobs generated by the wizards can be scheduled to run and are
maintained in the Task Center. Figure 9-2 shows the Task Center. The Task
Center is also used to notify administrators on the status of a completed job. For
more information about these wizards and tools, refer to Chapter 7 “Using the
DB2 administration tools” in the Administration Guide: Implementation,
SC10-4221.
444 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 9-2 Task Center

9.5 Report tools

Reporting in DB2 is based on self-prepared applications or external tools. One of
the tools is the DB2 Query Management Facility (DB2 QMF™ for Windows).
QMF is an integrated query and reporting tool set that enables you to generate
queries and reports, and allows you to store them in multiple DB2 database
servers. The prepared queries or reports can be viewed in various formats, such
as Microsoft Excel, IBM Lotus® 1-2-3®, or text files. For more information about
QMF visit the Web site:

http://www.ibm.com/software/data/qmf/

Because DB2 relies on open standards, many reporting tools from other vendors
(including Business Objects, Cognos, Hyperion, Meta Integration Technology,
MicroStrategy, QlikTech, SAS, and Viador) can be used with DB2.
 Chapter 9. Script conversion 445

http://www.ibm.com/software/data/qmf/
http://www.ibm.com/software/data/qmf/

In the DB2 Data Warehouse Edition (DB2 DWE), the DB2 Olap acceleration
feature (formerly DB2 Cube views) and the DB2 Alphablox tool can be used
together to provide OLAP analytical reporting capabilities. The DB2 DWE OLAP
acceleration feature automates the creation of OLAP metadata at the database
level so that metadata can be shared among applications that access the
database. The generated metadata can be used by the DB2 optimizer for faster
performance, and can also be accessed by DB2 Alphablox and other third-party
report tools, providing a shared single view of the data.

DBAs can use the DB2 DWE OLAP acceleration feature to aggregate the data
into cube-like dimensional charts, allowing users to access the data from
different perspectives. DBAs can also import and export DB2 cube models
metadata into and out of DB2 databases. DB2 DWE OLAP acceleration feature
can also be used to analyze dimensional models and recommend aggregates
that improve OLAP performance.

DB2 Alphablox provides the ability to create custom Web-based applications to
provide real-time, highly customizable and interactive multidimensional analysis
of data. DB2 Alphabox is tightly integrated with the DB2 DWE OLAP acceleration
feature. DB2 Alphablox supports the standard J2EE application development
model, providing programmatic access to its components through a set of Java
application programming interfaces (API). DB2 Alphablox allows users to
interactively specify different levels of details and aggregations in
multidimensional reports.

DB2 DWE OLAP provides an SQL-based and XML-based API for OLAP tools
and application developers. Through CLI, ODBC, or JDBC connections or by
using embedded SQL to DB2, applications and tools can use a single stored
procedure to create, modify, and retrieve metadata objects. DB2 DWE OLAP
also provides a functionality to query and explore the data in a Microsoft Excel
spreadsheet.

For more information about DB2 Data Warehouse Edition, refer to:

http://www.ibm.com/software/data/db2/dwe/
446 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/dwe/
http://www.ibm.com/software/data/db2/dwe/

Chapter 10. Testing

All stages of the migration process should be validated by running a series of
carefully designed tests. The purpose of the tests is to determine the differences
between the expected results (the source environment) and the observed results
(the migrated application). The detected changes should be synchronized with
the development stages of the project. This chapter describes the test objectives
and a generic testing methodology, which can be employed to test migrated
applications. Additionally, problem determination techniques and initial tuning
strategies are discussed.

10
© Copyright IBM Corp. 2003, 2007. All rights reserved. 447

10.1 Planning
The test planning details the activities, dependencies, and effort required to
conduct the test of the converted solution.1

10.1.1 Principles of software tests
Keep in mind the principles of software tests in general:

� It is not possible to test a nontrivial system completely.

� Tests are optimizing processes regarding completeness.

� Always test against expectations.

� Each test must have reachable goals.

� Test cases have to contain reachable and non-reachable data.

� Test cases must be repeatable.

� Test cases have to be archived in the configuration management system as
well as source code and documentation.

10.1.2 Test documentation
The test documentation is the most important part of the project. The ANSI/IEEE
Standard for Software Test Documentation, ANSI/IEEE Std 829-1983, describes
its content exactly. Here, we provide you a high-level overview.

Scope
State the purpose of the plan, possibly identifying the level of the plan (master,
etc.). This is essentially the executive summary part of the plan.

You may want to include any references to other plans, documents, or items that
contain information relevant to this project and process. If preferable, you can
create a references section to contain all reference documents.

Identify the Scope of the plan in relation to the Software Project plan that it
relates to. Other items may include, resource and budget constraints, scope of
the testing effort, how testing relates to other evaluation activities (Analysis &
Reviews), the process to be used for change control and communication, and
coordination of key activities.

As this is the Executive Summary, keep information brief and to the point.

1 Source: Gerrard Consulting
448 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Definition of test items
Define the test items you intend to test within the scope of this test plan.
Essentially, something you will test is a list of what is to be tested. This can be
developed from the software application inventories, as well as other sources of
documentation and information.

This section is a technical description of the software, and can be oriented to the
level of the test plan. For higher levels, it may be by application or functional
area, for lower levels it may be by program, unit, module, or build.

Features to be tested
This is a listing of what is to be tested from the users’ viewpoint of what the
system does. This is not a technical description of the software, but a users’ view
of the functions. Users do not understand technical software terminology. They
understand functions and processes, as they relate to their jobs.

Set the level of risk for each feature. Use a simple rating scale such as high,
medium, and low (H, M, L). These types of levels are understandable to a user.
You should be prepared to discuss why a particular level was chosen.

Features not to be tested
This is a listing of what is not to be tested from both the users’ viewpoint of what
the system does and a configuration management view. This is not a technical
description of the software, but a users’ view of the functions.

Identify why the feature is not to be tested; there can be any number of reasons.

Approach
This is your overall test strategy for this test plan. It should be appropriate to the
the plan and should be in agreement with plans affecting application and
database parts. Overall rules and processes should be identified:

� Are any special tools to be used and what are they?
� Will the tool require special training?
� What metrics will be collected?
� Which level is each metric to be collected at?
� How is Configuration Management to be handled?
� How many different configurations will be tested?
� Combinations of hardware, software, and other vendor packages.
� What levels of regression testing will be done and how much at each test

level?
� Will regression testing be based on severity of defects detected?
� How will elements in the requirements and design that do not make sense or

are un-testable be processed?
 Chapter 10. Testing 449

Item pass and fail criteria
What is the completion criteria for this plan? What is the number and severity of
defects located? This is a critical aspect of any test plan and should be
appropriate to the level of the plan.

Suspension criteria and resumption requirements
Know when to pause in a series of tests. If the number or type of defects reaches
a point where the follow-on testing has no value, it makes no sense to continue
the test; you are just wasting resources.

Specify what constitutes stoppage for a test or series of tests, and what is the
acceptable level of defects that will allow the testing to proceed past the defects.

Testing after a truly fatal error will generate conditions that may be identified as
defects, but are in fact ghost errors caused by the earlier defects that were
ignored.

Test deliverables
What is to be delivered as part of this plan?

� Test plan document
� Test cases
� Test design specification
� Tools and their outputs
� Error logs and execution logs
� Problem reports and corrective actions

One thing that is not a test deliverable is the software itself, which is listed under
test items, and is delivered by development.

Environmental needs
Are there any special requirements for this test plan, such as:

� Special hardware such as simulators, static generators, and so on.

� How will test data be provided? Are there special collection requirements or
specific ranges of data that must be provided?

� How much testing will be done on each component of a multi-part feature?

� Special power requirements

� Specific versions of other supporting software

� Restricted use of the system during testing
450 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Staffing and skills
The staffing depends on the kind of test defined in Chapter 10.1.3, “Test phases”
on page 451. In this section, you should define the persons and the education
and training needed for executing the test case.

Responsibilities
Who is in charge? This issue includes all areas of the plan. Here are some
examples:

� Setting risks

� Selecting features to be tested and not tested

� Setting overall strategy for this level of plan

� Ensuring all required elements are in place for testing

� Providing for resolution of scheduling conflicts, especially if testing is done on
the production system

� Who provides the required training?

� Who makes the critical “go/no” decisions for items not covered in the test
plans?

10.1.3 Test phases
A series of well designed tests should validate all stages of the migration
process. A detailed test plan should describe all test phases, scope of the tests,
validation criteria, and specify the time frame. To ensure that the applications
operate in the same manner as they did in the source database, the tests plan
should include data migration, functional, and performance tests, as well as other
post migration assessments.

Data migration testing
The extracting and loading process entails conversion between source and
target data types. The migrated database should be verified to ensure that all
data is accessible, and was imported without any failure or modification that
could cause applications to function improperly.

Functional testing
Functional testing is a set of tests in which new and existing functionality of the
system are tested after migration. Functional testing includes all components of
the RDBMS system (stored procedures, triggers, user defined functions),
networking, and application components. The objective of functional testing is to
verify that each component of the system functions as it did before migrating,
and to verify that new functions are working properly.
 Chapter 10. Testing 451

Integration testing
Integration testing examines the interaction of each component of the system. All
modules of the system and any additional applications (WEB, supportive
modules, Java programs, etc.) running against the target database instance
should be verified to ensure that there are no problems with the new
environment. The tests should also include GUI and text-based interfaces with
local and remote connections.

Performance testing
Performance testing of a target database compares the performance of various
SQL statements in the target database with the statements’ performance in the
source database. Before migrating, you should understand the performance
profile of the application under the source database. Specifically, you should
understand the calls the application makes to the database engine.

Volume/Load stress testing
Volume and load stress testing tests the entire migrated database under high
volume and loads. The objective of volume and load testing is to emulate how
the migrated system might behave in a production environment. These tests
should determine whether any database or application tuning is necessary.

Acceptance testing
Acceptance tests are carried out by the end users of the migrated system. Users
are asked to simply explore the system, test usability, and system features, and
give direct feedback. After acceptance, tests are usually the last step before
going into production with the new system.

Post migration tests
Since a migrated database can be a completely new environment for the IT staff,
the test plan should also encompass examination of new administration
procedures like database backup/restore, daily maintenance operation, or
software updates.

10.1.4 Time planning and time exposure
The time planning should be based on realistic and validated estimates. If the
estimates for the migration of the application and database are inaccurate, the
entire project plan will slip, and the testing is part of the overall project plan.

It is always best to tie all test dates directly to their related migration activity
dates. This prevents the test team from being perceived as the cause of a delay.
For example, if system testing is to begin after delivery of the final build, then
system testing begins the day after delivery. If the delivery is late, system testing
452 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

starts from the day of delivery, not on a specific date. This is called dependent or
relative dating.

Figure 10-1 shows the phases during a typical migration project. The definition of
the test plans happen in a very early stage. The test cases, and all its following
tasks, must be done for all test phases as described in Chapter 10.1.3, “Test
phases” on page 451.

Figure 10-1 Phases during a migration project

The time exposure of tests depends on the availability of an exiting test plan and
already prepared test items. The efforts depend also on the degree of changes
during the application and database migration.

Note: The test efforts can be between 50% and 70% of the total migration
effort.

Create Test Plan

Create Test Cases

Prepare Test Items

Prepare Infrastructure

Compare Test Results

Test Run in
Oracle Environment

Test Run in
DB2 Environment
 Chapter 10. Testing 453

10.2 Data checking technique
Data movement is the first thing any migration should focus on. Without having all
your tables and data properly moved over, all other migration testing is in vain.
The test process should detect, if all rows were imported into the target
database, verify that data type conversions were successful, and check random
data byte-by-byte. The data checking process should be automated by
appropriate scripts. When testing data migration you should:

� Check IMPORT/LOAD messages for errors and warnings.

� Count the number of rows in source and target databases and compare them.

� Prepare scripts that perform data checks

� Involve data administration staff familiar with the application and its data to
perform random checks.

10.2.1 IMPORT/LOAD messages
You should always check the messages generated by IMPORT or LOAD
commands. Example 10-1 presents messages generated by the sample import
command. You should read not only the summary at the end of the listing, but
also pay attention to the warning messages.

Example 10-1 Sample IMPORT messages

db2 import from table01.unl of del replace into table01

SQL3109N The utility is beginning to load data from file "table01.unl".

SQL3148W A row from the input file was not inserted into the table. SQLCODE
"-545" was returned.

SQL0545N The requested operation is not allowed because a row does not satisfy
the check constraint "ARTURW.TABLE01.SQL030812222227680". SQLSTATE=23513

SQL3185W The previous error occurred while processing data from row "2" of the
input file.

SQL3117W The field value in row "3" and column "1" cannot be converted to a
SMALLINT value. A null was loaded.

SQL3125W The character data in row "4" and column "2" was truncated because
the data is longer than the target database column.

SQL3110N The utility has completed processing. "4" rows were read from the
input file.
454 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

SQL3221W ...Begin COMMIT WORK. Input Record Count = "4".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "4" rows were processed from the input file. "3" rows were
successfully inserted into the table. "1" rows were rejected.

Number of rows read = 4
Number of rows skipped = 0
Number of rows inserted = 3
Number of rows updated = 0
Number of rows rejected = 1
Number of rows committed = 4

As shown in the summary, during the import process one record from the input
file was rejected, and three were inserted into the database. To understand the
nature of the warnings, you should look into the data source file and the table
definition (db2look command). For Example 10-1, the table definition is
presented in Figure 10-2 and the data file in Figure 10-3.

Figure 10-2 Table “table01” definition for Example 10-1

Figure 10-3 Data file “table01.unl” for Example 10-1

The first row from the input file (Figure 10-3) was inserted without any warnings.
The second row was rejected because it violated check constraint (warnings
SQL3148W, SQL0545N, SQL3185W). A value of 32768 from the third row was
changed to null because it was out of the SMALLINT data type range (warning
SQL3117W) and string abcd from the last row was truncated to abc because it was
longer than the relevant column definition (warning SQL3125W).

The LOAD utility generates messages in a similar format, but because it is
designed for speed, it bypasses the SQL engine, and inserts data directly into

CREATE TABLE TABLE01 (
 C1 SMALLINT,
 C2 CHAR(3),
 C3 SMALLINT CHECK(C3 IN (1,2,3)))

1,"abc",1
2,"abc",4
32768,"abc",2
4,"abcd",3
 Chapter 10. Testing 455

table spaces without constraint checking. Inserting the same table01.unl file
(Figure 10-3) into table01 (Figure 10-2) with the LOAD utility generates messages
without SQL3148W, SQL0545N, SQL3185W warnings as shown in Figure 10-2.

Example 10-2 LOAD messages

db2 load from table01.unl of del replace into table01

[..]
SQL3117W The field value in row "3" and column "1" cannot be converted to a
SMALLINT value. A null was loaded.

SQL3125W The character data in row "4" and column "2" was truncated because
the data is longer than the target database column.

[..]
Number of rows read = 4
Number of rows skipped = 0
Number of rows loaded = 4
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 4

A table that has been created with constraints is left by the LOAD command in set
integrity pending state. Accessing the table with SQL queries generates warning
SQL0668N Operation not allowed for reason code "1" on table
"<TABLE_NAME>". SQLSTATE=57016. The SET INTEGRITY SQL statement should
be used to move the loaded table into a usable state. Example 10-3 shows a way
to validate constraints. All rows that violated constraints will be moved to
exception table table01_e.

Example 10-3 Turning integrity checking back on.

db2 create table table01_e like table01
db2 set integrity for table01 immediate checked for exception in table01 use
table01_e

SQL3602W Check data processing found constraint violations and moved them to
exception tables. SQLSTATE=01603

The set integrity statement has many options, like turning integrity on only for
new data, turning integrity off, or specifying exception tables with additional
diagnostic information. For more information about the SET INTEGRITY command
and exception tables, please refer to:

� “SET INTEGRITY” in SQL Reference, Volume 2, SC10-4250
� “Appendix K. Exception tables” in SQL Reference, Volume 1, SC10-4249
456 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

10.2.2 Data checking scripts
Scripts performing logical data integrity checks automate the data verification
process and save administrator effort. For small tables (with less that 50,000
rows) you can write a program that compares data byte-by-byte. The program
(preferably ODBC, JDBC, or SQL script) can extract sorted rows from Oracle and
DB2 to files in the same ASCII format. The files should then be binary compared
(on UNIX use DIFF command) and checked to determine if they are the same.
For larger tables, comparing all rows byte by bytes can be very inefficient. The
data migration should be evaluated by comparing aggregate values, like the
number of rows. To do this you can create a special table for storing the
information about the number of rows in the source Oracle database. Table
CK_ROW_COUNT presented in Example 10-4 can be used for that purpose.

Example 10-4 Table for storing number of rows (Oracle)

CREATE TABLE CK_ROW_COUNT (
 TAB_NAME VARCHAR2(30), -- table name
 ROW_COUNT INT, -- number of rows
 SYS_NAME CHAR(3), -- code to distinguish the system: ORA or DB2
 TIME_INS DATE -- time when the count was performed

For each table, you should count the total number of rows and store the
information in the CK_ROW_COUNT table. The following INSERT statement can
be used for that purpose:

insert into ck_row_count select 'TAB_NAME', count(*), 'ORA', sysdate from
TAB_NAME

The table CK_ROW_COUNTS and its data can be manually migrated to the
target DB2 database. Example 10-5 presents DB2 versions of the table.

Example 10-5 Table for storing number of rows (DB2)

CREATE TABLE CK_ROW_COUNT (
 TAB_NAME VARCHAR(30),
 ROW_COUNT INT,
 SYS_NAME CHAR(3),
 TIME_INS TIMESTAMP
)

On the DB2 system, you should repeat the counting process with the equivalent
INSERT statement:

insert into ck_row_count select 'TAB_NAME', count(*), 'DB2', CURRENT
TIMESTAMP from TAB_NAME
 Chapter 10. Testing 457

After performing the described steps, the DB2 table CK_ROW_COUNT should
contain information about the number of rows counted on Oracle and DB2
databases. The records in the table should look like Example 10-6.

Example 10-6 Sample table CK_ROW_COUNTS contents

select TAB_NAME, ROW_COUNT, SYS_NAME, TIME_INS from CK_ROW_COUNT
[...]
TABLE_A 39001 ORA 2007-02-23-10.13.39
TABLE_A 39001 DB2 2007-02-23-10.32.13
TABLE_B 60003 ORA 2007-02-23-10.15.29
TABLE_B 60002 DB2 2007-02-23-10.33.49
[...]

Having information about the number of rows in a SQL table is very convenient,
because with a single query, you can get the table names that contain a different
number of rows in the source and target databases:

select tab_name from (select distinct tab_name, num_rows from CK_ROW_COUNT)
as t_temp group by t_temp.tab_name having(count(*) > 1)

To manually migrate the data from the Oracle ck_row_count table, you can save
the results of the following query to a file (ck_row_count.unl):

select tab_name || ',' || row_count || ',' || sys_name || ',' || to_char(
time_ins, 'yyyy-mm-dd-hh24.mi.ss".000000"') from ck_row_count

and import the file into DB2 using DB2 IMPORT command:

db2 import from ck_row_count.unl of del insert into ck_row_count

The process of creating the statements that count the number of rows is
automated by a PL/SQL script presented in Example 10-7. The script retrieves
information about the user tables from the Oracle data dictionary, and generates
two files count_rows_ora.sql (Oracle version) and count_rows_db2.sql (DB2
version) with INSERT statements that can be used for calculating the number of
rows for all user tables.

Example 10-7 PL/SQL program that generates scripts for counting rows

set heading off;
set echo off;
set feedback off;
set serveroutput on size 100000

---- Generating script for Oracle database
spool count_rows_ora.sql;

BEGIN
458 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 dbms_output.put_line('CREATE TABLE CK_ROW_COUNT (TAB_NAME VARCHAR2(30),
ROW_COUNT INT, SYS_NAME CHAR(3), TIME_INS DATE);');

 FOR tab_rec IN (SELECT TABLE_NAME from TABS) LOOP
 dbms_output.put_line('INSERT INTO CK_ROW_COUNT SELECT
'''||tab_rec.table_name||''', COUNT(*), ''ORA'', SYSDATE FROM '||
tab_rec.table_name ||';');
 END LOOP;
 dbms_output.put_line('COMMIT; ');
END;
/
spool off;

---- Generating script for DB2 database
spool count_rows_db2.sql;
BEGIN

 dbms_output.put_line('CREATE TABLE CK_ROW_COUNT (TAB_NAME VARCHAR(30),
ROW_COUNT INT, SYS_NAME CHAR(3), TIME_INS TIMESTAMP);');

 FOR tab_rec IN (SELECT TABLE_NAME from TABS) LOOP
 dbms_output.put_line('INSERT INTO CK_ROW_COUNT SELECT
'''||tab_rec.table_name||''', COUNT(*), ''DB2'', CURRENT TIMESTAMP FROM '||
tab_rec.table_name ||';');
 END LOOP;
 dbms_output.put_line('COMMIT; ');
END;
/
spool off;
rollback;

The presented approach for comparing the number of rows can be extended for
additional checking, like comparing the sum of numeric columns. Here are the
steps that summarize the technique:

1. Define check sum tables on the source database and characterize scope of
the computation.

2. Perform the computation and store the results in the appropriate check sum
tables. Use Oracle data dictionary (TABS and COLS) to generate the
aggregate queries, or write SQL/PL procedures.

3. Migrate the check sum tables as other user tables.

4. Perform equivalent computations on the target system, and store the
information in the migrated check sum tables.

5. Compare the computed values.
 Chapter 10. Testing 459

Table 10-4 provides computations for selected database types. The argument for
the DB2 sum() function is converted to the DECIMAL type, because in most
cases, the sum() function returns the same data type as its argument, which can
cause arithmetic overflow. For example, when calculating the sum on an
INTEGER column, if the result exceeds the INTEGER data type range, error
SQL0802N is generated Arithmetic overflow or other arithmetic exception
occurred. Converting the argument to DECIMAL eliminates the error.

Table 10-1 Aggregations for data migration verification

10.3 Code and application testing
The most important part of the testing process is to verify that each component of
the system functions as it did before migrating. All components of the RDBMS
system, including views, stored procedures, triggers, application components,
and security systems should be verified as to whether they are working properly.

10.3.1 View sanity check
The next step after data migration testing is to check all migrated views. Once
data is moved over, the views can be tested to make sure they are working in the
same way as in the source database. Depending upon the view, different
checking scenarios can be created. Basic views can be easily checked, by
counting the number of rows the views return, or by comparing calculated values,
similarly to the tests done on regular tables. More complicated views need a little
more thought on how they should be checked, however, all view should be at a
minimum reviewed by executing queries against them. The views created with
the intention to modify data should also be tested for inserting, updating, and
deleting.

Data type Oracle operation DB2 operation

numeric(<preci
son>,<scale>)

sum(val) sum(cast(val as
decimal(31,<scale>)))

date sum(trunc(val -
to_date('0001/01/02',
'yyyy/mm/dd')))

sum(cast(days(val) as
decimal(31,1)))

variable
length
character

sum(length(val)) sum(cast(length(val) as
decimal(31,0)))

fixed length
character

sum(length(rtrim(val))) sum(cast(
length(rtrim(val)) as
decimal(31,0)))
460 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

10.3.2 PL/SQL to SQL PL object check
All stored procedures, user defined functions, and triggers should be unit tested
individually before they are promoted for further testing. This means that after
objects are migrated (either manually, with the MTK, or some combination of
that) they need to be checked to make sure they function properly. Basic
problems can be discovered by running stored procedures through the
Developer Workbench (Figure 10-4).

The Developer Workbench is an Eclipse-based tool that replaces the
Development Center used in DB2 Version 8. Developer Workbench is a
comprehensive development environment for creating, editing, debugging,
deploying, and testing DB2 stored procedures and user-defined functions. You
can also use Developer Workbench to develop SQLJ applications, and to create,
edit, and run SQL statements, and XML queries.

Figure 10-4 Developer Workbench.

The Developer Workbench is a free download, that is installed separately from
DB2. For more information about the Developer Workbench, refer to Developing
SQL and External Routines, SC10-4373.
 Chapter 10. Testing 461

10.3.3 Application code check
The scope of application testing depends on the migrated application. For
systems that were designed to support many versions of databases, like SAP,
Siebel, or PeopleSoft, the testing process is usually well defined by the vendors,
and offered as a paid service.

For self-built applications, the testing process should be started with the
application queries. All queries should be independently tested to ensure that
they return the expected results. With the application queries successfully
migrated, the surrounding client programs should be rebuilt, and then the
application should be tested against the target database. Each module of the
application, and possibly each panel form, should be run and checked for errors
or improper functionality. All the supported application connectivity interfaces
should also be checked.

A very important issue is to document all the test conditions, such as what
operations were performed, which application screens were opened, what input
data was used for testing, and what was the result. For larger projects, the
documenting part can become overwhelming, so specialized software is usually
used for those cases. As mentioned earlier, by definition, the new application
cannot be fully tested. In the migration project, the application testing is an
iterative process of planning, designing the test cases, executing the test cases,
and finally evaluating and analyzing the results.

Together with various functional testing, the application should also be checked
for performance. Since there are many architectural differences between Oracle
and DB2, some SQL operations might require further optimization. Observing the
performance differences in early testing stages increases the chance to prepare
more optimal code for the new environment.

Before going into production, the migrated database should be verified under
high volume and loads. These tests should emulate the production environment,
and can determine if further application or database tuning is necessary. The
stress load can also reveal other hidden problems, such as locking issues, which
can be observed only in a production environment.

10.3.4 Security
Before going into production, security must be checked in detail. Oracle handles
security quite differently from DB2, so it is not trivial to compare the user rights
between the two systems. Oracle’s grants to roles are resolved in DB2 with
operating system groups or secondary authorization identifications. A list of
Oracle users should be compared to equivalent DB2 operating system users. All
of DB2’s authorities should be verified to allow proper persons to connect to the
462 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

database. Privileges for all database objects should also be verified. Another
important issue is to check the identifications of the user who was used for
binding stored procedures, because executors of the procedures inherit the
binder privileges.

10.3.5 Tools for testing and problem tracking
The software testing process can be a very complex task. All the tests should be
synchronized with the development life cycle, and be well documented. For large
projects, it might be necessary to use supportive software to improve testing
productivity. IBM Rational® Functional Tester and IBM Rational Performance
Tester can be used for that purpose.

IBM Rational Functional Tester provides testers with automated capabilities for
data-driven testing and a choice of scripting language and industrial-strength
editor for test authoring and customization. IBM Rational Performance Tester
can create, execute, and analyze tests to validate the reliability of complex
e-business applications.

Additionally, there are many other Rational products that may suit your testing
needs. For more information about testing products, go to the IBM Rational Web
site:

http://www.ibm.com/software/rational

10.4 Troubleshooting
The first step of problem determination is to know what information is available to
you. Whenever DB2 performs an operation, there is a return code associated
with that operation. The return code is displayed to the user in the form of an
informational or error message. These messages are logged into diagnostic files
depending on the diagnostic level set in the DB2 Manager Configuration. In this
section, we discuss the DB2 diagnostic logs, error message interpretation, tips
that may help with problem determination, troubleshooting, as well as the
resolutions to some specific problems.

The following actions should be taken when experiencing a DB2-related
problem:

� Check related messages
� Explain error codes
� Check documentation
� Search through available Internet resources
� Review APARs for current FixPak level
� Use available tools to narrow down the problem
 Chapter 10. Testing 463

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

� Ask IBM for support

10.4.1 Interpreting DB2 informational messages
Start your investigation with the return code. DB2 provides a return code for
every operation performed in the form of CCCnnnnnS. The prefix CCC identifies the
DB2 component that is returning the message; the nnnnn is a four or five digit
number, which is also referred to as an SQLCODE; and the S is a severity
indicator. For example, SQL0289N: the SQL component identifier, represents a
message from the Database Manager, the SQLCODE is 0289, which is an error
message, and the N is the severity indicator, in this case an error.

Here is the complete list for DB2 error messages prefixes for your reference:

� SQL - Database Manager messages
� ADM - messages generated by many DB2 components. These messages are

written in the Administration Notification log file and are intended to provide
additional information to system administrators.

� AMI - MQ Application Messaging Interface messages
� ASN - DB2 Replication messages
� CCA - Configuration Assistant messages
� CLI - Call Level Interface messages
� DBA - Database Administration tools messages
� DBI - Installation and Configuration messages
� DBT - Database tools messages
� DB2 - Command Line Processor (CLP) messages
� DQP - Query Patroller messages
� EAS - Embedded Application Server messages
� EXP - Explain utility messages
� GSE - Spatial Extender messages
� LIC - License Manager messages
� MQL - MQ Listener messages
� SAT - Satellite Environment messages
� SPM - Sync Point Manager messages
� XMR - XML Metadata Repository messages

The three severity indicators are:

� W: Warning or informational messages
� N: Error messages
� C: Critical system errors

DB2 also provides detailed information for each message. The full error
message describes the nature of the problem in detail, and potential user
responses. To display the DB2 return code full message, you can use the DB2
command db2 ? error-code. In AIX or Linux, since ? (question mark) is a special
464 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

character, you need to separate the DB2 command and the error code with a
double quote (“). See Example 10-8.

Example 10-8 Explaining error codes

db2 "? sql0289"
SQL0289N Unable to allocate new pages in table space
 "<tablespace-name>".

Explanation:

One of the following conditions is true on one or more database
partitions:

 1 One of the containers assigned to this SMS table space has
reached the maximum file size. This is the likely cause of the
error.

 2 All the containers assigned to this DMS table space are full.
This is the likely cause of the error.

[...]

You can find full information about the DB2 message format, and a listing of all
the messages in Message Reference Volume 1 and 2 (SC10-4238 and
SC10-4239).

10.4.2 DB2 diagnostic logs
DB2 logs every return code in diagnostic logs based on the diagnostic level set in
the database manager configuration. When investigating DB2 problems, the
essential information can be found in diagnostic log files generated by DB2.
These logs are:

� db2diag.log
� Notify files
� Trap files
� Dump files
� Messages files

db2diag.log
The db2diag.log log is the most often used file for DB2 problem investigation.
You can find this file in the DB2 diagnostic directory, defined by the DIAGPATH
variable in the Database Manager Configuration. If the DIAGPATH parameter is
not set, by default the directory is located at:
 Chapter 10. Testing 465

UNIX:

$HOME/sqllib/db2dump

where $HOME is the DB2 instance owner's home directory.

Windows:

<INSTALL PATH>\<DB2INSTANCE>

where <INSTALL PATH> is the directory where DB2 is installed, and
<DB2INSTANCE> is the name of DB2 instance.

The database manager configuration parameter DIAGLEVEL controls how much
information is logged to db2diag.log. Valid values can range from 0 to 4:

0 - No diagnostic data captured

1 - Severe errors only

2 - All errors

3 - All errors and warnings (default)

4 - All errors, warnings and informational messages

Most of the time, the default value is sufficient for problem determination. In
some cases, especially on development or test systems, you can set the
parameter to 4, and collect all informational messages. However, be aware that
depending on the activity, this may cause performance issues due to the large
amount of data recorded into the file. Setting DIAGLEVEL to 4 may also make
the file very large and harder to read.

The information in db2diag.log includes:

� A diagnostic message (beginning with DIA) explaining the reason for the
error.

� Application identifiers, which allow matching up error entries with
corresponding application or DB2 server processes

� Any available supporting data, such as SQLCA data structures, and pointers
to the location of any extra dump or trap files.

� Administrative events, such as BACKUP/RESTORE start and finish times

Example 10-9 contains extract of db2diag.log taken at DIAGLEVEL 3.

Example 10-9 Example of db2diag.log file

(1) 2007-02-26-11.04.28.515000-240 (2) E394355H479 (3) LEVEL: Warning
(4) PID : 3840 (5) TID : 504 (6) PROC : db2syscs.exe
(7) INSTANCE: DB2INST1 (8) NODE : 000 (9) DB : SAMPLE
466 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

(10) APPHDL : 0-191 (11) APPID: *LOCAL.DB2.061026150526
(12) FUNCTION: DB2 UDB, data management, sqldEscalateLocks, probe:3
(13) MESSAGE : ADM5502W The escalation of "1133" locks on table "DB2INST1
 .TABLE01" to lock intent "X" was successful.

An explanation of db2diag.log entries is included below. Not every log entry will
contain all of these parts. Only the first several fields (timestamp to TID) and
FUNCTION will be present in all the db2diag.log records. The number in
parenthesis (which are used here for illustration purposes, are not part of the
actual db2diag.log entry) corresponds to the following numbers:

(1) - A timestamp and time zone for the message.

(2) - The record ID field. The db2diag.log's recordID specifies the file offset at
which the current message is being logged (for example, “394355”) and the
message length (for example, “479”) for the platform where the DB2 diagnostic
log was created.

(3) - The diagnostic level associated with an error message. For example, Info,
Warning, Error, Severe, or Event.

(4) - The process ID

(5) - The thread ID

(6) - The process name

(7) - The name of the instance generating the message.

(8) - For multi-partition systems, the partition generating the message. (In a
non-partitioned database, the value is “000”.)

(9) - The database name

(10) - The application handle. This value aligns with that used in db2pd output
and lock dump files. It consists of the coordinator partition number followed by
the coordinator index number, separated by a dash.

(11) - Identification of the application for which the process is working. In this
example, the process generating the message is working on behalf of an
application with the ID *LOCAL.DB2.061026150526. This corresponds to the
LIST APPLICATIONS command output. Each application has a unique
application ID.

(12) - The product name (“DB2”), component name (“data management”), and
function name (“sqldEscalateLocks”) that is writing the message (as well as the
probe point (“3”) within the function).
 Chapter 10. Testing 467

(13) - The return code (if any) returned by a called function. In this example this is
a administration warning, telling about lock escalation (1133 row locks where
successfully replaced by one table lock) on table DB2INST1.TABLE01.

Notification log
DB2 also provides diagnostic information at the point of failure to the
administration notification log. On UNIX platforms, the administration notification
log is a text file called instance.nfy, where instance is the name of the instance.
On Windows, all administration notification messages are written to the Event
Log.

The DBM configuration parameter NOTIFYLEVEL specifies the level of
information to be recorded:

0 - No administration notification messages captured (not recommended)

1 - Fatal or unrecoverable errors

2 - Immediate action required

3 - Important information, no immediate action required (default)

4 - Informational messages

Not only can DB2 write to the notification logs, but also the Health Monitor, the
Capture and Apply programs, and user applications using the
db2AdminMsgWrite API.

Trap files
Whenever a DB2 process receives a signal or exception (raised by the operating
system as a result of a system event) that is recognized by the DB2 signal
handler, a trap file is generated in the DB2 diagnostic directory (as specified by
the DIAGPATH database manager configuration parameter). The files are
created using the following naming convention:

Linux and UNIX:

� tpppppp.nnn

– pppppp: the process ID (PID)
– nnn: the database partition number where the trap occurred (000 on single

partition databases)
– Example: t123456.000

Windows:

� Pxxxxx.yyy or Pxxxxx.TRP

– xxxxx: the process ID (PID)
468 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

– yyy: the database partition number where the trap occurred (000 on single
partition databases). If the trap file is generated because of an exception,
it will have the extension .TRP.

– Example: P52524.000

There are also diagnostic traps, generated by the code when certain conditions
occur which do not warrant crashing the instance, but where it is useful to see
the stack. Those traps are named with the PID in hexadecimal format, followed
by the partition number (0 in a single partition database).

Depending on the signal received or the exception raised, the existence of these
files can indicate different extremes of consequences. These consequences can
range from the generation of a simple stack trace back for additional diagnostics,
to a complete DB2 instance shutdown due to a serious internal or external
problem. A list of all available signals for selected operating systems can be
obtained from the following files:

� UNIX: /usr/include/sys/signal.h
� Windows (requires the software development kit): Winnt.h

Dump files
Dump files are created when an error occurs for which there is additional
information that would be useful in diagnosing a problem (such as internal control
blocks). Every data item written to the dump files has a timestamp associated
with it to help with problem determination. Dump files are created in binary format
and are located in the DB2 diagnostic path (DIAGPATH DBM CFG). When a
dump file is created or appended, an entry will be made to the db2diag.log,
indicating the time, type of data written, and the name of the dump file. Generally,
dump files are intended for DB2 customer support representatives.

These files are generated with the following format:

Linux and UNIX:

� pppppp.nnn or lpppppp.nnn (for lock list dump)

– pppppp: the process ID (PID)
– nnn: the database partition number where the problem occurred
– Example: 123456.000

Windows:

� pppttt.nnn or lpppttt.nnn (for lock list dump)

– ppp: the process ID (PID)
– ttt: the thread ID (TID)
– nnn: the database partition number where the problem occurred
– Example: 123654.000
 Chapter 10. Testing 469

Messages files
Some DB2 utilities such as BIND, EXPORT, IMPORT, and LOAD provide an
option to produce a messages file in a user-defined location. These files contain
useful information to report the progress, success, or failure of the utility that was
run. It is recommended that this option be specified, for any utility that supports it.

10.4.3 DB2 support information
Identifying what information is typically required to resolve problems is a very
important step. All the conditions that define the problem are essential when
reviewing documentation, searching through available Internet resources, or
contacting DB2 support.

Maintenance version
The db2level utility can be used to check the current versions of DB2 installed.
As shown in Figure 10-5, the utility returns information about the installed
maintenance updates (FixPaks), length of word used by instance (32 bit or 64
bit), build date, and other code identifiers. It is a good habit to check periodically
if newer FixPaks are available. DB2 maintenance updates are freely available
from:

http://www.ibm.com/software/data/db2/udb/support/downloadv9.html

Figure 10-5 Sample db2level output

db2support utility
The db2support utility is designed to automatically collect all DB2 and system
diagnostic data. This program generates information about a DB2 server,
including information about its configuration and system environment. The output

$db2level

DB21085I Instance "db2inst1" uses "64" bits and DB2
code release "SQL09011"
with level identifier "01020107".
Informational tokens are "DB2 v9.1.0.1", "s061104",
"U809676", and Fix Pack "1".

Product is installed at "/opt/IBM/db2/V9.1".

This can be matched to
related FixPak directory
on ftp.software.ibm.com

The built date
(YYMMDD)

DB2 version
470 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.ibm.com/software/data/db2/udb/support/downloadv9.html
http://www.ibm.com/software/data/db2/udb/support/downloadv9.html

of this program is stored in one compressed file named db2support.zip, located
in the directory specified as part of the command invoked under command line.
In one simple step, the tool can gather database manager snapshots,
configuration files, and operating system parameters, which should make the
problem determination quicker. A sample call of the utility is as follows:

db2support . -d db2_emp -c

The dot (.) represents the current directory where the output file is stored. The
rest of the command is optional. -d and -c instructs the utility to connect to the
db2_emp database, and also gather information about database objects such as
table spaces, tables, and packages.

DB2 Product Support site
An invaluable place to look when experiencing a problem is the DB2 Product
Support site for Linux, UNIX, and Windows, located on the Web at:

http://www.ibm.com/software/data/db2/support/db2_9/

The site has the most recent copies of the documentation, the knowledgebase to
search for technical recommendations or DB2 defects, links for product updates,
the latest support news, and many other useful DB2 related links.

To find related problems, prepare words that describe the issue such as the
commands that were run, the symptoms, and tokens from the diagnostics
messages, and use them as a search terms in the DB2 knowledgebase. The
knowledgebase offers an option to search through DB2 documentation,
Technotes, and DB2 defects (APARs).

Technotes is a set of recommendations and solutions for specific problems.

Authorized Program Analysis Reports (APARs) are defects in the DB2 code
discovered by customers that require a fix. APARs have unique identifiers and
are always specific to a particular version, but may affect multiple products in the
DB2 family running on multiple platforms. Fixes for APARs are provided through
DB2 FixPaks. The status of a closed APAR indicates that the resolution for the
problem has been verified and included in the FixPaks. Open APARs represent
DB2 defects that are currently being worked on or waiting to be included in the
next available FixPak. HIPER APARs (High-Impact or PERvasive) are critical
problems that should be reviewed to assess the potential impact of staying at a
particular FixPak level.

The DB2 Product Support site also offers e-mail notification of critical or
pervasive DB2 customer support issues, including HIPER APARs and FixPak
alerts, among other DB2 related topics. To subscribe to it, follow the Request
e-mail updates link which is offered by IBM My Support on the DB2 Product
 Chapter 10. Testing 471

http://www.ibm.com/software/data/db2/support/db2_9/

Support main page. Here you can specify exactly the type of alerts that you
would like to be notified with.

Calling IBM support
If the problem seems to be too complex to solve on your own, you can contact
IBM Support. In order to understand and resolve your support service request in
the most expedient way possible, it is important that you gather information about
the problem and have it on hand when talking to the software specialist.

The guidelines and reference materials (which you may need when you require
IBM support) as well as the telephone numbers are available on IBM Software
Support Handbook at:

http://techsupport.services.ibm.com/guides/handbook.html

10.4.4 Problem determination tools
Tuning and troubleshooting a database can be a complex process. DB2 comes
with a great number of tools, functions, and applications that simplefy this task.

Monitoring tools
DB2 monitoring utilities can collect information on many different system
activities, such as usage of buffer pools, locks held by applications, sorts
preformed by the system, activities on tables, connections, transactions
statistics, or statements run on the system. There are two main methods of
monitoring:

� Snapshot monitoring
� Event monitoring

Snapshot monitoring
Snapshot monitoring describes the state of database activity at the particular
point in time the snapshot is taken. Snapshot monitoring is useful in determining
the current state of the database and its applications. Since snapshots provide
point in time data, they are usually executed in scripts at regular intervals.

Snapshots can be taken from the command line, using custom API programs, or
through SQL using table functions or administrative views. Example 10-10 shows
an extract from a sample snapshot invoked from the command line.

Example 10-10 Sample snapshot

db2 get snapshot for database on db2_emp

 Database Snapshot
472 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://techsupport.services.ibm.com/guides/handbook.html
http://techsupport.services.ibm.com/guides/handbook.html

Database name = DB2_EMP
Database path =
/home/db2inst1/db2inst1/NODE0000/SQL00001/
Input database alias = DB2_EMP
Database status = Active
[...]

High water mark for connections = 3
Application connects = 7
Secondary connects total = 0
Applications connected currently = 1
Appls. executing in db manager currently = 0
Agents associated with applications = 1
Maximum agents associated with applications= 1
Maximum coordinating agents = 1
[...]

Buffer pool data logical reads = Not Collected
Buffer pool data physical reads = Not Collected
Buffer pool temporary data logical reads = Not Collected
Buffer pool temporary data physical reads = Not Collected
Asynchronous pool data page reads = Not Collected
[...]

The snapshot collects database level information for database DB2_EMP. Some
of the returned parameters display point-in-time values, such as the number of
currently connected applications:

Applications connected currently = 1

Some parameters represent cumulative values, like the number of connect
statements issued against the database:

Application connects = 7

Some parameters can contain historical values, like the maximum number of
concurrent connections that have been observed on the database:

High water mark for connections = 3

The cumulative or historical values relate to the point in time, since the last
initialization of the counters. The counters can be reset to zero with the RESET
MONITOR command, or by the appropriate DB2 event. In Example 10-10,
database deactivation and activation reset all the database level counters.
Example 10-11 shows how to reset monitors for the entire instance and for a
specific database.

Example 10-11 Resetting snapshot monitor counters
 Chapter 10. Testing 473

db2 reset monitor all
db2 reset monitor for database db2_emp

To optimize database performance in a default DB2 configuration, most of the
snapshot monitor elements are not collected. As a result, in Example 10-10 the
value Not Collected was displayed for the buffer pool statistics. DB2 contains
monitor switches to provide database administrators with the option of
constraining the collection of monitor elements. Current monitor switches set for
the session can be displayed from the command line by GET MONITOR
SWITCHES, as shown in Example 10-12.

Example 10-12 Displaying monitor switches

db2 get monitor switches

 Monitor Recording Switches

Switch list for db partition number 0
Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Take Timestamp Information (TIMESTAMP) = ON 02/26/2007 16:04:18.468029
Unit of Work Information (UOW) = OFF

The monitor switches can be turned on at the instance level or at an
application/connection level. To switch the monitors at the instance level, modify
the appropriate database manager parameter. After modifying the
DFT_MON_BUFPOOL parameter, as shown in Example 10-13, all users with
administration authorities will be able to collect buffer pool statistics on any
database in the instance.

Example 10-13 Updating monitor switches at the instance level

db2 update dbm cfg using DFT_MON_BUFPOOL ON

To switch the monitors at the application/connection level, issue UPDATE
MONITOR SWITCHES from the command line. The changes will only be
applicable to that particular prompt window. Example 10-14 shows how to update
the suitable monitor switch for collecting buffer pool information.

Example 10-14 Updating monitor switches at the application/connection level

db2 update monitor switches using BUFFERPOOL ON
474 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The complete list of monitor switches and related database manager parameters
is presented in Table 10-2.

Table 10-2 List of monitor switches and related DBM parameters

Sample snapshots
The database manager snapshot (Example 10-15) captures information specific
to the instance level. The information centers on the total amount of memory
allocated to the instance and the number of agents that are currently active on
the system.

Example 10-15 Database manager snapshot

db2 get snapshot for database manager

The lock snapshot (Example 10-16) is very useful for determining what locks an
application is currently holding, or what locks another application is waiting on.
The snapshot lists all applications on the system and the locks that each is
holding. Each lock and each application is given a unique identifier number.

Example 10-16 Lock snapshot.

db2 get snapshot for locks on db2_emp

The table snapshot (Example 10-17) contains information about the usage and
creation of all tables. This information is quite useful in determining how much
work is being run against a table and how much the table data changes. This

Database manager
parameter

Monitor switch Information provided

DFT_MON_BUFPOOL BUFFERPOOL Number of reads, writes,
time taken

DFT_MON_LOCK LOCK Lock wait times, deadlocks

DFT_MON_SORT SORT Number of heaps used,
sort performance

DFT_MON_STMT STATEMENT Start/stop time, SQL
statement identification

DFT_MON_TABLE TABLE Measure of activity (rows
read/written)

DFT_MON_UOW UOW Start/end times,
completion status

DFT_MON_TIMESTAMP TIMESTAMP Timestamps
 Chapter 10. Testing 475

information can then be used to decide how your data should be laid out
physically.

Example 10-17 Table snapshot

db2 get snapshot for tables on db2_emp

The table space and buffer pool snapshots (Example 10-18) contain similar
information. The table space snapshot returns information about the layout of the
table space and how much space is being used. The buffer pool snapshot
contains information on how much space is currently allocated for the buffer
pools and how much space will be allocated when the database is next reset.
Both snapshots contain a summary of the way in which data is accessed from
the database. This access can be done from a buffer pool, direct from tables on
disk, or through a direct read or write for LOBs or LONG objects.

Example 10-18 Table space and buffer pool snapshots

db2 get snapshot for tablespaces on db2_emp
db2 get snapshot for bufferpools on db2_emp

The dynamic SQL snapshot is used extensively to determine how well SQL
statements are performing. This snapshot summarizes the behavior of the
different dynamic SQL statements that are run. The snapshot does not capture
static SQL statements, so anything that was prebound will not show up in this list
(use a statement event monitor to capture information about static/prebound
SQL). The snapshot is an aggregate of the information concerning the SQL
statements. If an SQL statement is executed 102 times, there will be one entry
with the summary of the total behavior of the 102 executions.

Example 10-19 Dynamic SQL snapshot

db2 get snapshot for dynamic sql on
db2_emp

Snapshot table functions and administrative views
As mentioned earlier, DB2 features the capability to capture snapshots using
SQL table functions or administrative views. Accessing snapshot information
through the SQL interface is very convenient, because the requested information
can be filtered and sorted, thereby presented in a more readable format. The
snapshot table functions and administrative views can also be very helpful in
analyzing system utilization over a period of time.
476 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The difference between the snapshot table functions and snapshot
administrative views should be noted. Both the snapshot table functions and
snapshot administrative views return equivalent information to the GET
SNAPSHOT FOR object ON database CLP command. However, snapshot
table functions allow you to retrieve the information for a specific database on a
specific database partition, aggregate of all database partitions, or all database
partitions. Snapshot administrative views retrieve information for all database
partitions of the currently connected database.

Most of the snapshot table functions accept two input parameters. The first is a
string representing the database name. Entering a NULL value for the database
name parameter instructs the function to get snapshot information for all
databases in the instance. The second parameter represents a partition number.
To capture a snapshot for the currently connected partition, enter a value of -1 or
a NULL.

The query in Example 10-20 uses the table function SNAP_GET_TAB_V91() to
retrieve the five table names, which have the most read and write activity on
database DB2_EMP.

Example 10-20 Sample snapshot table function

db2 "select snapshot_timestamp, tabname, rows_written, rows_read,
 rows_written + rows_read as rows_accessed
 from table (SNAP_GET_TAB_V91('DB2_EMP', -1))as T
 order by rows_accessed desc
 fetch first 5 rows only"

SNAPSHOT_TIMESTAMP TABNAME ROWS_WRITTEN ROWS_READ ROWS_ACCESSED
-------------------------- ------------- ------------ ---------- --------------
2007-02-26-17.25.20.546798 EMPLOYEE 0 256 256
2007-02-26-17.25.20.546798 STAFF 35 105 140
2007-02-26-17.25.20.546798 SYSTABLES 0 30 30
2007-02-26-17.25.20.546798 SYSROUTINES 0 10 10
2007-02-26-17.25.20.546798 INTERNAL 0 5 5

The query in Example 10-21demonstrates the equivalent approach of taking a
table snapshot using the administrative view, SYSIBMADM.SNAPTAB.

Example 10-21 Sample snapshot administrative view

db2 "select snapshot_timestamp, tabname, rows_written, rows_read,
 rows_written + rows_read as rows_accessed
 from SYSIBMADM.SNAPTAB
 order by rows_accessed desc
 fetch first 5 rows only"
 Chapter 10. Testing 477

SNAPSHOT_TIMESTAMP TABNAME ROWS_WRITTEN ROWS_READ ROWS_ACCESSED
-------------------------- ------------- ------------ ---------- --------------
2007-02-26-17.26.27.124402 EMPLOYEE 0 256 256
2007-02-26-17.26.27.124402 STAFF 35 105 140
2007-02-26-17.26.27.124402 SYSTABLES 0 30 30
2007-02-26-17.26.27.124402 SYSROUTINES 0 10 10
2007-02-26-17.26.27.124402 INTERNAL 0 5 5

Example 10-22 illustrates a usage of the SNAP_GET_DYN_SQL_V91() function,
which is very useful for finding the SQL statements that are taking the most time
in the database.

Example 10-22 Sample snapshot table function - taking the time in the database

SELECT stmt_text, total_exec_time, num_executions
 FROM TABLE(SNAP_GET_DYN_SQL_V91('DB2_EMP', -1)) as dynSnapTab
 ORDER BY total_exec_time desc
 FETCH FIRST 5 ROW ONLY

Example 10-23 finds the five SQL statements with the worst average execution
time.

Example 10-23 Sample snapshot table function - worst average execution time

SELECT CASE WHEN num_executions = 0
 THEN 0
 ELSE (total_exec_time / num_executions)
 END avgExecTime,
 num_executions,
 stmt_text
FROM TABLE(SNAP_GET_DYN_SQL_V91('DB2_EMP', -1)) as dynSnapTab
ORDER BY avgExecTime desc
FETCH FIRST 5 ROWS ONLY

Like snapshot commands, snapshot table functions access point-in-time data
kept by monitors in memory. To keep the history of the snapshots, include the
SNAPSHOT_TIMESTAMP column in the snapshot query. Create a table based
on the snapshot query, such as presented in Example 10-24, and periodically
store the results of the query in the table.

Example 10-24 Storing snapshot data in a table

db2 create table table_snap_hist as
 (select snapshot_timestamp, tabname, rows_written, rows_read,
 rows_written + rows_read as rows_accessed
 from table (SNAP_GET_TAB_V91('DB2_EMP', -1))as T) definition only
478 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

db2 "insert into table_snap_hist
 select snapshot_timestamp, tabname, rows_written, rows_read,
 rows_written + rows_read as rows_accessed
 from table (SNAP_GET_TAB_V91('DB2_EMP', -1))as T
 order by rows_accessed desc fetch first 5 rows only"

Table 10-3 lists the more commonly used snapshot table functions and snapshot
administrative views. A complete list and detailed descriptions of snapshot table
functions can be found in System Monitor Guide and Reference, SC10-4251,
and Administrative SQL Routines and Views, SC10-4293 for the snapshot
administrative views.

Table 10-3 Common snapshot table functions and administrative views

Snapshot table function Snapshot admin
views

Information returned

SNAP_GET_APPL SNAPAPPL General application information
for each application that is
connected. This includes
cumulative counters, status
information, and most recent
SQL statement executed (if the
statement monitor switch is set).

SNAP_GET_APPL_INFO SNAPAPPL_INFO General application
identification information for
each application that is
connected.

SNAP_GET_BP SNAPBP Buffer pool activity counters for
the specified database.
Requires the buffer pool monitor
switch.

SNAP_GET_DB_V91 SNAPDB Database information.
Information is returned only if
there is at least one application
connected to the database.

SNAP_GET_DBM SNAPDBM Database manager information

SNAP_GET_DYN_SQL_V91 SNAPDYN_SQL Point-in-time statement
information from the SQL
statement cache for the
database.
 Chapter 10. Testing 479

All the snapshot table functions above belong to the SYSPROC schema,
whereas all the snapshot administrative views belong to the SYSIBMADM
schema.

Similar to snapshot commands, the amount of information returned from table
snapshot functions and administrative views is controlled by the monitor
switches. Since snapshots can collect large amounts of diagnostic data, enabling
all monitor switches (especially DYNAMIC SQL) can have a very negative impact
on database performance.

All the monitoring utilities use the memory heap, which is controlled by the
MON_HEAP_SZ database manager parameter. This monitoring heap size
should be increased when many applications access snapshot data.

SNAP_GET_LOCK SNAPLOCK Lock information at the
database level, and application
level for each application
connected to the database.
Requires the lock monitor
switch.

SNAP_GET_LOCKWAIT SNAPLOCKWAIT Application information
regarding lock waits for the
applications connected.

SNAP_GET_STMT SNAPSTMT Application information
regarding statements for the
applications connected. This
includes the most recent SQL
statement executed (if the
statement monitor switch is set).

SNAP_GET_TAB_V91 SNAPTAB Table activity information for
each table that was accessed
by an application. Requires the
table monitor switch.

SNAP_GET_TBSP_V91 SNAPTBSP Information about table space
activity at the database level,
and the table space level for
each table space that has been
accessed. Requires the buffer
pool monitor switch.

Snapshot table function Snapshot admin
views

Information returned
480 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Event monitoring
Event monitors are used to monitor the performance of DB2 over a fixed period
of time. The information that can be captured by an event monitor is similar to the
snapshots, but event monitors examine transition events in the database, and
consider each event as an object. Event monitors can capture information about
DB2 events in the following areas:

� Database

An event of database information is recorded when the last application
disconnects from the database.

� Tables

All active table events will be recorded when the last application disconnects
from the database. An active table is one which has been altered or created
since the database was activated. The monitor captures the number of rows
read and written to the table.

� Deadlocks

A deadlock event is recorded immediately when a deadlock occurs. The
information captured by the monitor focuses on the locks involved in the
deadlock and the applications that own them. This monitor also has several
very useful additional options to help diagnose the cause of the deadlock. The
with details option will capture additional information, such as what SQL
was being executed when the deadlock occurred, and what locks were held
by the application that encountered the deadlock. The history option will
capture all statements in the current unit of work. Finally, the values option
will show the data values used as input variables for each SQL statement (if
parameter markers were used).

� Buffer pools

A buffer pool event is recorded when the last application disconnects from the
database. The information captured contains the type and volume of use of
the buffer pool, use of pre-fetchers and page cleaners, and whether or not
direct I/O was used.

� Table spaces

A table space event is recorded when the last application disconnects from
the database. This monitor captures the same information as the buffer pool
monitor, but the information is summarized at a table space level.

� Connections

A connection event is recorded whenever an application disconnects from the
database.

� Transactions
 Chapter 10. Testing 481

A transaction event is recorded whenever a transaction finishes. The event
will be written out whenever a COMMIT or ROLLBACK occurs. The monitor
captures all of the individual statement data, and also information about the
transaction, such as its start and stop time.

� Statements

A statement event is recorded when an SQL statement completes. The
monitor records statement start and stop time, CPU used, text of dynamic
SQL (or package and section number of static SQL), return code of SQL
statement, and other metrics such as fetch count.

Event monitors are created with the CREATE EVENT MONITOR SQL
statement. Information about event monitors is stored in the system catalog
table, and it can be reused later.

Example 10-25 creates a sample event monitor named DEADLOCK_EVMON
(using the with details history values options, described above). The
query in the example accesses the SYSCAT.EVENTMONITORS view and
displays the names of event monitors that have been created in the database.

Example 10-25 Creating a sample event monitor

db2 create event monitor deadlock_evmon for deadlocks with details
history values write to table manualstart

db2 select evmonname from
syscat.eventmonitors

The output of the DEADLOCK_EVMON monitor is recorded in newly created
tables. To check in advance what tables are to be created, or to generate syntax
that overrides the default table names, use the db2evtbl tool as shown in
Example 10-26.

Example 10-26 Generating table syntax for specified event monitor

db2evtbl -evm deadlock_evmon deadlocks with details

CREATE EVENT MONITOR deadlock_evmon
 FOR DEADLOCKS WITH DETAILS
 WRITE TO TABLE
 CONNHEADER (TABLE CONNHEADER_deadlock_evmon,
 INCLUDES (AGENT_ID,
 APPL_ID,
 APPL_NAME,
 AUTH_ID,
482 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

[...]

Since the DEADLOCK_EVMON monitor was created with a manual start, it
remains inactive after creation. To activate an event monitor, change the state of
the event monitor to a value of 1 and use the event_mon_state() function to
check for the current state, as shown in Example 10-27 (when calling
event_mon_state(), specify the event monitor name in uppercase). After
activation of DEADLOCK_EVMON, each time a deadlock occurs in the database
it will be recorded in the event monitor tables.

Example 10-27 Enabling event monitor

db2 set event monitor deadlock_evmon state = 1

db2 values
event_mon_state('DEADLOCK_EVMON')

To browse the data collected by event monitor, you can directly access the
tables, or use the GUI tool db2eva. The sample db2eva screen capture is
presented in Figure 10-6. For more information about db2eva, refer to the
Command Reference, SC10-4226.
 Chapter 10. Testing 483

Figure 10-6 Presenting event monitor data using the db2eva GUI tool

Event monitors also offer an option to write the monitored information to a binary
file. This option is particularly useful when there is a need to prevent the event
monitor from collecting uncontrolled amount of data. Example 10-28 shows the
creation of an event monitor that writes the diagnostic data to files (extensions
*.EVT) located on the 'c:\tmp\deadlock' directory (Windows example). In this
example, if the total amount of collected data exceeds 5000 pages (4 KB) the
event monitor will be stopped.

Example 10-28 Creating an event monitor with the file option

db2 create event monitor deadlock_evmon for deadlocks with details
write to file 'c:\tmp\deadlock' maxfilesize 5000

manualstart

To convert the event monitor binary files to a user-readable form, use the
db2evmon utility, as shown in Example 10-29.

Example 10-29 Formatting event monitor output files

C:\tmp>db2evmon -path c:\tmp\deadlock
484 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Reading c:\tmp\00000000.EVT ...
--
 EVENT LOG HEADER
 Event Monitor name: DEADLOCK_EVMON
 Server Product ID: SQL09011
 Version of event monitor data: 8
 Byte order: LITTLE ENDIAN
 Number of nodes in db2 instance: 1
 Codepage of database: 1252
 Territory code of database: 1
 Server instance name: DB2
--

--
 Database Name: DB2_EMP
 Database Path: C:\DB2\NODE0000\SQL00001\
 First connection timestamp: 02/27/2007 13:09:48.916779
 Event Monitor Start time: 02/27/2007 13:12:33.277309
--

3) Deadlock Event ...
 Deadlock ID: 4
 Number of applications deadlocked: 2
 Deadlock detection time: 02/27/2007 13:12:35.979437
 Rolled back Appl participant no: 2
 Rolled back Appl Id: *LOCAL.DB2.070227210931
 Rolled back Appl seq number: : 0005
[...]

Visual Explain
Visual Explain is used to capture and view information about the access plan
chosen by the DB2 optimizer for SQL statements as a graph. An access plan is a
cost estimation of resource usage for a query, which is based on available
information, such as statistics for tables and indexes, instance and database
configuration parameters, bind options and query optimization level, and so on.
An access plan also specifies the order of operations for accessing the data.

The access plan acquired from Visual Explain helps to understand how individual
SQL statements are executed. The information available from the Visual Explain
graph can be used to tune the SQL queries for better performance.

To start Visual Explain, launch the Control Center, right-click the database name
and select either the Explain Query... or Show Explained Statements History
 Chapter 10. Testing 485

option. You can input an SQL statement manually or import the SQL statement
with the Get button available in the Explain Query Statement window. You can
also specify the optimization class for the SQL statement in the same window.
The optimization class indicates the effort the DB2 optimizer will spend on
preparing an execution plan (a higher value means more sophisticated
optimization). Figure 10-7 shows an example of an access plan graph.

Figure 10-7 A Visual Explain access plan graph

An access plan graph shows details of:

� Tables (and their associated columns) and indexes
� Operators (such as table scans, sorts, and joins)
� Table spaces and functions

To get the details regarding a specific element in the Visual Explain graph,
right-click the desired graph element and select Show Details. Figure 10-8
shows an example of the details that are listed for the above HSJOIN operator.
486 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 10-8 Visual Explain operator details

10.5 Initial tuning
The performance of a DB2 database application can be influenced by many
factors, such as the type of workload, application design, database design,
capacity planning, and instance and database configuration. This section
focuses on a number of DB2 performance tuning tips that may be used for initial
configuration.

10.5.1 Table spaces
At database creation time, three table spaces are created:

� SYSCATSPACE - Catalog table space for storing information about all the
objects in the database.
 Chapter 10. Testing 487

� TEMPSPACE1 - System temporary table space for storing internal temporary
data required during SQL operations, such as sorting, reorganizing tables,
creating indexes, and joining tables.

� USERSPACE1 - For storing application data.

There are also two additional table spaces, SYSTOOLSPACE and
SYSTOOLSTMPSPACE, that support many of the administration tools, SQL
administrative routines, and automatic maintenance utilities. They are created
the first time any such tool, routine, or utility is used. The SYSTOOLSPACE table
space is a user data table space, while SYSTOOLSTMPSPACE is a user
temporary table space.

By default, SYSCATSPACE, USERSPACE1, and SYSTOOLSPACE are created
as Database Managed Spaces (DMS), while TEMPSPACE1 and
SYSTOOLSTMPSPACE are created as System Managed Spaces (SMS).

With DMS table spaces, the database manager controls the storage space,
which typically offers better performance than that of SMS for non-temporary
data. With SMS table spaces, the operating system's file system manager
allocates and manages the space where the table is stored, which is best suited
for temporary data.

For SMS table spaces, reading and writing data from tables is buffered by the
operating system, and space is allocated according to the operating system
conventions: files with .DAT extension for tables and .INX files for table indexes.
SMS is almost always a better choice than DMS for temporary table spaces, as
there is more overhead in the creation of a temporary table when using DMS.
Additionally, the database manager attempts to keep temporary table pages in
memory, rather than writing them out to disk. As a result, the performance
advantages of DMS are less significant.

For regular (non-temporary) user data, optimal INSERT performance can be
achieved with DMS table spaces, since containers are preallocated and
management of the I/O operations is shifted to the database engine. Using the
AUTORESIZE feature of DMS table spaces means that the DMS table space
automatically increases in size when it becomes full. Using automatic storage
also has the same effect. Manual commands are also supported that add new
containers, drop, or modify the size of existing containers.

For best performance, large volume data and indexes should be placed on DMS
table spaces, and, if possible, split to separate containers. Initially, system
catalogs and system temporary table spaces should stay on the SMS table
spaces. System catalogs contain large objects (LOBs) that are not cached by the
DB2 engine, and can be cached by the operating system cache. In an OLTP-like
488 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

environment, there is no need for creating large temporary objects to process
SQL queries, so the SMS system temporary table space is a good starting point.

10.5.2 Physical placement of database objects
When creating a database, the first important decision is the storage
architecture. The ideal situation is to have the fastest disks possible and at least
five to 10 disks per processor (for high I/O OLTP workload, use even more). The
reality is that the hardware is often chosen based on other considerations, so in
order to achieve optimal performance, the placement of database objects should
be carefully planned.

Figure 10-9 Explaining logical log placement

As shown in Figure 10-9, all data modifications are not only written to table space
containers, but are also logged to ensure recoverability. Since every INSERT,
UPDATE, or DELETE is replicated in the transactional log, the flushing speed of
the logical log buffer can be crucial for the entire database performance. To
understand the importance of logical log placement, you should keep in mind that
the time necessary to write data to disk depends on the physical data distribution
on disk. The more random reads or writes are performed, the more disk head
movements are required and, therefore, the slowest is the writing speed.
Flushing the logical log buffer to disk by its nature is sequential and should not be

Buffer pool

Log buffer

...
insert
update
delete
commit
insert
...

Data and indexes Logical log files
 Chapter 10. Testing 489

interfered with by other operations. Locating logical log files on separate devices
isolates them from other processes, and ensures uninterrupted sequential writes.

To change logical log files to a new location, you need to modify the NEWLOGPATH
database parameter as shown in Example 10-30. The logs will be relocated to
the new path during the next database activation (it can take some time to create
the files).

Example 10-30 Relocation of logical logs

db2 update db cfg for db2_emp using NEWLOGPATH /db2/logs

When creating a DMS table space with many containers, DB2 automatically
distributes the data across them in a round-robin fashion, similar to the striping
method available in disk arrays. To achieve the best possible performance, each
table space container should be placed on a dedicated physical device.

For parallel asynchronous writes and reads from multiple devices, the number of
database page cleaners (NUM_IOCLEANERS) and I/O servers
(NUM_IOSERVERS) should be adjusted. The best values for these two
parameters depend on the type of workload and available resources; however,
new to DB2 9, both of these database configuration parameters have an
AUTOMATIC setting, which is the default.

For NUM_IOCLEANERS, an AUTOMATIC setting bases the number of page
cleaners on the number of CPUs and the number of local logical database
partitions. Specifically, the following formula is used to calculate the number:

number of page cleaners = max(ceil(# CPUs / # local logical DPs)
- 1, 1)

It is recommended to keep the AUTOMATIC setting in most cases. The only time
you may want to consider setting the value explicitly is for a read-only
environment. In such a case, since there will be no data writes, a value of 0 can
save some CPU cycles.

Similarly for NUM_IOSERVERS: the AUTOMATIC setting is recommended.
AUTOMATIC will calculate the value based on the parallelism settings of the
table spaces in the current database partition (parallelism is controlled by the
DB2_PARALLEL_IO profile registry variable, which is discussed shortly). For
each DMS table space, the value of this parallelism setting is multiplied by the
maximum number of containers in the table space stripe set. For each SMS table
space, the value of this parallelism setting is multiplied by the number of
containers in the table space. The largest result over all table spaces in the
current database partition will be used as the number of prefetchers to start.
490 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Specifically, the following formula is used:

number of prefetchers = max(max over all table spaces (parallelism
setting * [SMS: # containers; DMS: max # containers in stripe set]
), 3)

If a relatively small number of disks are available, it can be difficult to keep
database logical logs, data, indexes, system temporary table spaces (more
important for processing large queries in warehousing environments), backup
files, or operating system paging file on separate physical devices. A
compromise solution is to have one large file system striped by disk array (RAID
device) and create table spaces with only one container. The load balancing is
shifted to hardware, and you do not have to worry about space utilization. In that
case to parallel I/O operations on a single container. The DB2_PARALLEL_IO
profile registry variable should be set before starting the DB2 engine.

With the following command, I/O parallelism will be enabled within a single
container for all table spaces:

db2set DB2_PARALLEL_IO="*"

The following example enables parallel I/O for only two table spaces: DATASP1
and INDEXSP1:

db2set DB2_PARALLEL_IO="DATASP1,INDEXSP1"

To check the current value for the parameter, issue:

db2set DB2_PARALLEL_IO

10.5.3 Buffer pools
DB2 buffer pools are used to cache table and index data pages when they are
being read form disk, or when they are being modified. When a row is accessed
for the first time, the database manager places the page containing the row into
the buffer pool. The next time there is a data request, the buffer pool is first
checked for the data before looking on disk. Database performance is greatly
improved by allowing data access from memory, as opposed to disk. The less
the database manager needs to be read from or write to disk, the greater the
performance. For this reason, the proper configuration of buffer pools is one of
the most important areas of tuning. Only large objects (LOBs) and LONG data
are not manipulated in the buffer pool.

The configuration of buffer pools in DB2 9 has been greatly simplified, thanks to
the self-tuning memory manager. Now, achieving optimal buffer pool
performance takes very little effort on behalf of the DBA. The self-tuning memory
manager redistributes available memory among consumers as workload
requirements change. This feature is automatically enabled for any new, single
 Chapter 10. Testing 491

partition database and can be explicitly controlled by modifying the
SELF_TUNING_MEM database configuration parameter. The memory allocated
to the database is controlled by the DATABASE_MEMORY database
configuration parameter, which is set to AUTOMATIC, by default, on both
Windows and AIX, but can also be explicitly set. This controls how much shared
memory is available for the database and, in turn, for buffer pools of the
database.

By default, buffer pools created in DB2 9 are specified to be AUTOMATIC and
therefore are automatically tuned by the database manager. This is the
recommended setting, which ensures that memory is available to the buffer
pools with greatest need. This is especially important when that need can
change over time. If you would rather control buffer pool sizes on your own, you
can disable the self-tuning memory manager by setting the database
configuration parameter SELF_TUNING_MEM to OFF, or by altering or creating
bufferpools without the AUTOMATIC option.

When using the AUTOMATIC option of the buffer pool, the size specified for the
buffer pool (either implicitly or explicitly) is used as the initial size. The default
initial size for buffer pools is very small: only 250 pages (~ 1 MB) for Windows
and 1000 pages (~ 4 MB) for UNIX platforms. You will likely want to increase
these sizes to something more acceptable as a starting point for the self-tuning
memory manager.

If you are not using the automatic resizing feature of buffer pools, you will
definitely want to increase the size of the bufferpools. However, the total buffer
pool size should not be set too high, because there might not be enough memory
to allocate it. To calculate the maximum buffer size, all other DB2 memory
related parameters such as database heap, the agent’s memory, storage for
locks, as well as the operating system, and any other applications should be
considered.

Initially set the total size of buffer pools to 10% to 20% of available memory. You
can monitor the system later and correct it. The ALTER BUFFERPOOL
statement with the IMMEDIATE option takes effect immediately, except when
there is not enough reserved space in the database-shared memory to allocate
new space. This feature can be used to tune database performance according to
periodic changes in use, for example, switching from daytime interactive use to
nighttime batch work.

Having more than one buffer pool is generally recommended, to preserve data in
the buffers. For example, let us suppose that a database has many very
frequently used small tables, which would normally be in the buffer in their
entirety, and thus would be accessible very fast. Now let us suppose that there is
a query which runs against a very large table, which uses the same buffer pool
and involves reading more pages than the total buffer size. When this query
492 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

runs, the pages from the small, very frequently used tables will be lost, making it
necessary to re-read them when they are needed again.

At the start you can create an additional buffer pool for caching data and leave
the IBMDEFAULTBP for system catalogs. Creating an extra buffer pool for
system temporary data also can be valuable for system performance, especially
in an OLTP environment, where the temporary objects are relatively small.
Isolated temporary buffer pools are not influenced by the current workload, so it
should take less time to find free pages for temporary structures, and it is likely
that the modified pages will not be swapped out to disk. In a warehousing
environment, the operations on temporary table spaces are considerably more
intensive, so the buffer pools should be larger, or combined with other buffer
pools if there is not enough memory in the system (one pool for caching data and
temporary operations).

Example 10-31 shows how to create buffer pools assuming that the additional
table space DATASPACE for storing data and indexes was already created, and
that there is enough memory in the system. You can take this as a starting buffer
pool configuration for a 2 GB RAM system. This example makes use of the
AUTOMATIC resizing feature of the buffer pools.

Example 10-31 Increasing buffer pools

connect to db2_emp;
-- creating two buffer pools with initial size of 256 MB and 64 MB

create bufferpool DATA_BP immediate size 65536 automatic pagesize 4k;
create bufferpool TEMP_BP immediate size 16384 automatic pagesize 4k;

-- changing size of the default buffer pool
alter bufferpool IBMDEFAULTBP immediate size 16384 automatic;

-- binding the table spaces to buffer pools
alter tablespace DATASPACE bufferpool DATA_BP;
alter tablespace TEMPSPACE1 bufferpool TEMP_BP;

-- checking the results
select

substr(bs.bpname,1,20) as BPNAME
,bs.npages
,bs.pagesize
,substr(ts.tbspace,1,20) as TBSPACE

from syscat.bufferpools bs join syscat.tablespaces ts on
 bs.bufferpoolid = ts.
bufferpoolid;
 Chapter 10. Testing 493

The results:

BPNAME NPAGES PAGESIZE TBSPACE
-------------------- ----------- ----------- --------------------
IBMDEFAULTBP -2 4096 SYSCATSPACE
IBMDEFAULTBP -2 4096 USERSPACE1
DATA_BP -2 4096 DATASPACE
TEMP_BP -2 4096 TEMPSPACE1

The -2 value in the NPAGES column indicates that the buffer pool is using the
autoresize feature. A value of -1 indicates that the buffer pool is being sized
based on the database configuration parameter BUFFPAGE. Any other value will
show the actual number of pages that the buffer pool consists of.

In the case of AUTOMATIC buffer pools, you can use a buffer pool snapshot to
obtain the current size of the buffer pool, as Example 10-32 demonstrates.

Example 10-32 Obtaining current buffer pool size for AUTOMATIC buffer pools

C:\SQLLIB\BIN>db2 get snapshot for bufferpools on db2_emp

Bufferpool Snapshot

Bufferpool name = IBMDEFAULTBP
Database name = DB2_EMP
Database path = C:\DB2\NODE0000\SQL00008\
Input database alias = DB2_EMP
Snapshot timestamp = 02/28/2007 13:51:12.485208
...

Alter bufferpool information:
 Pages left to remove = 0
 Current size = 8192
 Post-alter size = 8192

The Current size shows the size in pages. In this case, the IBMDEFAULTBP
buffer pool is 8192 4K pages, which is 32 MB.

If result sets obtained by your application often consist of a sequence of
consecutive rows, or you notice that DB2 often performs prefetching of data, you
could benefit from the use of a block-based buffer pool. By default, all buffer
pools are page-based, which means that prefetches will place contiguous pages
on disk into non-contiguous pages in memory. Using a block-based buffer pool
allows DB2 to use block I/O to read multiple pages into the buffer pool in a single
I/O, which greatly improves the performance of sequential prefetching.
494 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

A block-based buffer pool consists of both the standard page area and a block
area. The NUMBLOCKPAGES parameter of the CREATE and ALTER
BUFFERPOOL statements is used to define the size of the block memory, while
the BLOCKSIZE parameter specifies the size of the blocks, and hence the
number of pages to read from a disk in a block I/O. Table spaces that share the
same extent size should be the only users of a specific block-based buffer pool.
Set the BLOCKSIZE equal to the table space’s EXTENT SIZE that is using the
buffer pool.

In most cases, even allocating a very small amount of your buffer pool to the
block-based area can show significant performance gains. A good starting point
is around 1 to 3% of the initial buffer pool size.

The CHNGPGS_THRESH database configuration parameter specifies the
percentage of changed pages at which the asynchronous page cleaners will be
started. Asynchronous page cleaners will write changed pages from the buffer
pool to disk. The default value for the parameter is 60%. When that threshold is
reached, some users may experience a slower response time. Having larger
buffer pools means more modified pages in memory and more work to be done
by page cleaners, as shown in Figure 10-10. To guarantee a more consistent
response time and also a shorter recovery phase, lower the value to 50 or 40
using the following command:

db2 update db cfg for sample using CHNGPGS_THRESH 40

Figure 10-10 Visualizing the CHNGPGS_THRESH parameter

Default bufferpool

The new larger bufferpool

CHNGPGS_THRESH 60 %

CHNGPGS_THRESH 60 %

More work
for page cleaners
 Chapter 10. Testing 495

10.5.4 Large transactions
By default, databases are created with a relatively small space for transactional
logs, only three log files for each 1000 pages. A single transaction should fit the
available log space to be completed. If not, the transaction is rolled back by the
database manager (SQL0964C The transaction log for the database is
full). To process transactions that are modifying large numbers of rows,
adequate log space is needed. Current total log space available for transactions
can be calculated by multiplying the size of the log files (database parameter
LOGFILSIZ) and the number of logs (database parameter LOGPRIMARY).

From a performance perspective, it is better to have a larger log file size,
because of the cost of switching from one log to another. When log archiving is
switched on, the log size also indicates the amount of data for archiving. In this
case, a larger log file size is not necessarily better, since a larger log file size may
increase the chance of failure, or cause a delay in archiving or log shipping
scenarios. The log size and the number of logs should be balanced.

Example 10-33 allocates 400 MB of total log space.

Example 10-33 Resizing the transactional log

db2 update db cfg for sample using LOGFILSIZ 5120
db2 update db cfg for sample using LOGPRIMARY 20

Locking is the mechanism that the database manager uses to control concurrent
access to data in the database by multiple applications. Each database has its
own list of locks (a structure stored in memory that contains the locks held by all
applications concurrently connected to the database). The size of the lock list is
controlled by the LOCKLIST database parameter.

The default storage for LOCKLIST on Windows and UNIX is set to AUTOMATIC.
On 32-bit platforms, each lock requires 48 or 96 bytes of the lock list, depending
on whether other locks are held on the object or not. On 64-bit platforms, each
lock requires 64 or 128 bytes of the lock list, depending on whether other locks
are held on the object or not.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This
allows the memory tuner to dynamically size the memory area controlled by this
parameter as the workload requirements change. Since the memory tuner trades
memory resources among different memory consumers, there must be at least
two memory consumers enabled for self tuning in order for self tuning to be
active.
496 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The value of LOCKLIST is tuned together with the MAXLOCKS parameter.
Therefore, disabling self tuning of the LOCKLIST parameter automatically
disables self tuning of the MAXLOCKS parameter. Enabling self tuning of the
LOCKLIST parameter automatically enables self tuning of the MAXLOCKS
parameter.

Automatic tuning of this configuration parameter will only occur when self tuning
memory is enabled for the database (the SELF_TUNING_MEM database
configuration parameter is set to ON).

When the maximum number of lock requests has been reached, the database
manager replaces existing row-level locks with table locks (lock escalation). This
operation reduces the requirements for lock space, because transactions will
hold only one lock on the entire table instead of many locks on every row. Lock
escalation has a negative performance impact because it reduces concurrency
on shared objects. Other transactions must wait until the transaction holding the
table lock commits or rollbacks work. Setting LOCKLIST to AUTOMATIC avoids
this situation, as the lock list will increase synchronously to avoid lock escalation
or a “lock list full” situation.

To check current usage of locks, use snapshots such as in Example 10-34.

Example 10-34 Invoking snapshot for locks on database db2_emp

db2 get snapshot for locks on db2_emp

The snapshot collects the requested information at the time the command was
issued. In Figure 10-11 you can find sample lock snapshot output. For the time
the snapshot was run, there were two applications connected to the database
DB2_EMP, and in total 1151 locks were acquired on the database. Issuing the
get snapshot command later can produce different results because in the
meantime the applications may commit the transaction and release locks.
 Chapter 10. Testing 497

Figure 10-11 Explaining lock snapshot information

To check lock escalation occurrences, look at the db2diag.log file. The lock
escalation message should look as shown in Example 10-35.

Example 10-35 Lock escalation message in the db2diag.log file

2007-02-28-16.38.28.515000-240 E394355H479 LEVEL: Warning
PID : 467172 TID : 1 PROC : db2agent (SAMPLE) 0
INSTANCE: db2inst1 NODE : 000 DB : DB2_EMP
APPHDL : 0-191 APPID: *LOCAL.DB2.070228202559
AUTHID : DB2INST1
FUNCTION: DB2 UDB, data management, sqldEscalateLocks, probe:3
MESSAGE : ADM5502W The escalation of "1136" locks on table "DB2INST1
 .TABLE01" to lock intent "X" was successful.

Logical log buffer
The default size for the logical log buffer is eight pages (32 KB)—often too small
for an OLTP database, and not big enough for long-running batch processes. In

 D at ab as e Lo c k S n ap s h ot

D a ta b a se nam e = D B 2 _ E M P
D a ta b a se pat h =
/ d b2 / h om e /db 2 in st 1/ db 2i n st 1 / NO D E 00 0 0 /SQ L 000 01 /
I n pu t da t aba s e al ia s = D B2_ E MP
L o ck s he l d = 1 1 5 1
A p pl i c at i ons cu rr en tl y c on n e ct e d = 2
A g en t s c u rre n tl y wa it in g o n lo c k s = 0
S n ap s h ot tim e st am p = 0 2/2 8 /20 0 7 1 6 :27 : 06. 2 91 88 9

A p pl i c at i on h an dl e = 2 1
A p pl i c at i on I D = * L O C A L . D B 2 . 0 7 0 2 2 8 2 0 2 5 5 9
S e qu e n ce num b er = 0 001
A p pl i c at i on n am e = d b2b p
C O NN E C T A uth o ri za ti on I D = D B2I N ST1
A p pl i c at i on s ta tu s = U OW W ait i n g
S t at u s c h ang e t im e = N ot C oll e c te d
A p pl i c at i on c od e pa ge = 8 19
L o ck s he l d = 1 3
T o ta l wa i t t i me (ms) = N ot C oll e c te d

L i st O f L ock s
 L oc k Na m e = 0 x0 0 0 300 0 500 10 5 254 0 000 0 0 00 5 2
 L oc k At t rib u te s = 0 x0 0 0 000 0 0
 R el e a se Fla g s = 0 x4 0 0 000 0 0
 L oc k Co u nt = 2 55
 H ol d Co u nt = 0
 L oc k Ob j ect Na me = 1 06 9 6 52
 O bj e c t T ype = R o w
 T ab l e sp a ce N am e = D AT A S PAC E
 T ab l e S c hem a = D B2 I N ST1
 T ab l e N a me = T A B L E 0 1
 M od e = X

[. .. t he lis t in g wa s cu t h e r e . . .]

T o t a l n u m b e r o f l o c k s
a l l o c a t e d f o r t h e d a t a b a s e

T o t a l n u m b e r o f
l o c k s h e l d b y
t h e a p p l i c a t i o n

da
ta

ba
se

 s
ec

ti
on

ap
pl
ic

at
io

n
se

ct
io

n

lo
ck

s
de

sc
ri

pt
io
n

T h i s l o c k w a s p l a c e d o n a r o w i n
t a b l e " T A B L E 0 1 " b y a p p l i c a t i o n
* L O C A L . D B 2 . 0 7 0 2 2 8 2 0 2 5 5 9
498 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

most cases the log records are written to disk when one of the transactions
issues a COMMIT, or the log buffer is full. Increasing the size of the log buffer
may result in more efficient I/O operations, especially when the buffer is flushed
to disk, because of the second reason. The log records are written to disk less
frequently and more log records are written each time. Initially, set LOGBUFSZ
to 128 or 256 4 KB pages. The log buffer area uses space controlled by the
DBHEAP database parameter, so consider increasing this parameter also.

Later, use the snapshot for applications to check current usage of log spaces by
transactions, as shown in Example 10-36.

Example 10-36 Current usage of log space by applications

$db2 update monitor switches using uow on
$db2 get snapshot for applications on db2_emp| grep "UOW log"

UOW log space used (Bytes) = 478
UOW log space used (Bytes) = 21324
UOW log space used (Bytes) = 110865

Before running the application snapshot, the Unit Of Work monitor should be
switched on. At the time the snapshot was issued, only three applications were
running on the system. The first transaction used 478 bytes of log space, the
second 21324, and the last used 110865, which is roughly 28 pages, more than
the default log buffer size. The snapshot gives only current values from the
moment the command was issued. To get more valuable information about the
usage of log space by transactions, run the snapshot many times.

Example 10-37 shows how to get information about log I/O activity.

Example 10-37 Checking log I/O activity

db2 reset monitor for database db2_emp
let the transactions run for a while

db2 get snapshot for database on db2_emp > db_snap.txt
egrep -i "commit|rollback" db_snap.txt

Commit statements attempted = 23
Rollback statements attempted = 2
Internal commits = 1
Internal rollbacks = 0
Internal rollbacks due to deadlock = 0

grep "Log pages" db_snap.txt
 Chapter 10. Testing 499

Log pages read = 12
Log pages written = 630

Before running the database snapshot, you may have to reset the monitors. The
values gathered by snapshot and presented here are cumulated since the last
monitor reset or database activation, so wait for a certain period after resetting
the counters. For convenience, the snapshot output was directed into a file, and
then analyzed using the UNIX grep tool. In the example, 630 pages were written
for the period, which gives about 630 / (23+2+1) = 25 pages per transaction.
Looking at the value “Log pages written” it is not possible to tell what was the
average size of transactions, because the basic DB2 read or write unit is one
page (4 KB). Issuing only one small INSERT will force a flush of 4 KB from log
buffer to disk. The partially filled log page remains in the log buffer, and can be
overwritten to disk more than once, until it is full; this guaranties that the log files
are contiguous.

When setting the value for log buffer, also look at the ratio between log pages
read and log pages written. An ideal value is zero log pages read, while seeing a
large number of log pages written. When there are too many log pages read, it
means a bigger LOGBUFSZ can improve performance.

10.5.5 SQL execution plan
When a query is issued against a database, DB2 prepares an execution plan.
The execution plan defines the necessary steps that should be done to get the
requested data. In order to prepare an optimal execution plan, the DB2 optimizer
considers many elements such as configuration parameters, available hardware
resources, or the characteristics of the database objects (available indexes, table
relationships, number of records, data distribution). The database characteristics
are collected with the RUNSTATS utility, and are stored in special system
catalog tables.

Deciding which statistics to collect for a specific workload can be complex, and
making sure that the statistics are up to date can be time-consuming.
Fortunately, DB2 9 offers automatic statistics collection as part of the Automated
Table Maintenance feature, which is enabled by default when a new database is
created. DB2 determines when and what statistics need to be collected. When
automatic statistics collection is enabled, DB2 automatically runs the
RUNSTATS utility in the background to ensure that the most current statistics are
available to the optimizer.
500 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Automatic statistics collection minimizes the impact of RUNSTATS in several
ways:

� Throttling of RUNSTATS limits the resources consumed based on the current
database activity. If database activity increases, RUNSTATS is throttled to
run more slowly, reducing resource consumption.

� By default, basic table statistics with distribution information and detailed
index sampling is performed. This can also be customized by enabling
statistics profiling, where information about previous database activity is used
to determine exactly what kind of statistics are required by database
workload.

� Only highly active tables (measured by number of inserts, updates, and
deletes) are considered for statistics collection. Large tables, consisting of
more than 4000 pages, are sampled to determine if statistics are out of date,
and collected only if needed.

� RUNSTATS is scheduled to run only during the maintenance window that you
specify. You can also limit the automatic statistics collection to only a set of
tables.

� Even during automatic statistics collection, the affected tables are available
for regular database activity.

If you choose to not use automatic statistics collection and instead perform
manual RUNSTATS, it should be used when:

� A table has been loaded with new data

� The appropriate indexes have been created

� There have been extensive updates, deletions, and insertions that affect a
table and its indexes (for example, 10% to 20% of the table and index data
has been affected).

� Data has been physically reorganized (by running the REORG utility, or
adding new containers)

The RUNSTATS command should be run against each table in the database.
The DB2 Control Center can be very helpful with running statistics on a group of
tables. To run statistics using Control Center, select the desired tables (to select
more than one table, press the Ctrl or Shift key while clicking the table names; to
select all tables, click any table name and then press Control + A), right-click the
selection, and choose the Run Statistics... option, as shown in Figure 10-12.

Recommendation: After loading data to DB2 tables, run RUNSTATS
before starting testing.
 Chapter 10. Testing 501

Figure 10-12 Running RUNSTATS on multiple tables

On the second tab, Statistics, you can specify options for the RUNSTATS
command. You can start with collecting basic statistics on all columns and
indexes, and distribution of values only for key columns, as presented in
Figure 10-13. After setting the RUNSTATS option, you can execute the
commands by clicking OK.
502 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 10-13 RUNSTATS command options

DB2 comes with a very powerful query optimization algorithm. This cost-based
algorithm will attempt to determine the cheapest way to perform a query against
a database. Items such as the database configuration, database physical layout,
table relationships, and data distribution are all considered when finding the
optimal access plan for a query. To check the current execution plan, you can
use the Explain Query function (described in “Visual Explain” on page 485).

10.5.6 Configuration Advisor
The Configuration Advisor is a tool that can be helpful in preparing an initial DB2
configuration. It is used to generate recommendations for the initial values of
buffer pool size, database configuration parameters, and database manager
configuration parameters, based on the database environment characteristics,
such as CPU speed and workload type. It can be run manually, through a GUI or
command line interface, and automatically during database creation.
 Chapter 10. Testing 503

By default in DB2 9, any new databases will run the Configuration Advisor in the
background and have such configuration recommendations automatically
applied. To disable this feature, or to explicitly enable it, you must use the db2set
command, as Figure 10-38 illustrates.

Example 10-38 Configuring default behavior of the Configuration Advisor

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

In any case, the Configuration Advisor can be manually run at any time against a
database to update the current configuration, regardless of the
DB2_ENABLE_AUTOCONFIG_DEFAULT setting. All recommendations are
based on the input that you provide and system information that the
Configuration Advisor gathers. The generated recommendations can be applied
or simply displayed.

It is important to point out that the values suggested by the Configuration Advisor
are relevant for only one database per instance. If you want to use this advisor
on more than one database, each database should belong to a separate
instance.

The Configuration Advisor can be manually invoked with the AUTOCONFIGURE
command from the command line processor (CLP), either standalone or as part
of the CREATE DATABASE command. Additionally, it can also be run via a GUI
available in the Control Center, or by calling the db2AutoConfig API, and finally
by using the ADMIN_CMD stored procedure.

For those new to DB2, the best place to explore the capabilities of the
Configuration Advisor is from the GUI that can be launched from the Control
Center. In the Control Center, right-click the database you wish to configure and
select Configuration Advisor.... Within the GUI, you will be presented with a
series of interview questions, which collect information regarding the percentage
of memory dedicated to DB2, type of workload, number of statements per
transaction, transaction throughput, trade-off between recovery and database
performance, data volume, number of applications, and isolation level of
applications connected to the database. Figure 10-14 shows one of the interview
panels.
504 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 10-14 Configuration Advisor memory interview screen

Based on the supplied answers, the Configuration Advisor displays the proposed
configuration changes, as shown in Figure 10-15.
 Chapter 10. Testing 505

Figure 10-15 Sample of proposed performance configuration recommendations

You are then given the option to save the recommendations to disk, apply the
recommendations, or save them to the Task Center for later execution, as shown
in Figure 10-16.
506 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 10-16 Scheduling Configuration Advisor recommendations

Configuration recommendations can also be acquired with the text-based
AUTOCONFIGURE command. Example 10-39 shows a sample execution of the
command.

Example 10-39 AUTOCONFIGURE command

db2 autoconfigure using mem_percent 40 tpm 300 num_local_apps 80 isolation CS apply none

[...]
Current and Recommended Values for Database Configuration

Description Parameter Current Value Recommended Value

 Max appl. control heap size (4KB) (APP_CTL_HEAP_SZ) = 4096 128
 Max size of appl. group mem set (4KB) (APPGROUP_MEM_SZ) = 30000 9908
 Default application heap (4KB) (APPLHEAPSZ) = 256 256
 Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) 404
 Changed pages threshold (CHNGPGS_THRESH) = 40 60
 Database heap (4KB) (DBHEAP) = 600 1461
 Degree of parallelism (DFT_DEGREE) = 1 1
 Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32
 Chapter 10. Testing 507

[...]

Table 10-4 lists all AUTOCONFIGURE command parameters.

Table 10-4 Parameters of the AUTOCONFIGURE command

The Configuration Advisor also complements the self-tuning memory feature.
When the self-tuning memory feature is enabled, by setting the database
configuration parameter SELF_TUNING_MEM to ON (the default), and when the
Database Partitioning Feature (DPF) is not being used, the self-tuning memory
feature will dynamically refine some of the Configuration Advisor
recommendations based on the demands of the current database workload.

Keyword Values Explanation

mem_percent 1-100
default: 25

Percentage of memory to
dedicate to DB2

workload_type simple, mixed, complex
default: mixed

Type of workload: simple for
transaction processing,
complex for warehousing

num_stmts 1-1 000 000
default: 10

Number of statements per unit
of work

tpm 1-200 000
default: 60

Transactions per minute

admin_priority performance, recovery, both
default: both

Optimize for better performance
or better recovery time

is_populated yes, no
default: yes

Is the database populated with
data?

num_local_apps 0-5 000
default: 0

Number of connected local
applications

num_remote_apps 0-5 000
default: 10

Number of connected remote
applications

isolation RR, RS, CS, UR
default: RR

Isolation levels: Repeatable
Read, Read Stability, Cursor
Stability, Uncommitted Read

bp_resizeable yes, no
default: yes

Are buffer pools re-sizeable?
508 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

10.5.7 Design Advisor
Well designed indexes are essential to database performance. The Design
Advisor can help you significantly improve your workload performance by
identifying indexes, materialized query tables (MQTs), multidimensional
clustering (MDCs) tables, or database partitions that can benefit your
applications. The Design Advisor can also tell you whether existing indexes and
MQTs are unused for the workload.

Like other DB2 tools, the recommendations can be implemented immediately or
scheduled for a later time. The tool can be invoked through a GUI, available in
the Control Center, or through the command line using the DB2ADVIS command.

This utility accepts one or more SQL statements and their relative frequency,
known as a workload. It is very useful when planning for or setting up a new
database. Additionally, it is the recommended approach for workload
performance tuning, as it can help you to:

� Improve performance of a particular statement or workload.

� Improve performance of the most frequently executed queries, for example,
as identified by the Activity Monitor.

� Test the performance of an index, without having to create the index in the
database.

� Find objects that are not used in a workload.

Example 10-40 shows a simple db2advis call against the single SQL query; for
more options, type db2advis -h from the command line.

Example 10-40 Finding indexes for a particular query

db2advis -d db2_emp -s "select firstnme, lastname, deptname from department d,
employee e where d.deptno = e.workdept and e.lastname like 'W%'"

Using user id as default schema name. Use -n option to specify schema
execution started at timestamp 2007-03-01-11.54.16.750000
Recommending indexes...
total disk space needed for initial set [0.013] MB
total disk space constrained to [13.942] MB
Trying variations of the solution set.
Optimization finished.
 1 indexes in current solution
 [23.0000] timerons (without recommendations)
 [15.0000] timerons (with current solution)
 [34.78%] improvement
--
--
-- LIST OF RECOMMENDED INDEXES
 Chapter 10. Testing 509

-- ===========================
-- index[1], 0.013MB
 CREATE INDEX "IDX703011954190000" ON "EMPLOYEE"

("LASTNAME" ASC, "FIRSTNME" ASC, "WORKDEPT" ASC) ALLOW REVERSE SCANS;
 COMMIT WORK ;
 RUNSTATS ON TABLE "EMPLOYEE" FOR INDEX "IDX703011954190000" ;
 COMMIT WORK ;
--
--
-- RECOMMENDED EXISTING INDEXES
-- ============================
--
--
-- UNUSED EXISTING INDEXES
-- ============================
-- DROP INDEX "XDEPT2";
-- DROP INDEX "XDEPT3";
-- DROP INDEX "XEMP2";
-- ===========================
--
7 solutions were evaluated by the advisor
DB2 Workload Performance Advisor tool is finished.

Launching Design Advisor in a GUI environment
The Design Advisor can also be invoked as a GUI tool. From the Control Center,
expand the object tree to find the Database folder. Right-click the desired
database and select Design Advisor.... The wizard guides you through the
necessary steps, and also helps construct a workload by looking for recently
executed SQL queries, or looking through the recently used packages. In order
to get accurate recommendations, it is important to have the current catalog
statistics. With the Design Advisor there is an option to collect the required basic
statistics; however, this increases the total calculation time. Figure 10-17 shows a
sample Design Advisor window.
510 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 10-17 The Design Advisor

For more information on the Design Advisor, refer to Performance Guide,
SC10-4222.
 Chapter 10. Testing 511

512 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Chapter 11. Database administration and
management

In this chapter we introduce the tools, wizards, and commands commonly used
for database administrative tasks in DB2 management. The intention is to
provide an overview of these tools and commands and their equivalents in
Oracle, if applicable, to help database administrators (DBAs) who are new to
DB2 to become familiar with DB2 quickly, for those operations that are performed
daily.

This chapter covers the following sections:

� DB2 administration tools
� Instance Management commands
� Database Management commands
� Object Management commands
� Automatic Database Management Features introduced in DB2 9
� DB2 monitoring commands

Database Partitioning Feature is not covered in this discussion. For complete
information about DB2 commands, see DB2 9.1 Command Reference,
SC10-4226.

11
© Copyright IBM Corp. 2003, 2007. All rights reserved. 513

11.1 DB2 administration tools

DB2 provides both command line interface (CLI) and graphical user interface
(GUI) tools for administering a DB2 environment. You can use both command
line and graphic tools to perform most database administrative tasks. However,
there are a few administrative activities that require a specific tool; for example,
to schedule a job you must use the Task Center GUI tool.

Here we discuss two tools that are commonly used to administer DB2
environments:

� The DB2 command line processor (CLP), which is a CLI tool
� The DB2 Control Center, which is a GUI tool

The DB2 CLP can be considered as being equivalent to the Oracle SQL*Plus.
The DB2 Control Center can be considered as being the equivalent of the Oracle
Enterprise Manager.

In the following sections, we discuss these tools in more detail.

11.1.1 DB2 command line processor

The DB2 CLP is the tool used to interact with DB2 instances and databases. You
can use DB2 CLP to perform almost all administrative tasks related to DB2
instances and databases, and also to obtain online help.

Commands can be entered in both upper case and lower case. However,
case-sensitive parameters must be typed in exactly the same case as required
by the command.

The DB2 CLP is invoked by using the db2 utility. DB2 CLP has three operation
modes:

� Interactive input mode: You type commands interactively; this is
characterized by the presence of db2 => input prompt.

� Command mode: Each command is prefixed by db2 utility.

� Batch mode: A text file containing DB2 commands is run using the -f file input
option.

Example 11-1 shows how you can invoke DB2 CLP in each of the three modes
and how you can obtain online help for the syntax of LIST TABLES command.

Example 11-1 Invoking DB2 CLP

-- Interactive mode
-- At the command prompt, just type db2 and press ENTER
514 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

[db2inst1]/home/db2inst1 # db2

(c) Copyright IBM Corporation 1993,2002
Command Line Processor for DB2 ADCL 9.1.1

You can issue database manager commands and SQL statements from the command
prompt. For example:
 db2 => connect to sample
 db2 => bind sample.bnd

For general help, type: ?.
For command help, type: ? command, where command can be the first few keywords
of a database manager command. For example:
 ? CATALOG DATABASE for help on the CATALOG DATABASE command
 ? CATALOG for help on all of the CATALOG commands.

To exit db2 interactive mode, type QUIT at the command prompt. Outside
interactive mode, all commands must be prefixed with 'db2'.
To list the current command option settings, type LIST COMMAND OPTIONS.

For more detailed help, refer to the Online Reference Manual.

db2 => ? LIST TABLES
LIST TABLES [FOR {USER | ALL | SYSTEM | SCHEMA schema-name}] [SHOW DETAIL]

-- Command mode
-- Just type in the command prompt db2 and the command you want to run
--

[db2inst1]/home/db2inst1 # db2 ? list tables
LIST TABLES [FOR {USER | ALL | SYSTEM | SCHEMA schema-name}] [SHOW DETAIL]

-- Batch mode
-- Create a file and run with db2 -f command
[db2inst1]/home/db2inst1/ # echo "? list tables" > db2test.sql
[db2inst1]/home/db2inst1/ # db2 -f db2test.sql
LIST TABLES [FOR {USER | ALL | SYSTEM | SCHEMA schema-name}] [SHOW
DETAIL]

The DB2 CLP uses environment variables and configurations stored in the
registry profile to operate. See 11.2.4, “Setting registry variables” on page 533
for more information about how to configure the environment and the registry
variables.

The DB2 CLP consists of two processes: the front-end process, which acts as
the user interface, and the back-end process, which maintains the database
 Chapter 11. Database administration and management 515

connection. The front-end process is started each time the db2 command is
issued. The back-end process is started by the first db2 command invocation.

To finish the DB2 CLP processes you can use the QUIT, CONNECT RESET or
TERMINATE commands. See “QUIT, CONNECT RESET, and TERMINATE” on
page 538, for more details.

With DB2 CLP you can specify options to control the behavior of the CLP, such
as to automatically commit SQL statements, to log commands in a history file, or
to redirect the output messages to a specific file. For a complete discussion
about DB2 CLP features and their usage, refer to Chapter 2 “Command Line
Processor (CLP)” in Command Reference, SC10-4226.

11.1.2 DB2 Control Center

You can use the DB2 Control Center to manage and administer DB2 systems,
instances, databases and database objects, such as tables and views. From the
DB2 Control Center you can start other DB2 tools and wizards in order to
perform specific tasks.

Some of the key tasks that you can perform with the DB2 Control Center are:

� Manage instances and databases
� Manage database objects
� Manage security
� Manage data
� Perform backup and recovery operations
� Manage applications
� Analyze queries using Visual Explain to look at the access plans
� Launch other tools

To open the Control Center:

� On Windows, click Start → Programs → IBM DB2 → General
Administration Tools → Control Center.

� On Linux, open the IBM DB2 folder on the desktop and click Control Center.

The Control Center interface is available in three views:

� Basic: This view provides basic functionality. You can manage essential
objects, such as databases, tables, and stored procedures.

� Advanced: This view displays all objects and actions available in the Control
Center.

� Custom: With this view you can specify what options are to be displayed.
516 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 11-1 shows the DB2 Control Center with the Advanced interface.

Figure 11-1 DB2 Control Center

When you right-click an object in the left pane, a pop-up menu with available
administrative commands for that object is displayed. When you click the desired
task, a window or notebook opens to guide you through the steps required to
complete the task for the selected object.
 Chapter 11. Database administration and management 517

Figure 11-2 shows how you can launch the other DB2 tools from the Control
Center.

Figure 11-2 Using Control Center to open other tools

Table 11-1 lists the tools that can be launched from the Control Center, and their
functionality.

Table 11-1 Tools that can be accessed from Control Center

Tool Function

Replication Center Used to configure and administer replication
between a DB2 database and another relational
database (DB2 or non-DB2).

Satellite Administration Center Used to administer satellites and information that is
stored in the satellite tables.

Command Editor Used to run commands against a DB2 database.
Can be considered as a graphical version of the
DB2 CLP.

Task Center Used to create, schedule and run tasks.
518 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

The DB2 Control Center provides wizards which help you with administrative
tasks by providing you step-by-step guidance for completing each task.
Table 11-2 shows a list of commonly used wizards.

Table 11-2 DB2 Control Center Wizards

Health Center Used to monitor instances. This tool alerts you to
potential problems and provides recommendations
to resolve those problems.

Journal Used to list job execution history and view
notification log entries.

License Center Displays license and statistics for DB2 products
installed in the server.

Configuration Assistant Used to configure your DB2 clients to work with
database objects in the server.

Wizard Function

Backup Wizard Backup DB2 databases.

Create database Wizard Create a database.

Create table space Wizard Create a table space.

Design Advisor Analyzes the database workload and makes
performance-improving recommendations. This
wizard can generate recommendations for
creation of indexes, materialized query tables
(MQT), conversion of tables to multidimensional
clustering (MDC), redistribution of tables, and
deletion of unused indexes and MQTs.

Load Wizard Loads data into a table.

Configuration Advisor Provides recommendations about configuration
parameters changes to improve database
performance.

Restore Data Wizard Restore DB2 databases.

Configure Automatic Maintenance Configure automatic database maintenance
routines, such as backup, data
defragmentation, and automatic update
statistics.

Tool Function
 Chapter 11. Database administration and management 519

For more information about DB2 Control Center, refer to Chapter 7 “Using the
DB2 administration tools” in DB2 9.1 Administration Guide: Implementation,
SC10-4221.

11.2 Instance management commands

DB2 provides several commands to create and manage instances. These
commands can be categorized into two types:

� System commands, which are run directly from the operating system prompt,
or in a shell script

� CLP commands, which are run in a DB2 tool such as the CLP

Next we discuss the scope of these commands and their equivalents in Oracle, if
applicable, and give an example of the command usage.

11.2.1 Managing instances

In this section we discuss the commands used for instance management tasks,
such as creating, dropping, starting, and stopping instances.

db2icrt
The db2icrt command is used to create a DB2 instance.To issue the db2icrt
command, you must have root privileges on Linux and UNIX-based systems, or
Local Administrators’ authority on Windows operating systems.

The instance created is related to the DB2 copy installation path from where
db2icrt is performed. Only one instance can be created under a specific user
name on Linux and UNIX-based systems. If you need to create several DB2
instances in the same machine, you must have a user name for each instance.
(This restriction does not apply to Windows operating systems.)

Oracle equivalent command
You do not have a specific command to create an Oracle instance. Rather, the
instance is a combination of processes and memory allocated when a database
is started. The instance parameters are stored in an operating system file.

Examples
Example 11-2 shows how to create an instance on a Linux operating system.
This command creates a DB2 instance called db2inst1, and uses the user
db2fenc1 to run fenced user-defined functions and fenced stored procedures.
The users db2fenc1 and db2inst1 must exist in the operating system before the
command is used.
520 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 11-2 Creating a DB2 instance in a Linux operating system

db2icrt -u db2fenc1 db2inst1
DBI1070I Program db2icrt completed successfully.

Example 11-3 shows how to create an instance in a Windows operating system.
In this example, the instance db2inst1 is created as a Windows service.

Example 11-3 Creating a DB2 instance in a Windows operating system

db2icrt db2inst1
DB20000I The DB2ICRT command completed successfully.

db2idrop
The db2idrop command is used to drop a DB2 instance. You can only drop
instances located in the same DB2 copy installation path where you perform the
db2idrop command. To run db2idrop, you must have root privileges on Linux
and UNIX-based systems, or Local Administrators’ authority on Windows
operating systems.

The db2idrop command does not remove any databases under the instance. It is
therefore recommended that if the databases are no longer required they must
be removed first.

Oracle equivalent command
You do not have a specific command to drop an Oracle instance. Because an
Oracle instance is composed of a set of memory allocation and processes, when
you shut down the database the instance is also removed.

Example
Example 11-4 shows how to drop the DB2 instance db2inst1.

Example 11-4 Dropping a DB2 instance

db2idrop db2inst1
DB20000I The DB2IDROP command completed successfully.

db2start
The db2start command is used to start an instance in DB2. It starts the current
database manager instance background processes. It can be run either from the
operating system prompt or from the DB2 CLP. On Windows, it starts the
Windows service associated with the current instance. You can also start the
service directly from the Windows Control Panel, or from the DB2 Control Center.
 Chapter 11. Database administration and management 521

The user starting the DB2 instance must have SYSADM, SYSCTRL, or
SYSMAINT authority on the instance; be the instance owner on Linux and
UNIX-based systems; or have privileges to start a service on the Windows
operating system. The db2start command is equivalent to START DATABASE
MANAGER command.

DB2 db2start admin mode command is used to start the instance in quiesce
mode. Quiescing an instance is useful for maintenance activities. While the
instance is quiesced, only users with SYSADM, SYSMAINT, or SYSCTRL
authority can attach to the instance. You must manually unquiesce the instance,
to allow other users to connect to the instance, by using the UNQUIESCE
INSTANCE command.

Oracle equivalent command
DB2 db2start can be considered as being equivalent to the Oracle STARTUP
command. The DB2 db2start admin mode command is equivalent to running the
Oracle STARTUP RESTRICT command and then the ALTER SYSTEM
QUIESCE DATABASE command.

Example
Example 11-5 shows how to start a DB2 instance on a Linux and UNIX-based
operating system directly from the operating system prompt.

Example 11-5 Starting a DB2 instance on Linux and UNIX operating systems

db2start
02/22/2007 16:43:17 0 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

Example 11-6 shows how to start a DB2 instance in the admin mode on a
Windows operating system using DB2 CLP.

Example 11-6 Starting a DB2 instance in Windows operating system

db2 => db2start admin mode
DB20000I The DB2START command completed successfully.

db2stop
The db2stop command is used to stop an instance in DB2. It stops the current
database manager instance. It can be run either from the operating system
prompt, or from the DB2 CLP. On the Windows operating system, it stops the
Windows service associated with the current instance. You can also stop the
service directly from the Windows Control Panel, or from the DB2 Control Center.
522 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

To run the db2stop command, you must have SYSADM, SYSCTRL, or
SYSMAINT authority on the instance. db2stop does not stop an instance if there
are any applications connected to the database under the instance. You must
manually disconnect all applications using the FORCE APPLICATION
command, or issue a db2stop force command. The db2stop command is
equivalent to the STOP DATABASE MANAGER command.

Oracle equivalent command
The DB2 db2stop command can be considered as being equivalent to the
SHUTDOWN command. The DB2 db2stop force command is equivalent to
SHUTDOWN IMMEDIATE command.

Example
Example 11-7 shows how to stop an instance on Linux and UNIX-based
operating systems directly from the operating system prompt.

Example 11-7 Stopping an instance on Linux and UNIX-based operating systems

db2stop

02/22/2007 19:29:08 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.

Example 11-8 shows how to stop a DB2 instance with the FORCE option on
Windows using DB2 CLP.

Example 11-8 Stopping an instance in Windows using force parameter

db2 => db2stop
SQL1025N The database manager was not stopped because databases are still
active.

db2 => db2stop force
DB20000I The DB2STOP command completed successfully.

attach
The attach command is used to connect to an instance. You can attach to any
instance that is available, including remote instances.

Oracle equivalent command
The DB2 attach command can be considered as being equivalent to the
CONNECT command in Oracle. However, the CONNECT command in Oracle is
used to connect to both the instance and the database; by contrast, in DB2 the
CONNECT command connects only to a database.
 Chapter 11. Database administration and management 523

Example
Example 11-9 shows how to connect to an instance using the attach command.

Example 11-9 Attaching to an instance

db2 attach to db2inst1

 Instance Attachment Information

 Instance server = DB2/LINUX 9.1.1
 Authorization ID = DB2INST1
 Local instance alias = DB2INST1

detach
The detach command is used to remove the logical DB2 instance attachment.

Oracle equivalent command
The DB2 detach command can be considered as being equivalent to the
DISCONNECT command in Oracle.

Example
Example 11-10 shows how to detach from a current instance.

Example 11-10 Detaching from the current instance

db2 detach
DB20000I The DETACH command completed successfully.

db2iauto
The db2iauto command is used to enable or disable the auto-start of an instance
after each system restart on Linux and UNIX-based systems. It requires root
authority on the operating system or SYSADM authority in DB2. On the Windows
operating system, you can enable automatic startup of DB2 instances by
configuring the corresponding Windows service to restart automatically.

Oracle equivalent command
On the Windows operating system, you can also configure the Oracle service to
be automatically started after each system restart. On Linux and UNIX-based
operating systems, you must change a flag in the /etc/oratab file and then
configure the script dbstart to run automatically after each system restart.
524 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example
Example 11-11 shows how to configure an instance to auto-start.

Example 11-11 Configuring a DB2 instance to restart automatically

db2iauto -on db2inst1

Example 11-12 shows how to turn off the auto-start configuration of an instance.

Example 11-12 Disabling instance automatic restart

db2iauto -off db2inst1

11.2.2 Retrieving instance information

In this section we discuss the commands commonly used to retrieve information
about DB2 instances and installed products on the server.

db2ilist
The db2ilist command is used to list all DB2 instances created from the same
DB copy location that you are running the db2ilist command on.

Oracle equivalent command
There is no easy way to list all instances (or databases) in Oracle. On Linux and
UNIX-based systems, you can check the /etc/oratab file to find out which
databases are installed on the server, or run the ps -ef | grep pmon command
to check for the PMON processes that are running. The drawback of these
methods is that a database can exist on a server, but not be included in the
/etc/oratab file. There will be no PMON process if the database is not active
when the ps command is run. On a Windows operating system, you can check
the Windows services starting with “OracleService”.

Example
Example 11-13 shows how to list all DB2 existing instances from the same DB
copy location.

Example 11-13 Listing all DB2 instances

db2ilist
DB2
 Chapter 11. Database administration and management 525

db2level
The db2level command shows the current version and service level of the
installed DB2 products for the current DB copy location. It returns a different set
of information than db2ls, including, for example, whether the DB2 is running on
a 32-bit or a 64-bit operating system.

Oracle equivalent command
The select banner from v$version; query produces an output similar to
db2level.

Example
Example 11-14 shows a db2level command.

Example 11-14 Listing the current version of DB2 installed software

db2level

DB21085I Instance "db2inst1" uses "64" bits and DB2 code release "SQL09011"
with level identifier "01020107".
Informational tokens are "DB2 v9.1.0.1", "s061104", "U809676", and Fix Pack
"1".
Product is installed at "/opt/IBM/db2/V9.1".

db2ls
The db2ls command is used to list all the products and features installed on your
system. In Version 9, db2ls is the only supported method to query a DB2
product. In prior releases to DB2 9, you can use native operating system tools,
such as pkgadd, rpm, or SMIT to query DB2 products. During the installation
process, a symbolic link to db2ls is created in the /usr/local/bin directory.

The db2ls command is not supported on Windows platforms. For Windows
platforms, you can use the Default DB2 Selection wizard to list all installed DB2
copies on a machine.

Oracle equivalent command
Oracle stores information about installed products in an inventory. The inventory
location is specified using the /etc/oraInst.loc file on Linux and UNIX-based
systems, or in the registry for the Windows operating system. To list the product
releases you can use the Universal Installer tool, or execute opatch lsinventory
-detail for each Oracle Home. To list all Oracle Homes, use the opatch
lsinventory -all command.

However, for Linux and UNIX-based systems, it is possible to have several
different inventories on one server, so can be difficult to discover all Oracle
software installed in a system.
526 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Examples
Example 11-15 shows how to list all DB2 software copies installed on a Linux or
a UNIX-based system and its output. Note that the sample output is formatted
and only columns with pertinent data are shown.

Example 11-15 List of all DB2 copy installation software

db2ls

Install Path Level Fix Pack Install Date

/opt/IBM/db2/V9.1 9.1.0.1 1 Wed Jan 31 17:55:14 2007 CST

Example 11-16 shows how to list the installed products on a particular path. For
this example, we use the value returned in the Install Path column in
Example 11-15.

Example 11-16 List all installed products from a particular path

db2ls -q -p -b /opt/IBM/db2/V9.1

Install Path: /opt/IBM/db2/V9.1
Product Response File ID Level Fix Pack Product Description

ENTERPRISE_SERVER_EDITION 9.1.0.1 1 DB2 Enterprise Server
 Edition

Example 11-17 shows how to list all DB2 database features installed on a
particular path.

Example 11-17 db2ls command used to list all features from a particular path

db2ls -q -a -b /opt/IBM/db2/V9.1

Install Path: /opt/IBM/db2/V9.1

Feature Response File ID Level Fix Pack Feature Description

DB2_PRODUCT_MESSAGES_EN 9.1.0.1 1 Product Messages English
BASE_CLIENT 9.1.0.1 1 Base client support
JDK 9.1.0.1 1 IBM Software Development Kit
 (SDK) for Java(TM)
DB2_JAVA_HELP_EN 9.1.0.1 1 Java Help (HTML) - English
REPL_QSERVER 9.1.0.1 1 Replication with MQ Server
BASE_DB2_SERVER 9.1.0.1 1 Run-time Environment
SQL_PROCEDURES 9.1.0.1 1 SQL procedures
ICU_SUP 9.1.0.1 1 ICU Utilities
REPL_SERVER 9.1.0.1 1 SQL Replication Support
 Chapter 11. Database administration and management 527

BASE_DB2_ENGINE 9.1.0.1 1 Base server support
CONNECT_SUPPORT 9.1.0.1 1 Connect support
JAVA_SUPPORT 9.1.0.1 1 Java support
JAVA_COMMON_FILES 9.1.0.1 1 Java Common files
APPLICATION_DEVELOPMENT_TOOLS 9.1.0.1 1 Base application development
 tools
ADMINISTRATION_SERVER 9.1.0.1 1 Administration Server
COMMUNICATION_SUPPORT_TCPIP 9.1.0.1 1 Communication support - TCP/IP
DATABASE_PARTITIONING_SUPPORT 9.1.0.1 1 Parallel Extension
REPL_CLIENT 9.1.0.1 1 Replication tools
DB2_DATA_SOURCE_SUPPORT 9.1.0.1 1 DB2 data source support
INSTANCE_SETUP_SUPPORT 9.1.0.1 1 DB2 Instance Setup wizard
FIRST_STEPS 9.1.0.1 1 First Steps
DB2_WEB_TOOLS 9.1.0.1 1 DB2 Web Tools
ESE_PRODUCT_SIGNATURE 9.1.0.1 1 Product Signature for
 DB2 Enterprise Server Edition
XML_EXTENDER_SAMPLES 9.1.0.1 1 XML Extender samples
DB2_SAMPLE_APPLICATIONS 9.1.0.1 1 ADT sample programs
DB2_SAMPLE_DATABASE 9.1.0.1 1 Sample database source

11.2.3 Managing instance configuration parameters

In this section we discuss the commands used to retrieve and update the
database manager configuration parameters.

Get database manager configuration
The DB2 GET DATABASE MANAGER CONFIGURATION command is used to
retrieve the values of the configuration parameters for an instance, the database
manager (DBM). The parameter SHOW DETAIL shows the current value of
instance parameters, as well the value of parameters the next time you start the
instance. Using the show detail parameter, you can easily verify which
non-dynamic parameters will be changed in the next instance startup. Attaching
to the instance is not required unless the SHOW DETAIL parameter is used.

To simplify entering the command, you can use an abbreviated form of the
command: GET DBM CFG. You can also retrieve the DBM parameter
information by using the DBMCFG administrative view or the DBM_GET_CFG
table function.

Oracle equivalent command
To retrieve information about an instance, you can query the V$PARAMETER
view or run the SHOW PARAMETER command in SQL*Plus.
528 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example
Example 11-18 shows how to retrieve information about the current values of the
DBM parameters. Note that the sample output is formatted to fit in the page, and
not all rows are displayed.

Example 11-18 Retrieving DBM parameters current values

db2 get dbm cfg

Database Manager Configuration

 Node type = Enterprise Server Edition with local and remote clients

 Database manager configuration release level = 0x0b00

 CPU speed (millisec/instruction) (CPUSPEED) = 6.612818e-07
 Communications bandwidth (MB/sec) (COMM_BANDWIDTH) = 1.000000e+02

 Max number of concurrently active databases (NUMDB) = 8
 Federated Database System Support (FEDERATED) = YES

...

db2start/db2stop timeout (min) (START_STOP_TIME) = 10

Example 11-19 shows how to retrieve a list of current values for the DBM, as well
as values that will be in effect after the instance restart. Note that the sample
output is formatted to fit in the page and not all rows are displayed.

Example 11-19 Retrieving DBM parameters current and delayed values

db2 get dbm cfg show detail
SQL1427N An instance attachment does not exist.
db2 attach to db2inst1

 Instance Attachment Information

 Instance server = DB2/LINUX 9.1.1
 Authorization ID = DB2INST1
 Local instance alias = DB2INST1

db2 get dbm cfg show detail

 Database Manager Configuration

 Node type = Enterprise Server Edition with local and remote clients

Description Parameter Current Value Delayed Value
 Chapter 11. Database administration and management 529

Database manager configuration
 release level = 0x0b00

CPU speed (millisec/instruction)
 (CPUSPEED) = 6.612818e-07 6.612818e-07
Communications bandwidth (MB/sec)
 (COMM_BANDWIDTH) = 1.000000e+02 1.000000e+02

Max number of concurrently active
 databases (NUMDB) = 8 8
Federated Database System Support
 (FEDERATED) = YES YES

...

db2start/db2stop timeout (min)
(START_STOP_TIME) = 10 10

Example 11-20 shows how to use the DBM CFG administrative view to retrieve
all database manager configuration parameters.

Example 11-20 Retrieving DBM parameters using DBMCFG administrative view

db2 => select name, substr(value,1,20) as running, substr(deferred_value,1,20)
as DEFERRED from sysibmadm.dbmcfg

NAME RUNNING DEFERRED
-------------------------------- ------------------ -----------------
agent_stack_sz 0 0
agentpri -1 -1
aslheapsz 15 15
audit_buf_sz 0 0
authentication SERVER SERVER
catalog_noauth NO NO
clnt_krb_plugin
clnt_pw_plugin
comm_bandwidth 1.000000e+02 1.000000e+02
conn_elapse 10 10
cpuspeed 6.770267e-07 6.770267e-07
dft_account_str
dft_mon_bufpool OFF OFF
dft_mon_lock OFF OFF
dft_mon_sort OFF OFF
dft_mon_stmt OFF OFF
dft_mon_table OFF OFF
dft_mon_timestamp ON ON
dft_mon_uow OFF OFF
530 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

dftdbpath /home/db2inst1 /home/db2inst1
diaglevel 3 3
diagpath
...
util_impact_lim 10 10
nodetype DPF_SERVER DPF_SERVER
release 0x0b00 0x0b00
federated_async 0 0
fcm_num_channels 2048 2048

Update database manager configuration
The UPDATE DATABASE MANAGER CONFIGURATION command is used to
update any parameter in the database manager configuration file. Only users
with SYSADM authority can update the DBM parameters. An instance
attachment is required only when you update parameters in a remote instance,
or when you update parameters online on the local instance.

You can specify if your change is dynamically applied to DBM by using the
IMMEDIATE clause. By using the DEFERRED clause, only the DBM
configuration file is updated, and the change will take effect on the next DB2
instance restart. You can also let DB2 automatically adjust some DBM
parameters by using the AUTOMATIC clause. You can disable the DB2
automatic tuning for the configuration parameter by using the MANUAL clause.

To simplify entering the command, you can use an abbreviated form of the
command: UPDATE DBM CFG.

Oracle equivalent command
In Oracle, you use the ALTER SYSTEM command to update instance
parameters. Using the SCOPE clause, you can choose whether the update is
dynamically applied to the instance, or only written in the initialization file.

Example
Example 11-21 shows how to dynamically update a parameter in the DBM
configuration file. As shown in the example, we update the dynamic parameter
DIAGLEVEL, and verify whether the change has become effective.

Example 11-21 Change a dynamic parameter

db2 => get dbm cfg
...
Diagnostic error capture level (DIAGLEVEL) = 3
...

db2 => update dbm cfg using DIAGLEVEL 1
 Chapter 11. Database administration and management 531

DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.

db2 => get dbm cfg
...
Diagnostic error capture level (DIAGLEVEL) = 3
...

In Example 11-22, we update a non-dynamic parameter in the DBM file. Note
that the change is not dynamically applied to the instance.

Example 11-22 Updating DBM for non-dynamic parameter

db2 => get dbm cfg show detail
...
Database monitor heap size (4KB) (MON_HEAP_SZ) = 90 90
...

db2 => update dbm cfg using MON_HEAP_SZ 1000
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.
SQL1362W One or more of the parameters submitted for immediate modification
were not changed dynamically. Client changes will not be effective until the
next time the application is started or the TERMINATE command has been issued.
Server changes will not be effective until the next DB2START command.

db2 => get dbm cfg show detail
...
Database monitor heap size (4KB) (MON_HEAP_SZ) = 90 1000
...

In order to have the update become effective, an instance restart is required.
Example 11-23 shows the restart of the instance, and that the updated
parameter has become effective after the restart.

Example 11-23 Restarting the instance to make non-dynamic parameters become
effective

db2 => db2stop
DB20000I The DB2STOP command completed successfully.

db2 => db2start
DB20000I The DB2START command completed successfully.

db2 => attach to db2inst1

 Instance Attachment Information
532 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 Instance server = DB2/LINUX 9.1.1
 Authorization ID = DB2INST1
 Local instance alias = DB2INST1

db2 => get dbm cfg show detail
...
Database monitor heap size (4KB) (MON_HEAP_SZ) = 1000 1000
...

11.2.4 Setting registry variables

DB2 registry variables are used to control the database environment. Four
different registry profiles are available, and each controls the database
environment at a different level. The registry profiles available are:

� DB2 instance level profile registry

This registry stores settings for a particular instance. Values defined in this
level override their settings at the global level. When setting the variable,
specify the instance level variables using the parameter -i instance_name.

� DB2 global level profile registry

This registry is visible to all instances created under the same DB copy. If an
environment variable is not set for a particular instance, this registry is used.
When setting the variable, specify the instance level variables using the
parameter -g.

� DB2 instance node level profile registry

This registry contains variable settings specific to a database partition in a
partitioned database. Values defined in this level override their settings at the
instance and global levels. When setting the variable, specify the instance
node level variables using the parameter -i instance_name nodenum.

� DB2 instance profile registry

This registry contains a list of all instance names associated with the current
copy.

In addition to the registry variables, DB2 also uses specific operating system
environment variables to control the database environment. You can use the
EXPORT command on Linux and UNIX-based systems, or the set command in
Windows operating systems, to define an environment variable.

DB2 configures the operating environment by checking the registry values and
the environment variables in the following order:

1. Environment variables
2. Instance node level profile
 Chapter 11. Database administration and management 533

3. Instance level profile
4. Global level profile

db2set
The db2set command is used to display, set, or remove DB2 registry variables.

Oracle equivalent command
Oracle uses operating system variables (such as ORACLE_SID, NLS_LANG,
and so on) to specify the characteristics of the environment variables. Oracle
uses the information stored in the LISTENER.ORA and TNSNAMES.ORA to
configure its network.

Examples
Example 11-24 shows how to list all defined registry variables in the profile
registry.

Example 11-24 List all registry variables

db2set -all

[e] DB2PATH=C:\Program Files\IBM\SQLLIB_2
[i] DB2ACCOUNTNAME=TONGA\db2inst2
[i] DB2INSTOWNER=TONGA
[i] DB2PORTRANGE=60004:60007
[i] DB2INSTPROF=C:\PROGRA~1\IBM\SQLLIB_2
[i] DB2COMM=TCPIP
[g] DB2_EXTSECURITY=YES
[g] DB2SYSTEM=TONGA
[g] DB2PATH=C:\Program Files\IBM\SQLLIB_2
[g] DB2INSTDEF=DB2_01

In the db2set -all command output, the first letter in the brackets [] identifies
the scope of the registry variable:

e Denotes the environment variable
n Denotes the node level registry
i Denotes the instance level registry
g Denotes the global level registry

Example 11-25 shows how to specify a variable at the global level.

Example 11-25 Setting a variable at the global level

db2set DB2CODEPAGE=1208 -g
534 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

11.3 Database management

DB2 provides several commands to create and manage databases. In this
section, we discuss the DB2 commands commonly used by DBAs for their
database management tasks.

We discuss the scope of the commands, their equivalent command in Oracle if
applicable, and give an example of the command usage.

11.3.1 Managing databases

In this section, we discuss how to create, drop, activate and deactivate a
database. We also discuss how to connect and terminate a connection to a
database.

Create database
The CREATE DATABASE command is used to create DB2 databases within an
instance. You can specify several parameters to control the database
characteristics, such as the code set, where the data files are stored, the
database page size, and the table space management clauses. You must have
SYSADM or SYSCTRL authority to create a database.

Oracle equivalent command
The Oracle CREATE DATABASE command is the equivalent of DB2 CREATE
DATABASE command. However, the parameters passed to the command for
each RDBMS are completely different.

Example
Example 11-26 shows how to create a database specifying the code set,
territory, and automatic storage management.

Example 11-26 Creating a database

db2 => create database db2db9 automatic storage yes using codeset utf-8
territory US
DB20000I The CREATE DATABASE command completed successfully.

Note: If you do not specify a parameter to define the scope when setting a
registry variable, the default is instance (-i).
 Chapter 11. Database administration and management 535

Drop database
The DROP DATABASE command is used to drop a database. It deletes the
database contents and all the log files for the database, uncatalogs the
database, and deletes the database subdirectory. Before you drop a database,
you must disconnect all users from the database. You must have SYSADM or
SYSCTRL authority in order to use this command.

If you only want to remove the database from the system catalog, but not remove
the database physically, then use the UNCATALOG DATABASE command
instead of DROP DATABASE.

Oracle equivalent command
The Oracle DROP DATABASE command is equivalent to the DB2 DROP
DATABASE command.

Example
Example 11-27 shows how to drop a database.

Example 11-27 Dropping a database

db2 => drop database db2db9
DB20000I The DROP DATABASE command completed successfully.

Activate database
The ACTIVATE DATABASE command is used to start all necessary database
services. If a database is not started, the first application that connects to the
database automatically starts the database, but it waits for the database
initialization.

You must have SYSADM, SYSCTRL or SYSMAINT authority to activate a
database.

Oracle equivalent command
Oracle databases are started through the STARTUP command.

Example
Example 11-28 shows how to activate a database.

Example 11-28 Activating a database

db2 activate database db2db9
DB20000I The ACTIVATE DATABASE command completed successfully.
536 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Deactivate database
The DEACTIVATE DATABASE command stops a specific DB2 database. The
stop instance command db2stop stops all databases under the instance.

You must have SYSADM, SYSCTRL or SYSMAINT authority to activate a
database.

Oracle equivalent command
The DB2 DEACTIVATE DATABASE command can be considered to be an
equivalent of the SHUTDOWN command in Oracle. However, the Oracle
shutdown command stops the instance and the database. In contrast, the DB2
DEACTIVATE DATABASE command only stops the database. You must use
db2stop to stop a DB2 instance.

Examples
Example 11-29 shows how to deactivate a database.

Example 11-29 Deactivating a database

db2 deactivate database db2db9
DB20000I The DEACTIVATE DATABASE command completed successfully

Connect to a database
The CONNECT command is used to connect to a database.

Oracle equivalent command
The equivalent Oracle command is CONNECT.

Examples
Example 11-30 shows how to display the current connection information.

Example 11-30 Displaying current connection information

db2 => connect

 Database Connection Information

 Database server = DB2/AIX64 9.1.1
 SQL authorization ID = DB2INST1
 Local database alias = DB2DB9
 Chapter 11. Database administration and management 537

Example 11-31 shows how to connect to a database using a user name and a
password.

Example 11-31 Connecting to a database specifying user name and password

db2 => connect to remotedb user db2inst1 using user_pwd

 Database Connection Information

 Database server = DB2/AIX64 9.1.1
 SQL authorization ID = DB2INST1
 Local database alias = REMOTEDB

QUIT, CONNECT RESET, and TERMINATE
Note the following differences between these commands:

� The QUIT command exits the CLP interactive input mode and returns to the
operating system command prompt. It does not break the database
connection or the back-end process.

� The CONNECT RESET command breaks the connection, but does not
terminate the back-end process.

� The TERMINATE command explicitly terminates the database connection
and the back-end process.

Oracle equivalent command
The DB2 TERMINATE command can be considered as being equivalent to the
Oracle DISCONNECT command.

Examples
Example 11-32 shows how to terminate the current connection.

Example 11-32 Terminating a back-end process

db2 => terminate
DB20000I The TERMINATE command completed
successfully.

11.3.2 Managing node and database directories

DB2 maintains the information on remote nodes locally in the node directory.
DB2 also maintains a list of all the configured databases locally in the database
directory. In this section, we discuss the commands used to manage these two
directories.
538 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Catalog TCPIP node and database
The CATALOG TCPIP NODE command is used to catalog a remote node. When
cataloging a remote node, you can specify the host name or IP address, the port,
the remote instance and an alias for the remote node.

The CATALOG DATABASE command is used to catalog an existing database in
the local database directory. The database being cataloged can be local or
remote. To catalog a remote database, you must first catalog the node. You can
also use the CATALOG DATABASE command to maintain multiple aliases for the
same database.

You must have the SYSADM or SYSCTRL authority to catalog a node or a
database. To refresh the catalog operations, you must run the TERMINATE
command.

Oracle equivalent command
In Oracle, you can add an alias to the database connect descriptors to the
tnsnames.ora file, and use the alias to connect to the databases.

Example
Example 11-33 shows how to catalog a remote node. The remote_hostname
node is locally identified as rmt_node.

Example 11-33 Cataloging a remote node

db2 => catalog tcpip node rmt_node remote remote_hostname server 60000
remote_instance db2inst1
DB20000I The CATALOG TCPIP NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

db2 => terminate
DB20000I The TERMINATE command completed successfully.

Example 11-34 shows how to catalog a DB2 database in a remote node.

Example 11-34 Cataloging a database

db2 => catalog database DB2DB9 as remotedb at node rmt_node
DB20000I The CATALOG DATABASE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

db2 => terminate
DB20000I The TERMINATE command completed successfully.
 Chapter 11. Database administration and management 539

Uncatalog TCPIP node and database
The UNCATALOG TCPIP NODE command and the UNCATALOG DATABASE
command are used to remove the nodes and cataloged databases, respectively,
from the local directory. Both local and remote databases can be uncataloged. If
you uncatalog a node used by a remote database, it is not possible to connect to
the remote database.

You must have SYSADM or SYSCTRL authority to uncatalog a node or a
database.

Oracle equivalent command
In Oracle, you can remove the alias from the tnsnames.ora file.

Example
Example 11-35 shows how to uncatalog a remote node.

Example 11-35 Uncataloging a remote node.

db2 => uncatalog node rmt_node
DB20000I The UNCATALOG NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache
isrefreshed.

db2 => terminate
DB20000I The TERMINATE command completed successfully.

Example 11-36 shows how to uncatalog a database.

Example 11-36 Uncataloging a database

db2 => uncatalog database db2remote
DB20000I The UNCATALOG DATABASE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

db2 => terminate
DB20000I The TERMINATE command completed successfully.

List node directory and database directory
The LIST NODE DIRECTORY command and the LIST DATABASE
DIRECTORY command are used to list the node directory contents and the
database directory contents, respectively. For the LIST NODE DIRECTORY
command, the SHOW DETAIL clause shows more detailed information.
540 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Oracle equivalent command
There is no equivalent command in Oracle to list the database directory. You can
manually list the tnsnames.ora file contents to verify all databases configured for
access.

Example
Example 11-37 shows how to list the node directory contents.

Example 11-37 Showing node directory contents

db2 => list node directory

 Node Directory

 Number of entries in the directory = 1

Node 1 entry:

Node name = RMT_NODE
 Comment =
 Directory entry type = LOCAL
 Protocol = TCPIP
 Hostname = remote_hostname
 Service name = 60000

Example 11-38 shows how to list the database directory contents.

Example 11-38 Showing database directory contents

db2 => list database directory

 System Database Directory

 Number of entries in the directory = 2

Database 1 entry:

 Database alias = DB2_EMP
 Database name = DB2_EMP
 Local database directory = C:
 Database release level = b.00
 Comment = A sample database
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

Database 2 entry:
 Chapter 11. Database administration and management 541

 Database alias = REMOTEDB
 Database name = DB2DB9
 Node name = RMT_NODE
 Database release level = b.00
 Comment =
 Directory entry type = Remote
 Catalog database partition number = -1
 Alternate server hostname =
 Alternate server port number =

11.3.3 Managing database configuration parameters

DB2 stores database configuration parameters in the database configuration file.
In this section, we discuss the commands used to retrieve and update these
parameters.

GET database configuration parameter
The DB2 GET DATABASE CONFIGURATION PARAMETER command is used
to return the values of the configuration parameters of a database, or the
database configuration file (DB). The parameter SHOW DETAIL shows the
current value of database parameters, as well the value of parameters the next
time you activate the database. By using the SHOW DETAIL parameter, you can
easily verify which non-dynamic parameters will be changed during the next
database activation. No database connection is required to run the command
unless the SHOW DETAIL parameter is used.

To simplify entering the command, you can use an abbreviated form of the GET
DB CFG command. You can also retrieve the DB parameter information by using
the DBCFG administrative view or the DB_GET_CFG table function.

Oracle equivalent command
The DB2 GET DATABASE CONFIGURATION PARAMETER retrieves a series
of information for you in one command. In Oracle, you need to query different
views to retrieve similar data.

For example, you can select information from V$DATABASE to retrieve information
about the database; from V$INSTANCE for information about the instance; from
V$PARAMETER for memory parameter information; and from V$LOGFILE for redo log
file information.

Example
Example 11-39 shows how to list all database configuration parameters.
542 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example 11-39 Listing all database configuration parameters

db2 => get db cfg

 Database Configuration for Database

 Database configuration release level = 0x0b00
 Database release level = 0x0b00

 Database territory = C
 Database code page = 1208
 Database code set = UTF-8
 Database country/region code = 1
 Database collating sequence = UCA400_NO
 Alternate collating sequence (ALT_COLLATE) =
 Database page size = 4096

 Dynamic SQL Query management (DYN_QUERY_MGMT) = DISABLE

 Discovery support for this database (DISCOVER_DB) = ENABLE

 Restrict access = NO
 Default query optimization class (DFT_QUERYOPT) = 5
 Degree of parallelism (DFT_DEGREE) = 1
 Continue upon arithmetic exceptions (DFT_SQLMATHWARN) = NO
 Default refresh age (DFT_REFRESH_AGE) = 0
 Default maintained table types for opt (DFT_MTTB_TYPES) = SYSTEM
 Number of frequent values retained (NUM_FREQVALUES) = 10
 Number of quantiles retained (NUM_QUANTILES) = 20

 Backup pending = NO

 Database is consistent = YES
 Rollforward pending = NO
 Restore pending = NO

 Multi-page file allocation enabled = YES

...

Automatic maintenance (AUTO_MAINT) = ON
 Automatic database backup (AUTO_DB_BACKUP) = OFF
 Automatic table maintenance (AUTO_TBL_MAINT) = ON
 Automatic runstats (AUTO_RUNSTATS) = ON
 Automatic statistics profiling (AUTO_STATS_PROF) = OFF
 Automatic profile updates (AUTO_PROF_UPD) = OFF
 Automatic reorganization (AUTO_REORG) = OFF
 Chapter 11. Database administration and management 543

Example 11-40 shows how to retrieve detailed information about the database
configuration parameters.

Example 11-40 Listing detailed information about database configuration parameter

db2 => get db cfg show detail

 Database Configuration for Database

 Description Parameter Current Delayed
 Value Value

 Database configuration release level = 0x0b00
 Database release level = 0x0b00

 Database territory = US
 Database code page = 819
 Database code set = ISO8859-1
 Database country/region code = 1
 Database collating sequence = UNIQUE UNIQUE
 Alternate collating sequence (ALT_COLLATE) =
 Database page size = 4096 4096

 Dynamic SQL Query management (DYN_QUERY_MGMT) = DISABLE DISABLE

 Discovery support for this database (DISCOVER_DB) = ENABLE ENABLE

 Restrict access = NO
 Default query optimization class (DFT_QUERYOPT) = 5 5
 Degree of parallelism (DFT_DEGREE) = 1 1
 Continue upon arithmetic exceptions
 (DFT_SQLMATHWARN) = NO NO
 Default refresh age (DFT_REFRESH_AGE) = 0 0
 Default maintained table types for opt
 (DFT_MTTB_TYPES) = SYSTEM SYSTEM
 Number of frequent values retained(NUM_FREQVALUES) = 10 10
 Number of quantiles retained (NUM_QUANTILES) = 20 20

 Backup pending = NO

 Database is consistent = YES
 Rollforward pending = NO
 Restore pending = NO

Multi-page file allocation enabled = YES
...
Automatic maintenance (AUTO_MAINT) = ON ON
 Automatic database backup (AUTO_DB_BACKUP) = OFF OFF
544 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 Automatic table maintenance (AUTO_TBL_MAINT) = ON ON
 Automatic runstats (AUTO_RUNSTATS) = ON ON
 Automatic statistics profiling(AUTO_STATS_PROF) = OFF OFF
 Automatic profile updates (AUTO_PROF_UPD) = OFF OFF
 Automatic reorganization (AUTO_REORG) = OFF OFF

Example 11-41 shows how to retrieve the database configuration parameters by
using the DBCFG administrative view.

Example 11-41 Retrieving database configuration parameters using DBCFG view

db2 => select name, substr(value,1,20) as running, substr(deferred_value,1,20)
as DEFERRED from sysibmadm.dbcfg

NAME RUNNING DEFERRED
-------------------------------- ------------------- ----------------
app_ctl_heap_sz 128 128
appgroup_mem_sz 30000 30000
applheapsz 256 256
archretrydelay 20 20
auto_maint ON ON
auto_db_backup OFF OFF
auto_tbl_maint ON ON
auto_runstats ON ON
auto_stats_prof OFF OFF
auto_prof_upd OFF OFF
auto_reorg OFF OFF
autorestart ON ON
avg_appls 1 1
blk_log_dsk_ful NO NO
catalogcache_sz -1 -1
chngpgs_thresh 60 60
database_memory 18128 18128
dbheap 1200 1200
dft_degree 1 1
...
db_mem_thresh 10 10
db_collname UCA400_NO UCA400_NO
restrict_access NO NO

Update database configuration parameter
The UPDATE DATABASE CONFIGURATION command is used to update any
parameter in the database configuration (DB CFG) file. Only users with
SYSADM, SYSCTRL and SYSMAINT authority can update the parameters in the
database. It is recommended to have an active database connection while
updating the DB configuration file for an active database. It is also mandatory to
update a parameter online.
 Chapter 11. Database administration and management 545

You can specify whether your change is dynamically applied to DB CFG by using
the IMMEDIATE clause. The DEFERRED clause is used to update only the DB
configuration file. IMMEDIATE is the default action for DB updates, but requires
an active database connection. If you update only the DB configuration file, then
it is necessary to deactivate and reactivate the DB2 database for the update to
become effective.

You can also let DB2 automatically adjust some DB CFG parameters using the
clause AUTOMATIC. You can disable the DB2 automatic tuning for the
configuration parameter by using the MANUAL clause.

To simplify entering the command, you can use an abbreviated form of the
UPDATE DB CFG command.

Oracle equivalent command
The DB2 UPDATE DB CFG command allows you to update all the database
parameters. By contrast, in Oracle you need to use different commands. For
example, you can use the ALTER SYSTEM command to alter the archive log
destinations, or the ALTER DATABASE command to change database recovery
options.

Another important aspect to consider is that you can specify memory parameters
for a DB2 database. By contrast, in Oracle these parameters are only specified
at the instance level. Therefore, the DB2 UPDATE DB CFG updating memory
parameters can be considered as the ALTER SYSTEM commands with Oracle
instance memory parameters specified.

Example
Example 11-42 shows how to update a database configuration parameter.

Example 11-42 Update a database configuration parameter

db2 => update db cfg using DBHEAP 10000
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully

11.3.4 Managing table spaces

In this section we discuss the commands to create, alter, drop, and list table
spaces in a DB2 database. The commands for these operations are similar in DB
and Oracle.

Create table space
The CREATE TABLESPACE statement is used to create a table space within the
database. You can specify all table space parameters, such as containers, type
546 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

of table space, page size, and so on. If your database is using automatic storage
management, DB2 automatically chooses all the values for you.

You must have SYSADM or SYSCTRL authority to create a table space. A more
detailed discussion about table spaces can be found in 2.4.8, “Table space
design” on page 56.

Oracle equivalent command
The equivalent Oracle command is CREATE TABLESPACE.

Example
Example 11-43 shows how to create a table space in DB2.

Example 11-43 Creating a regular table space

db2 => create tablespace app_tbs managed by database using (file
'/db2/tbs/app_tbs_1.dbf' 100m)
DB20000I The SQL command completed successfully.

Alter table space
The ALTER TABLESPACE statement is used to modify a table space
characteristic. Using the ALTER TABLESPACE statement you can:

� Add, resize, or drop a container from a DMS table space

� Modify the PREFETCHSIZE, BUFFERPOOL, OVERHEAD or
TRANSFERRATE settings for a table space

� Modify the file system caching policy for a table space

You must have SYSCTRL or SYSADM authority to alter a table space.

Oracle equivalent command
The equivalent Oracle command is ALTER TABLESPACE.

Example
Example 11-44 shows how to add, drop, and resize a container in an existing
DMS table space.

Example 11-44 Adding, dropping and resizing containers in a DMS table space

--Adding a container
db2 => alter tablespace APP_TBS add (file '/db2/tbs/app_tbs_2.dbf' 300)
DB20000I The SQL command completed successfully.
-- Resizing the container
db2 => alter tablespace APP_TBS resize (file '/db2/tbs/app_tbs_2.dbf' 1000)
DB20000I The SQL command completed successfully.
 Chapter 11. Database administration and management 547

--Dropping the container
db2 => alter tablespace APP_TBS drop (file '/db2/tbs/app_tbs_2.dbf')
DB20000I The SQL command completed successfully.

Drop table space
The DROP TABLESPACE statement is used to drop a table space.

Oracle equivalent command
The equivalent Oracle command is DROP TABLESPACE.

Example
Example 11-45 shows how to drop a table space.

Example 11-45 Dropping a table space

db2 => drop tablespace APP_TBS
DB20000I The SQL command completed successfully.

List table spaces
The LIST TABLESPACE command is used to list all existing table spaces of the
current database. You can use the clause SHOW DETAILS to retrieve detailed
information about the table spaces. To retrieve similar information, you can also
use the TBSP_UTILIZATION administrative view.

The State column in the output of the LIST TABLESPACE command indicates
the state of the table space in hexadecimal notation. You can use the db2tbst
command to obtain the state. 0x0 is the Normal state.

Oracle equivalent command
You can use V$TABLESPACE or DBA_TABLESPACES views to retrieve
information about table spaces.

Example
Example 11-46 shows how to retrieve detailed information about the table
spaces in the current database. The sample output only shows the information
for the first and the last table spaces.

Example 11-46 List all table spaces information using LIST TABLESPACE command

db2 => list tablespaces show detail

 Tablespaces for Current Database

 Tablespace ID = 0
 Name = SYSCATSPACE
548 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 Type = Database managed space
 Contents = All permanent data. Regular table
space.
 State = 0x0000
 Detailed explanation:
 Normal
 Total pages = 16384
 Useable pages = 16380
 Used pages = 11040
 Free pages = 5340
 High water mark (pages) = 11040
 Page size (bytes) = 4096
 Extent size (pages) = 4
 Prefetch size (pages) = 4
 Number of containers = 1

...

Tablespace ID = 8
 Name = APP_TBS
 Type = Database managed space
 Contents = All permanent data. Large table space.
 State = 0x0000
 Detailed explanation:
 Normal
 Total pages = 25600
 Useable pages = 25568
 Used pages = 96
 Free pages = 25472
 High water mark (pages) = 96
 Page size (bytes) = 4096
 Extent size (pages) = 32
 Prefetch size (pages) = 32
 Number of containers = 1

Example 11-47 shows how to retrieve table space information using the
TBSP_UTILIZATION administrative view.

Example 11-47 Listing table space information using TBSP_UTILIZATION administrative
view

db2 => SELECT TBSP_ID as ID, SUBSTR(TBSP_NAME,1,20) as TBSP_NAME, TBSP_TYPE,
TBSP_CONTENT_TYPE as CONTENT_TYPE, TBSP_STATE FROM SYSIBMADM.TBSP_UTILIZATION

ID TBSP_NAME TBSP_TYPE CONTENT_TYPE TBSP_STATE
-- ------------------- --------- ------------ ----------
 0 SYSCATSPACE DMS ANY NORMAL
 1 TEMPSPACE1 SMS SYSTEMP NORMAL
 2 USERSPACE1 DMS LARGE NORMAL
 Chapter 11. Database administration and management 549

 3 IBMDB2SAMPLEREL DMS LARGE NORMAL
 4 IBMDB2SAMPLEXML DMS LARGE NORMAL
 5 SYSTOOLSPACE DMS LARGE NORMAL
 6 SYSTOOLSTMPSPACE SMS USRTEMP NORMAL
 7 DEMOTMP SMS USRTEMP NORMAL
 8 APP_TBS DMS LARGE NORMAL

List table space container
The LIST TABLESPACE CONTAINER command is used to list all the containers
for a specific table space. The required parameter is the table space number of
the table space that you want to list the containers for. You can gather this
information from the output of the LIST TABLESPACES command. The SHOW
DETAIL clause provides more detailed information about the container.

You can also use the CONTAINER_UTILIZATION or SNAPCONTAINER
administrative views to retrieve similar information.

Oracle equivalent command
To list the containers (or Oracle datafiles) for a table space, you can use the
V$DATAFILE or DBA_DATA_FILES views.

Example
Example 11-48 shows how to list the containers for a specific table space.

Example 11-48 Listing existing containers for a table space

db2 => list tablespace containers for 8

 Tablespace Containers for Tablespace 8

 Container ID = 0
 Name = /db2/tbs/app_tbs_1.dbf
 Type = File

Example 11-49 shows how to use the CONTAINER_UTILIZATION administrative
view to retrieve similar information.

Example 11-49 Listing containers using the CONTAINER_UTILIZATION view

db2 => SELECT SUBSTR(TBSP_NAME,1,20) AS TBSP_NAME, INT(TBSP_ID) AS TID,
SUBSTR(CONTAINER_NAME,1,25) AS CONTAINER_NAME, INT(CONTAINER_ID) AS CID,
CONTAINER_TYPE, INT(TOTAL_PAGES) AS TOT_PAGES FROM
SYSIBMADM.CONTAINER_UTILIZATION WHERE TBSP_ID = 8

TBSP_NAME TID CONTAINER_NAME CID CONTAINER_TYPE TOT_PAGES
----------- ---- ----------------------- --- --------------- ---------
550 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

APP_TBS 8 /db2/tbs/app_tbs_1.dbf 0 FILE_EXTENT_TAG 25600

11.3.5 Managing buffer pools

A buffer pool is memory used to cache table and index data pages as they are
being read from the disk, or being modified. The buffer pool improves database
system performance by allowing data to be accessed from the memory instead
of from the disk. You can create more than one buffer pool for a database, each
one with a different memory size or page size. You can assign a buffer pool to a
table space or a temporary table space with the same page.

In this section we discuss how to create, alter, and drop buffer pools.

Create buffer pool
The CREATE BUFFERPOOL statement is used to create a buffer pool. You can
specify the size of the buffer pool or use the default value, which is the value of
the database configuration parameter PAGESIZE. You can have the memory
allocated at the time the buffer pool is created by using the keyword
IMMEDIATE. If the keyword DEFERRED is used, only the buffer pool definition is
created and memory allocation takes place at the next database restart.
IMMEDIATE is the default behavior.

You must have SYSADM or SYSCTRL authority to create a buffer pool.

Oracle equivalent command
A DB2 buffer pool is, in concept, equivalent to the Oracle database buffer cache.
In Oracle, you can create one database buffer cache for every different block
size (equivalent to DB2 page size). All database buffer caches are instance
parameters stored in the instance parameter file (init.ora or spfile).

Example
Example 11-50 shows how to create a buffer pool for a DB2 database. In this
example, the buffer pool will be created using the database default page size.

Example 11-50 Creating a buffer pool

db2 => create bufferpool BP_TEST size 50000
DB20000I The SQL command completed successfully.

Alter buffer pool
The ALTER BUFFERPOOL statement is used to change buffer pool
characteristics, such as the size or for automatic resizing. You must have
SYSADM or SYSCTRL authority to alter a buffer pool.
 Chapter 11. Database administration and management 551

Oracle equivalent command
To alter a database buffer cache you can use the ALTER SYSTEM command, or
change the initialization file.

Example
Example 11-51 shows how to alter the size of a buffer pool.

Example 11-51 Altering a buffer pool

db2 => alter bufferpool BP_TEST size 10000
DB20000I The SQL command completed successfully.

Drop buffer pool
The DROP BUFFERPOOL statement is used to drop a buffer pool. You must
have at least one buffer pool active in a database.

Oracle equivalent command
You can reset the value of database buffer caches. As in DB2, you must have at
least the default buffer cache active in an instance.

Examples
Example 11-52 shows how to drop a buffer pool.

Example 11-52 Dropping a buffer pool

db2 => drop bufferpool BP_TEST
DB20000I The SQL command completed successfully.

Retrieve buffer pool information
You can use the SNAPBP and SNAPBP_PART administrative views and
SNAP_GET_BP and SNAP_GET_BP_PART table functions to retrieve
information about DB2 buffer pools.

The SNAPBP administrative view returns information related to buffer pool
performance, such as page reads and writes from and to the buffer pool. The
SNAPBP_PART administrative view returns information related to the buffer pool
itself, such as the current size.

You can also use the GET SNAPSHOT FOR BUFFERPOOLS database
command to retrieve information about DB2 buffer pools. All these commands
return buffer pool information for the current database.
552 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Oracle equivalent command
You can use the V$PARAMETER view to list the existing database buffer cache
values and the V$SYSSTAT view to check for performance information about the
database buffer caches.

Examples
Example 11-53 shows how to retrieve information about buffer pools using the
SNAPBP_PART administrative view.

Example 11-53 Retrieving buffer pool information using the SNAPBP_PART view

db2 => SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,15) AS BP_NAME,
BP_CUR_BUFFSZ, BP_NEW_BUFFSZ FROM SYSIBMADM.SN
APBP_PART

DB_NAME BP_NAME BP_CUR_BUFFSZ BP_NEW_BUFFSZ
-------- --------------- -------------------- --------------------
DB2_EMP IBMDEFAULTBP 1012 1012
DB2_EMP TESTEBP 50000 50000
DB2_EMP BP_TEST 10000 10000
DB2_EMP IBMSYSTEMBP4K 16 16
DB2_EMP IBMSYSTEMBP8K 16 16
DB2_EMP IBMSYSTEMBP16K 16 16
DB2_EMP IBMSYSTEMBP32K 16 16

Example 11-54 shows how to retrieve similar information using GET SNAPSHOT
FOR BUFFERPOOLS INFORMATION. The sample output has been formatted to
show only information about the BP_TEST buffer pool.

Example 11-54 Retrieving information about buffer pool using GET SNAPSHOT

db2 => get snapshot for bufferpools on db2_emp

...

Bufferpool Snapshot

Bufferpool name = BP_TEST
Database name = DB2_EMP
Database path =
/db2/data/db2inst1/NODE0000/SQL00001/
Input database alias = DB2_EMP
Snapshot timestamp = 02/27/2007 14:51:58.909314

Buffer pool data logical reads = Not Collected
Buffer pool data physical reads = Not Collected
Buffer pool temporary data logical reads = Not Collected
Buffer pool temporary data physical reads = Not Collected
 Chapter 11. Database administration and management 553

Buffer pool data writes = Not Collected
Buffer pool index logical reads = Not Collected
Buffer pool index physical reads = Not Collected
Buffer pool temporary index logical reads = Not Collected
Buffer pool temporary index physical reads = Not Collected
Buffer pool xda logical reads = Not Collected
Buffer pool xda physical reads = Not Collected
Buffer pool temporary xda logical reads = Not Collected
Buffer pool temporary xda physical reads = Not Collected
Buffer pool xda writes = Not Collected
Total buffer pool read time (milliseconds) = Not Collected
Total buffer pool write time (milliseconds)= Not Collected
Asynchronous pool data page reads = Not Collected
Asynchronous pool data page writes = Not Collected
Buffer pool index writes = Not Collected
Asynchronous pool index page reads = Not Collected
Asynchronous pool index page writes = Not Collected
Asynchronous pool xda page reads = Not Collected
Asynchronous pool xda page writes = Not Collected
Total elapsed asynchronous read time = Not Collected
Total elapsed asynchronous write time = Not Collected
Asynchronous data read requests = Not Collected
Asynchronous index read requests = Not Collected
Asynchronous xda read requests = Not Collected
No victim buffers available = Not Collected
Direct reads = Not Collected
Direct writes = Not Collected
Direct read requests = Not Collected
Direct write requests = Not Collected
Direct reads elapsed time (ms) = Not Collected
Direct write elapsed time (ms) = Not Collected
Database files closed = Not Collected
Unread prefetch pages = Not Collected
Vectored IOs = Not Collected
Pages from vectored IOs = Not Collected
Block IOs = Not Collected
Pages from block IOs = Not Collected
Physical page maps = Not Collected

Node number = 0
Tablespaces using bufferpool = 0
Alter bufferpool information:
 Pages left to remove = 0
 Current size = 10000
 Post-alter size = 10000
554 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

11.3.6 Managing database security

To perform an action within the DB2 database, or to access an object, you must
have the required authority or privilege. In this section we discuss how to assign
the authorities, grant and revoke privileges, and how to list authority and privilege
information.

A discussion about authorities and privileges can be found in 2.4.4,
“Authentication and authorization” on page 50.

Instance authority
Instance authority assignments are stored inside the database manager
configuration file for the instance. To assign an instance authority to a user or a
group, you must update the database manager configuration file. Because this
change is not dynamic, you need to restart the instance in order for the change to
take effect.

Oracle equivalent command
DB2 instance authorities can be considered as being equivalent to Oracle roles.
In Oracle, you use the GRANT command to assign a role to a user.

Example
Example 11-55 shows how to assign instance authority to a group.

Example 11-55 Assigning DB2 instance authority

-- Assigning an instance authority
db2 update dbm cfg using SYSADM_GROUP db2grp1
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.

Grant
The GRANT statement is used to assign database authorities and DB2 privileges
to a group or user. You can use the ALL or ALL PRIVILEGES clause to grant all
appropriate privileges (except CONTROL) on the base table, view, or nickname
used in the ON clause.

Oracle equivalent command
The equivalent Oracle command is GRANT.

Example
Example 11-56 shows how to assign a database authority to a group.
 Chapter 11. Database administration and management 555

Example 11-56 Assigning database authority

db2 => grant dbadm on database to appgroup
DB20000I The SQL command completed successfully.

Example 11-57 shows how to grant privilege on a table to a user.

Example 11-57 Grant privileges

db2 => grant select on sysibmadm.dbcfg to appuser
DB20000I The SQL command completed successfully.

Revoke
The REVOKE statement is used to revoke a database authority or privilege
authorized by the grant statement.

Oracle equivalent command
The equivalent Oracle command is REVOKE.

Example
Example 11-58 shows how to revoke a database authority from a group.

Example 11-58 Revoking database authority

db2 => revoke dbadm on database from appgroup
DB20000I The SQL command completed successfully.

Example 11-59 shows how to revoke a privilege from a user.

Example 11-59 Revoking privileges

db2 => revoke select on sysibmadm.dbcfg from appuser
DB20000I The SQL command completed successfully.

Listing existing privileges
Starting from DB2 9, you can use administrative views to retrieve information
about DB2 authorizations and privileges.

Table 11-3 shows some administrative views used to retrieve privileges and
authorization information.
556 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table 11-3 Administrative views used to retrieve security information

For DB2 versions prior to DB2 9, you can use the catalog views listed in
Table 11-4 on page 557 to retrieve authorization and privilege information. These
views are also applicable to DB2 9.

Table 11-4 Views used to retrieve privilege information

You can also use the db2look command to extract Data Definition Language
(DDL) with privileges for database objects.

Oracle equivalent command
You can use DBA_SYS_PRIVS, DBA_ROLE_PRIVS and DBA_TAB_PRIVS views to
retrieve information about Oracle privileges.

Example
Example 11-60 shows how to list all the privileges granted to a specific object.

Administrative view Used for

SYSIBMADM.PRIVILEGES Returns all explicit privileges for all
authorization IDs in the current database.

SYSIBMADM.AUTHORIZATIONIDS Returns all authorization IDs that have
been granted privileges or authorities.

SYSIBMADM.OBJECTOWNERS Retrieves object ownership information.

Catalog view Users or groups with privileges on

SYSCAT.DBAUTH Database-level authorities

SYSCAT.TABAUTH Table or view

SYSCAT.PACKAGEAUTH Package

SYSCAT.INDEXAUTH CONTROL privilege on an index

SYSCAT.COLAUTH Column

SYSCAT.SCHEMAAUTH Schema

SYSCAT.SEQUECEAUTH Sequence

SYSCAT.PASSTHRUAUTH Query to a data source

SYSCAT.TBSPACEAUTH USE privilege on a table space
 Chapter 11. Database administration and management 557

Example 11-60 Extracting privileges from a table

db2 => SELECT AUTHID, AUTHIDTYPE, PRIVILEGE FROM SYSIBMADM.PRIVILEGES WHERE
OBJECTNAME = 'DBMCFG' and OBJECTSCHEMA = 'SYSIBMADM'

AUTHID AUTHIDTYPE PRIVILEGE
------------------ ---------- --------------
PUBLIC G SELECT
APPUSER U SELECT

11.3.7 Managing database backup and recovery

DB2 backup and recovery routines are issued through the use of the BACKUP
DATABASE and RECOVER DATABASE commands, respectively. You should
have regular schedules for backing up database data to a safe location that will
be available for recovery operations when needed. DB2 provides different
recovery methods for you to design your database recovery strategy. The
recovery methods provided are:

� Version recovery: Restoration of a previous image of a database from a
backup.

� Roll forward recovery: Reapplication of transactions recorded in the database
log files after a version recovery.

� Crash recovery: Performed using information stored in the current database
log files.

When the database is created, database log files are also created to record the
database activity. By default, these database log files are used in a circular way,
as a ring. The database overwrites the oldest database log file when needed, but
does not archive the information recorded in that database log file. This recovery
mode is known as circular logging.

With circular logging, you cannot roll forward a database; you can use only
version recovery or crash recovery with the current database log files.You cannot
perform online backups with this recovery mode. To back up the database, you
need to shut down the database.

To roll forward the database, you need to activate archive logging. In this mode,
the database does not overwrite the oldest database log file when needed.
Instead, it creates a new database log file to continue recording the database
activities. You can perform online backups with this mode.

A database with circular logging is known as a non-recoverable database. A
database using archive logging is referred to as recoverable database. A DB2
database in circular logging recovery mode is equivalent to an Oracle database
558 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

in NOARCHIVELOG mode. A DB2 database in archive logging recovery mode is
equivalent to an Oracle database in ARCHIVELOG mode.

The intention of this section is not to discuss every possible backup and recovery
scenario, but rather to introduce the commands frequently used to perform
database backup and recovery. We also show how you can look for the backup
history of the backup executed.

For more information about DB2 backup and recovery features, refer to Data
Recovery and High Availability Guide and Reference, SC10-4228.

Back up a database
The BACKUP DATABASE command is used to create a backup image of a
database or table space. You can perform offline and online backups for your
database. To perform an online backup, you must enable the database
parameters LOGRETAIN or USEREXIT; refer to “Activating database log
retention logging” on page 561, for an example of activating the LOGRETAIN
parameter.

You can also perform an incremental backup, by which only the modified data
since the last full backup will be copied; or a delta backup, by which only the
modified data since the last backup of any type will be copied.

Backup images are created at the target location specified when you invoke the
backup utility. This location can be the following:

� A directory (for backups to a disk or diskette)
� A device (for backups to tape)
� A Tivoli Storage Manager (TSM) server
� Another vendor’s server

The BACKUP DATABASE command automatically establishes a connection to
the specified database. If you are connected to the database that you are
performing the backup on, you will be automatically disconnected when the
backup is started.

You can perform the backup locally or remotely, and the backup image will
remain in the local server unless you use a storage management product such
as Tivoli Storage Manager. You must have SYSADM, SYSCTRL or SYSMAINT
authority to perform a backup.

You can configure a database for automatic backup using either GUI or CLI
tools. For more information about automatic backup features, see 11.3.7,
“Managing database backup and recovery” on page 558.
 Chapter 11. Database administration and management 559

Oracle equivalent command
Oracle provides two types of backups:

� Physical: Run through the Recovery Manager (RMAN) utility or with the BEGIN
BACKUP and END BACKUP commands,

� Logical: Run though EXPORT or EXPDP (Data Pump) tools.

You can only roll forward a database (or, in Oracle terms, perform the media
recovery) from a physical backup. The DB2 BACKUP DATABASE command
produces a logical backup of the database, but allows you to roll forward the
database.

Example
Example 11-61 shows how to perform a full offline backup from a database.

Example 11-61 Performing a full offline backup

db2 => backup database sample to '/db2/backup'

Backup successful. The timestamp for this backup image is : 20070226210406

Example 11-62 shows how to perform a full online backup from a database.

Example 11-62 Performing a full on line backup

db2 => backup database db2_emp online to '/db2/backup/'

Backup successful. The timestamp for this backup image is : 20070226211604

Restore database
The RESTORE DATABASE command is used to recreate a damaged or
corrupted database from a backup. You can restore a database over an existing
database, or to a new database. With the restore database command, you can
redirect your restore to change the physical location of the table space
containers. You can restore the full database, a single table space, or a group of
table spaces. You can restore an image direct from a TSM Server.

To restore to an existing database, you must have SYSADM, SYSCTRL or
SYSMAINT authority. To restore to a new database, you must have SYSADM or
SYSCTRL authority.

Oracle equivalent command
There is no Oracle command or utility that is directly equivalent to the DB2
RESTORE DATABASE command. You might consider the DB2 RESTORE
DATABASE command as being similar to the IMPORT or IMPDP tools for logical
560 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

backups, or the RMAN RESTORE and RMAN RECOVER commands for
physical backups.

Example
Example 11-63 shows how to restore a database from a backup.

Example 11-63 Restoring a database from a backup

db2 => restore database sample from '/db2/backup'
SQL2539W Warning! Restoring to an existing database that is the same as the
backup image database. The database files will be deleted.
Do you want to continue ? (y/n) Y
DB20000I The RESTORE DATABASE command completed successfully.

Roll forward database
The ROLLFORWARD DATABASE command recovers a database to a point in
time by applying transactions recorded in the database log files after a database
or table space backup image has been restored, or if any table space has been
taken offline by the database due to a media failure. You can roll forward a
database until a specific point in time, or until the end of the database logs. You
must have SYSADM, SYSCTRL or SYSMAINT authority to roll forward a
database.

Oracle equivalent command
The rollforward database command can be considered as being equivalent to
the Oracle RECOVER DATABASE command in SQL*Plus in the way that both
commands apply transactions stored in the database log files (in a DB2
database) or the archived log files (in an Oracle database) to recover a database
or table space.

Example
Example 11-64 shows how to roll forward a database.

Example 11-64 Roll forward a database

db2 => rollforward db sample to end of logs and complete

Activating database log retention logging
In this section we show how to activate database log retention logging.

Oracle equivalent command
Activating the LOGRETAIN database parameter is similar to changing the Oracle
database from the NOARCHIVELOG mode to the ARCHIVELOG mode.
 Chapter 11. Database administration and management 561

Example
Example 11-65 shows how to activate the database configuration LOGRETAIN
parameter.

Example 11-65 Activating the LOGRETAIN database configuration parameter

-- Trying to perform an online backup
db2 => backup database db2_emp online to '/db2/backup'
SQL2413N Online backup is not allowed because the database is not recoverable
or a backup pending condition is in effect.

-- It did not work because the retention logging is not enabled.
-- Checking the current value of LOGRETAIN parameter.
db2 => select name, substr(value,1,20) as running, substr(deferred_value,1,20)
as DEFERRED from sysibmadm.dbcfg where name = 'logretain'

NAME RUNNING DEFERRED
-------------------------------- -------------------- -----------------
logretain OFF OFF

-- Updating the LOGRETAIN DB parameter to enable retention logging
db2 => update db cfg using logretain yes
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
SQL1363W One or more of the parameters submitted for immediate modification
were not changed dynamically. For these configuration parameters, all
applications must disconnect from this database before the changes become
effective.

-- Checking the deferred value for logretain
db2 => select name, substr(value,1,20) as running, substr(deferred_value,1,20)
as DEFERRED from sysibmadm.dbcfg where name = 'logretain'

NAME RUNNING DEFERRED
-------------------------------- -------------------- -----------------
logretain OFF RECOVERY

-- Reactivating the database to have the change take effect
db2 => connect reset
DB20000I The SQL command completed successfully.

db2 => deactivate database db2_emp
SQL1496W Deactivate database is successful, but the database was not
activated.

db2 => activate database db2_emp
SQL1116N A connection to or activation of database "DB2_EMP" cannot be made
because of BACKUP PENDING. SQLSTATE=57019
562 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

-- The database is in backup pending state because we changed the
-- database configuration parameter LOGRETAIN. After this change, a
-- database backup is required to activate the database.
-- Performing a full backup.
db2 => backup database db2_emp to '/db2/backup'

Backup successful. The timestamp for this backup image is : 20070226212604

-- Trying to activate the database again
db2 => activate database db2_emp
DB20000I The ACTIVATE DATABASE command completed successfully.

-- Checking the value for logretain recovery, and try to perform an online
backup.
db2 => connect to db2_emp

 Database Connection Information

 Database server = DB2/AIX64 9.1.1
 SQL authorization ID = DB2INST1
 Local database alias = DB2_EMP

db2 => select name, substr(value,1,20) as running, substr(deferred_value,1,20)
as DEFERRED from sysibmadm.dbcfg where name = 'logretain'

NAME RUNNING DEFERRED
-------------------------------- -------------------- -----------------
logretain RECOVERY RECOVERY

db2 => backup database db2_emp online to '/db2/backup'
Backup successful. The timestamp for this backup image is : 20070226212819

List history and prune history
The LIST HISTORY command is used to list the history of the recovery and
administrative events. For example, you can list all backups taken for a
database, or the creation and deletion of table spaces.

The PRUNE HISTORY command is used to delete entries from the recovery
history file, or to delete log files from the active log path. Regularly pruning the
recovery history file can prevent it from growing too large.

Oracle equivalent command
There is no direct equivalent command in Oracle to trim the alert.log file to which
the table space operations, begin backup, end backup, and backups taken with
RMAN are logged.
 Chapter 11. Database administration and management 563

Example
Example 11-66 shows how to list all backups from a database. The sample
output only shows the first backup log.

Example 11-66 Listing backup history

db2 list history backup all for db2_emp

 List History File for db2_emp

Number of matching file entries = 5

 Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- --- ------------------ ---- --- ------------ ------------ ---------
 B D 20070226210800001 F D S0000000.LOG S0000000.LOG

 Contains 6 tablespace(s):

 00001 SYSCATSPACE
 00002 USERSPACE1
 00003 USER_IND_TBS
 00004 USER_LOB_TBS
 00005 USER_DATA_TBS
 00006 SYSTOOLSPACE

 Comment: DB2 BACKUP DB2_EMP OFFLINE
 Start Time: 20070226210800
 End Time: 20070226210807
 Status: A

 EID: 6 Location:
/db2/backup

Example 11-67 shows how to delete the entries in the recovery log file.

Example 11-67 Deleting backup history

-- Verifying history records

db2 list history backup all for db2_emp

 List History File for db2_emp

Number of matching file entries = 5
...

--Deleting old entries
564 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

db2 prune history 20070227000000
DB20000I The PRUNE command completed successfully.

-- Verifying history records
db2 list history backup all for database db2_emp

 List History File for db2_emp

Number of matching file entries = 1

11.4 Automatic database management

DB2 provides many automatic capabilities for administrative activities and
performance tuning. With regard to administrative activities, you can perform
database backup automatically, keep statistics current, and reorganize tables
and indexes as necessary. Also, you can set the automatic storage for table
space. In relation to performance, the configuration advisor is used to create an
auto-configured database and the automatic memory management can control
the memory resource for a database.

To enable the automatic maintenance features, the automatic maintenance
database configuration parameters are set to AUTOMATIC or ON. The
confirmation automatic maintenance wizard is provided for configuring the
required automatic maintenance activity. Some of the automatic features are
enabled by default when you create a database.

From the DB2 Control Center, you can check your database maintenance
settings in the database panel in the right bottom frame, as shown in Figure 11-3.
 Chapter 11. Database administration and management 565

Figure 11-3 DB2 Control Center - database panel

The database panel displays brief information about the current database
including the database status, date of last backup, size of database, database
health status, and automatic management setting. A link to launch the wizards
for the management of these activities is provided along the side. In the left side
of the database panel are links to launch the most frequently accessed GUI tools
such as Command Center, Activity Monitor, and Design Advisor.

You can also use the DB2 command to check or update the automatic database
maintenance settings as follows:

/WORK # db2 get db cfg for db2_emp |grep “Automatic”
 Automatic maintenance (AUTO_MAINT) = ON
 Automatic database backup (AUTO_DB_BACKUP) = OFF
 Automatic table maintenance (AUTO_TBL_MAINT) = ON
 Automatic runstats (AUTO_RUNSTATS) = ON
 Automatic statistics profiling (AUTO_STATS_PROF) = OFF
 Automatic profile updates (AUTO_PROF_UPD) = OFF
 Automatic reorganization (AUTO_REORG) = OFF
566 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

In this section, we cover how you can manage your database automatically by
category.

11.4.1 Automatic database configuration

In DB2, a database is tuned by the configuration advisor automatically and the
memory of the database including the bufferpool, sortheap and locklist is
dynamically tuned depending on the workload. Also, DB2 introduces a few more
AUTOMATIC parameters.

Create database with the configuration advisor
The DB2 Configuration Advisor helps you to tune performance and to balance
memory requirements for a database by suggesting which configuration
parameters to modify and by providing suggested values for them.

In DB2 9, the Configuration Advisor is automatically invoked when you create a
database. To disable this feature or to explicitly enable it, use the db2set
command before creating the database as shown:

/WORK # db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
/WORK # db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

The Configuration Advisor determines and sets the database configuration
parameters and the size of the default buffer pool (IBMDEFAULTBP). The values
are selected based on system resources and the intended use of the system.

This initial automatic tuning means that your database will have better
performance than a database created with the DB2 default values. It also means
that you will spend less time tuning your system after the database has been
created. The Configuration Advisor can be invoked at any time (even after your
databases are populated) to recommend and, optionally, apply a set of
configuration parameters to optimize DB2 performance based on the current
system characteristics. Figure 11-4 shows a sample output of the Configuration
Advisor.
 Chapter 11. Database administration and management 567

Figure 11-4 Sample output from Configuration Advisor

Self-tuning memory
The self-tuning memory feature is for automating the management of the
memory resource for DB2 databases. This feature simplifies the task of memory
configuration by automatically adjusting the values for several memory
configuration parameters including sort, the package cache, the lock list, and the
buffer pools. The memory tuner is responsive to significant changes in workload
characteristics and iteratively adjusts the values of the memory configuration
parameters and the sizes of the buffer pools to optimize performance.

In DB2 9, the self-tuning memory feature is enabled by default for a single
partitioned database only. You can disable this feature setting the database
configuration parameter SELF_TUNING_MEM to OFF.

The procedure to enable the self-tuning memory feature is as follows:

1. Enable self-tuning for database

The DB CFG parameter SELF_TUNING_MEM should be set to ON. You can
set or check the value of SELF_TUNING_MEM through the DB2 Control
Center or by command.
568 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

To use the GUI tool, select Control Center → Change Database
Configuration Parameter. Figure 11-5 illustrates the Database Configuration
window for setting this parameter.

Figure 11-5 DB2 Control Center - database configuration window

To retrieve the value by command:

/WORK # db2 get db cfg |grep SELF_TUNING_MEM
 Self tuning memory (SELF_TUNING_MEM) = OFF

To set the value by command:

/WORK # db2 update db cfg using self_tuning_mem on

2. Enable self-tuning of the memory area

Database configuration parameters related to database resource must be set
to AUTOMATIC to have DB2 adjust the values automatically, depending on
the workload. Some of these parameters have dependencies that are also
required to be set. For example, if you want to enable LOCKLIST for
self-tuning, you must set both LOCKLIST and MAXLOCKS to AUTOMATIC.
 Chapter 11. Database administration and management 569

Table 11-5 lists the database configuration parameters for self-tuning the
memory area and their dependencies.

Table 11-5 Self-tuning memory parameters and their dependencies

3. Set the size of the buffer pool to AUTOMATIC to enable self-tuning for the
buffer pool.

You can use the DB2 command to enable self-tuning for an existing buffer
pool as follows:

/WORK # db2 alter bufferpool IBMDEFAULTBP size automatic

Figure 11-6 shows how to create a buffer pool with self-tuning memory
enabled through the Control Center.

Parameter Description Dependency with
other parameter

DATABASE_MEMORY The amount of shared memory
reserved for the database
shared memory region

LOCKLIST Maximum storage allocated to
the lock list

Set MAXLOCKS to
AUTOMATIC

MAXLOCKS Percentage of lock lists per
application

PCKCACHESZ Package cache size

SHEAPTHRES_SHR Sort heap threshold for shared
sorts

� In DB CFG:
Set SORTHEAP to
AUTOMATIC

� In DBM CFG:
Set SHEAPTHRES
to 0

SORTHEAP Sort list heap In DBM CFG:
Set SHEAPTHRES to 0
570 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 11-6 Creation of buffer pool with self-tuning memory feature

For more information on self tuning memory, refer to “Automatic configuration
using self-tuning memory” in the DB2 publication Performance Guide,
SC10-4222.

Other self-tuning configuration parameters
In addition to the tune memory area configuration parameters, DB2 also tunes
the processor-related configuration parameters automatically. Table 11-6 lists
these processor-related parameters and explains how DB2 sets their values.

Table 11-6 Processor-related configuration parameters

Parameter Description The value when set to AUTOMATIC

NUM_IOCLEANERS Number of
asynchronous
page cleaners

Based on the number of CPUs
configured on the current machine, as
well as the number of local logical
database partitions in a partitioned
database environment.

NUM_IOSERVERS Number of
prefetchers

Based on the parallelism settings of the
table spaces in the current database
partition.
 Chapter 11. Database administration and management 571

11.4.2 Automatic storage

The automatic storage feature simplifies storage management for table spaces.
When you create a database, you specify the storage paths for placing the table
space data. DB2 will then manage the container and space allocation for the
table spaces as they are created and populated.

A database can only be enabled for automatic storage when it is first created.
DB2 creates an automatic storage database by default. Here is an example to
create database-enabled automatic storage:

CREATE DATABASE ADB ON /data/path1, /data/path2

This is the same as the following statement:

CREATE DATABASE ADB AUTOMATIC STORAGE YES ON /data/path1,
/data/path2

If you want to create a database without the automatic storage feature, you must
create the database using the AUTOMATIC STORAGE NO clause as follows:

CREATE DATABASE ASNODB1 AUTOMATIC STORAGE NO

After you create a database-enabled automatic storage feature, you can add the
storage or alter the storage with the ALTER DATABASE command as shown in
Figure 11-7.
572 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 11-7 Alter storage of a database in DB2 Control Center

For more information, refer to “Creating a database” in the DB2 publication
Administration Guide: Implementation, SC10-4221.

11.4.3 Automated REORG on tables and indexes

After frequent table data inserts and deletes, data might be fragmented and the
logically sequenced data might be on non-sequential physical data pages.
Therefore, the database manager must perform additional read operations to
access data. You must consider reorganizing the table to match the index and to
reclaim space, in order for the database manager to access your data efficiently.

When you use the REORG command, the table or the index is reorganized and
space is reclaimed. This maintenance activity can be automated. Automatic
reorganization manages offline table and index reorganization without users
having to worry about when and how to reorganize their data. You can set up the
automatic table and index reorganization by using the Configure Automatic
 Chapter 11. Database administration and management 573

Maintenance wizard. Figure 11-8 shows the Defragmented Data configuration
setting window.

Figure 11-8 Configure Automatic Maintenance window

For more information about REORG of tables and indexes, refer to “Table and
index maintenance” in DB2 Performance Guide, SC10-4222.

11.4.4 Automatic statistics collection

Automatic statistics collection helps to improve database performance by
collecting up-to-date table statistics. DB2 determines which statistics are
required and which statistics need to be updated by your workload. The
RUNSTATS utility is automatically invoked in the background to ensure that the
correct statistics are collected and maintained. Statistics are first collected on the
tables that need statistics update the most. The DB2 optimizer can then choose
an access plan based on accurate statistics.
574 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

You can enable or disable this function using the Configure Automatic
Maintenance wizard.

For more information about self-tuning memory, refer to “Automatic statistics
collection” in the DB2 publication Performance Guide, SC10-4222.

11.4.5 Automatic backup

Automatic database backup is another DB2 automatic management feature that
helps ease a database administrator’s job. To automate the database backup
job, you must set the specifications for the backup including the backup mode,
target media, the type of backup and the schedule. DB2 Backup wizard will guide
you through the required automatic backup setup steps. Figure 11-9 shows a
Backup wizard window.

Figure 11-9 Backup wizard

11.4.6 Utility throttling

When you enable an automatic maintenance function in a database, you might
have concerns about the performance impact of the maintenance activity on user
transactions. The DB2 utility throttling mechanism ensures that the throttled
 Chapter 11. Database administration and management 575

utilities, statistics collection, backup, and rebalancing and so on, are run as
aggressively as possible without violating the policy specified by you.

The degree of impact of the throttled utilities can be set using the Utility Status
Manager in the Control Center (see Figure 11-10), updating DBM CFG
parameter UTIL_IMPACT_LIM directly as shown in the following example:

/WORK # db2 update dbm cfg using UTIL_IMPACT_LIM 10

Figure 11-10 Utility Status Manager

11.4.7 Automatic diagnostics using Health Monitor

The Health Monitor is a server-side tool that proactively monitors conditions or
changes in your database environment that could result in performance
degradation or a potential outage. A range of health information is presented
without any form of active monitoring on your part. If a health risk is encountered,
DB2 will inform you and provide advise on the actions that must be taken. The
Health Monitor gathers information about the system by using the snapshot
monitor without imposing a performance penalty.

The health status of the database is marked as normal, warning, or alarm
according to the pre-defined threshold of the health indicator. The database
health information is gathered under the Health Center, As shown in
Figure 11-11, the Health Center provides the details of the reason of the warning
or alarm to help you pinpoint the problem. You can use the Recommendation
576 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Advisor to obtain problem-solving recommendations such as creating indexes,
resizing sort heap memory, or adding more containers to the table space.

Figure 11-11 Health Center

You can also define the health indicators, modify the threshold degree of the
indicators, or specify a script to run when a warning or alarm occurs from the
Health Center. See Figure 11-12 on page 578.

For more information about the Health Monitor, refer to “Health Monitor” in the
DB2 System Monitor Guide and Reference, SC10-4251.
 Chapter 11. Database administration and management 577

Figure 11-12 Health Center - health indicator configuration

11.5 Monitoring

In this section, we introduce the monitoring tools provided in DB2. We describe
the commands, administrative views, and tools that can be used to monitor the
database objects such as buffer pool, locks and SQL statements.

11.5.1 Monitoring tools

DB2 provides multiple monitoring tools for application, instances, and database
monitoring. In addition to Health Monitor, you also can use the following tools for
database system monitoring:

� Activity Monitor - A GUI tool for application activity monitoring including locks,
log usage and performance.
578 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

� Snapshot monitoring - Allows you to capture information about the database
and any connected applications at a specific time. Refer to Chapter 10,
section , “Monitoring tools” on page 472 for more details.

� db2pd - A text-based monitoring tool that retrieves information from the DB2
database system memory sets.

Activity Monitor
The Activity Monitor provides a set of predefined reports based on a specific
subset of monitor data to assist you in monitoring database activities and
application performance, or in solving a particular problem. With Activity Monitor,
you can easily determine the cause of a problem related to database
performance (for example, lock waiting situations), or tune an application or a
SQL statement that adversely affects performance.

You can set up an activity monitor through the Set Up Activity Monitor wizard
(Figure 11-13 on page 580) in the Control Center. The Set Up Activity Monitor
wizard can also be invoked using the db2am command.

Using the Set Up Activity Monitor, you can choose the system-defined monitoring
tasks (which are the monitoring tasks predefined by DB2), or you can define your
own monitoring activities. The system-defined tasks include the following
categories:

� Resolving a general database system slowdown
� Resolving the performance degradation of an application
� Resolving an application locking situation
� Tuning the dynamic SQL statement cache

Examples of monitoring tasks can be to determine the following:

� Which application holds the largest number of locks
� Which application causes a lock wait
� Which SQL statement takes a long sort time
� Which SQL statements consume the most CPU time
� Which application performs a large number of rows read
 Chapter 11. Database administration and management 579

Figure 11-13 Activity Monitor - choose a category to monitor

Figure 11-14 illustrates a monitoring result window. The monitoring data is
refreshed automatically if automatic refresh is set.
580 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 11-14 Activity Monitor - monitoring result

For more information about the Activity Monitor, refer to “Activity Monitor” in the
DB2 publication System Monitor Guide and Reference, SC10-4251.

db2pd utility
The db2pd utility collects detailed database information such as transactions,
table statistics, dynamic SQL and more, without acquiring any latches or using
any engine resources. It is therefore possible (and expected) to retrieve
information that is changing while db2pd is collecting information; thus, the data
might not be completely accurate. Nevertheless, the tool can be useful for
problem determination and for collecting information. Two benefits of collecting
information without latching include faster retrieval and no competition for the
engine resources.

This utility provides options for various types of information. To see the options of
the db2pd utility, use the -h option as follows:

/WORK # db2pd -h

How to use db2pd to monitor various database objects is described in the
following sections.

11.5.2 Monitoring database objects

In this section, we describe the commands for monitoring database objects.
 Chapter 11. Database administration and management 581

Configuration parameter
The commands to obtain database manager and database configuration
information are as follows:

� Instance (Database Manager) parameter

– DB2 GET DBM CFG
– db2pd -db <dbname> -dbmcfg

� Database configuration parameter

– DB2 GET DB CFG
– db2pd -db <dbname> -dbcfg

Current memory usage
The commands to obtain database memory usage information are as follows:

� Database memory usage

– db2mtrk -i -d
– db2pd -db <dbname> -mempools
– SELECT FROM SYSIBMADM.SNAPDB_MEMORY_POOL

Example 11-68 shows a sample output of the memory monitoring command
db2mtrk.

Example 11-68 Monitoring database memory using db2mtrk

/WORK # db2mtrk -i -d
Tracking Memory on: 2007/02/27 at 15:50:34

Memory for instance

 monh other
 448.0K 2.6M

Memory for database: DB2_EMP

 bph (3) bph (2) utilh pckcacheh catcacheh bph (1) bph (S32K)
 41.2M 203.5M 64.0K 1.3M 320.0K 5.4M 704.0K

 bph (S16K) bph (S8K) bph (S4K) shsorth lockh dbh other
 448.0K 320.0K 256.0K 384.0K 2.9M 5.2M 192.0K

Example 11-69 shows how to obtain memory usage from the administrative view
SYSIBMADM.SNAPDB_MEMORY_POOL.

Example 11-69 Query on SYSIBMADM.SNAPDB_MEMORY_POOL view

/WORK # cat mon_dbmem.db2
select POOL_ID, POOL_CUR_SIZE
582 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

from SYSIBMADM.SNAPDB_MEMORY_POOL
where DB_NAME='DB2_EMP' ;
/WORK # db2 -tf mon_dbmem.db2

POOL_ID POOL_CUR_SIZE
-------------- --------------------
BP 43253760
BP 213385216
UTILITY 65536
PACKAGE_CACHE 1441792
CAT_CACHE 327680
BP 5701632
BP 720896
BP 458752
BP 327680
BP 262144
SHARED_SORT 393216
LOCK_MGR 3080192
DATABASE 5439488
OTHER 196608

 14 record(s) selected.

� Current buffer pool list

– db2pd -db <dbname> -bufferpools
– GET SNAPSHOT FOR BUFFERPOOLS ON <dbname>
– SELECT FROM SYSIBMADM.SNAPBP_PART

Example 11-70 shows how to obtain buffer pools defined from the administrative
view SYSIBMADM.SNAPBP_PART.

Example 11-70 List buffer pools from SYSIBMADM.SNAPBP_PART view

/WORK # cat mon_bp.db2
select substr(BP_NAME,1,20) as BUFFERPOOL ,BP_CUR_BUFFSZ,BP_NEW_BUFFSZ
from SYSIBMADM.SNAPBP_PART
where DB_NAME='DB2_EMP' ;

/WORK # db2 -tf mon_bp.db2

BUFFERPOOL BP_CUR_BUFFSZ BP_NEW_BUFFSZ
-------------------- -------------------- --------------------
IBMDEFAULTBP 1012 1012
TESTEBP 50000 50000
BP_TEST 10000 10000
IBMSYSTEMBP4K 16 16
IBMSYSTEMBP8K 16 16
IBMSYSTEMBP16K 16 16
 Chapter 11. Database administration and management 583

IBMSYSTEMBP32K 16 16

 7 record(s) selected.

� Current buffer pool usage (including statistics)

– db2pd -db <dbname> -bufferpool

Note that the snapshot monitor must be on to obtain the information.

– GET SNAPSHOT FOR BUFFERPOOLS ON <dbname>

– SELECT FROM SYSIBMADM.SNAPBP

– SELECT FROM SYSIBMADM.BP_HITRATIO, SYSIBMADM.BP_READ_IO,
SYSIBMADM.BP_WRITE_IO

Example 11-71 illustrates how to obtain the statistics information of the buffer
pool from the administrative views.

Example 11-71 Get statistics information of buffer pool using views

/WORK # cat mon_bpstat.db2
select SUBSTR(BP_NAME,1,15) AS BP_NAME,
 (POOL_DATA_L_READS+POOL_INDEX_L_READS) AS TOTAL_LOGICAL_READS,
 (POOL_DATA_P_READS+POOL_INDEX_P_READS) AS TOTAL_PHYSICAL_READS
from SYSIBMADM.SNAPBP
where DB_NAME='DB2_EMP' ;
/WORK # db2 -tf mon_bpstat.db2

BP_NAME TOTAL_LOGICAL_READS TOTAL_PHYSICAL_READS
--------------- -------------------- --------------------
IBMDEFAULTBP 0 0
TESTEBP 0 0
BP_TEST 0 0
IBMSYSTEMBP4K 0 0
IBMSYSTEMBP8K 0 0
IBMSYSTEMBP16K 0 0
IBMSYSTEMBP32K 0 0

 7 record(s) selected.

/WORK # cat mon_bphit.db2
select
 substr(BP_NAME,1,15) as BP_NAME,
 TOTAL_LOGICAL_READS as LOGICAL_READ,
 TOTAL_PHYSICAL_READS as PHYSICAL_READ,
 TOTAL_HIT_RATIO_PERCENT as HIT_RATIO
from SYSIBMADM.BP_HITRATIO
where DB_NAME='DB2_EMP' ;
/WORK # db2 -tf mon_bphit.db2
584 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

BP_NAME LOGICAL_READ PHYSICAL_READ HIT_RATIO
--------------- ---------------- ----------------- ---------
IBMDEFAULTBP 0 0 -
TESTEBP 0 0 -
BP_TEST 0 0 -
IBMSYSTEMBP4K 0 0 -
IBMSYSTEMBP8K 0 0 -
IBMSYSTEMBP16K 0 0 -
IBMSYSTEMBP32K 0 0 -

 7 record(s) selected.

� Log usage

– GET SNAPSHOT FOR DATABASE ON <dbname>
– db2pd -db <dbname> -logs
– SELECT FROM SYSIBMADM.LOG_UTILIZATION

Example 11-72 shows how to obtain the log usage information from the
administrative view SYSIBMADM.LOG_UTILIZATION.

Example 11-72 Get log usage using view

/WORK # cat mon_log.db2
select
 LOG_UTILIZATION_PERCENT as UTIL_PERCENT,
 TOTAL_LOG_USED_KB as USED,
 TOTAL_LOG_AVAILABLE_KB as AVAILABLE,
 TOTAL_LOG_USED_TOP_KB as USED_TOP
from SYSIBMADM.LOG_UTILIZATION
where DB_NAME='DB2_EMP' ;
/WORK # db2 -tf mon_log.db2

UTIL_PERCENT USED AVAILABLE USED_TOP
------------ ---------------- -------------------- --------------------
0.58 408 68951 777
1 record(s) selected.

� Table space list

– LIST TABLESPACES

– LIST TABLESPACES SHOW DETAIL

– db2pd -db <dbname> -tablespaces

– SELECT FROM SYSIBMADM.SNAPTBSP_PART OR SYSIBMADM.SNAPCONTAINER

– Storage Management wizard

Control Center → View Storage menu in Database panel → Storage
Management (see Figure 11-15 on page 586).
 Chapter 11. Database administration and management 585

Figure 11-15 Storage Management window

Example 11-73 illustrates how to obtain the table spaces information from the
administrative view SYSIBMADM.SNAPCONTAINER.

Example 11-73 View table list and size using view

/WORK # cat mon_tbs.db2
select
 substr(TBSP_NAME,1,20) as TBS,
 count(CONTAINER_ID) as NUM_CONTAINER,
 sum(TOTAL_PAGES) as TOTAL,
 sum(USABLE_PAGES) as FREE
from SYSIBMADM.SNAPCONTAINER
group by TBSP_NAME;
/WORK # db2 -tf mon_tbs.db2

TBS NUM_CONTAINER TOTAL FREE
-------------------- ------------- -------------- ---------------
SYSCATSPACE 1 25600 25568
SYSTOOLSPACE 1 8192 8188
SYSTOOLSTMPSPACE 1 0 0
TEMPSPACE1 1 0 0
USER_DATA_TBS 1 25600 25568
USER_IND_TBS 1 25600 25568
USER_LOB_TBS 1 25600 25568
586 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

USERSPACE1 1 25600 25568

 8 record(s) selected.

� Table space statistics

– GET SNAPSHOT FOR TABLESPACES FOR <dbname>
– db2pd -db <dbname> -tablespaces
– SELECT FROM SYSIBMADM.SNAPTBSP

Example 11-74 shows how to obtain table space snapshot information from
the administrative view SYSIBMADM.SNAPTBSP.

Example 11-74 Get table space information from view

/WORK # cat mon_tbsstat.db2
select
 substr(TBSP_NAME,1,15),
 POOL_DATA_L_READS as POOL_DATA_L,
 POOL_DATA_P_READS as POOL_DATA_P,
 DIRECT_READS as DIRECT,
 DIRECT_READ_REQS as DIRECT_REQS
from
 SYSIBMADM.SNAPTBSP;

/WORK # db2 -tf mon_tbsstat.db2

1 POOL_DATA_L POOL_DATA_P DIRECT DIRECT_REQS
--------------- --------------- ------------ ------------ -------------
SYSCATSPACE 193 0 86 10
TEMPSPACE1 0 0 0 0
USERSPACE1 0 0 0 0
USER_IND_TBS 24 4 0 0
USER_LOB_TBS 0 0 0 0
USER_DATA_TBS 0 0 0 0
SYSTOOLSPACE 0 0 0 0
SYSTOOLSTMPSPAC 0 0 0 0

 8 record(s) selected.

� Table list

– LIST TABLES FOR ALL
– db2pd -db <dbname> -tcbstats
– SELECT FROM SYSIBM.TABLES

Example 11-75 shows how to obtain table information from the DB2 catalog
view.
 Chapter 11. Database administration and management 587

Example 11-75 Get table

/WORK # cat mon_tb.db2
select
 substr(TABLE_SCHEMA,1,15),
 substr(TABLE_NAME,1,15),
 substr(TABLE_TYPE,1,10)
from
 SYSIBM.TABLES
where
 TABLE_CATALOG='DB2_EMP' and TABLE_SCHEMA='DB2INST1';

/WORK # db2 -tf mon_tb.db2

1 2 3
--------------- --------------- ----------
DB2INST1 ENCRYPTIONS BASE TABLE
DB2INST1 LOCAL_DEPARTMEN BASE TABLE

2 record(s) selected.

� Table statistics (read/write, reorg)

– GET SNAPSHOT FOR TABLES ON <dbname>
– db2pd -db <dbname> -tcbstats
– SELECT FROM SYSIBMADM.SNAPTAB, SYSIBMADM.SNAPTAB_REORG

Example 11-76 illustrates how to obtain table snapshot information.

Example 11-76 Get the table statistics with get snapshot command

/WORK # db2 get snapshot for tables on db2_emp

 Table Snapshot

First database connect timestamp = 02/26/2007 21:26:15.729476
Last reset timestamp =
Snapshot timestamp = 02/28/2007 10:13:02.205265
Database name = DB2_EMP
Database path = /db2/data/db2inst1/NODE0000/SQL00001/
Input database alias = DB2_EMP
Number of accessed tables = 4

Table List
 Table Schema = SYSIBM
 Table Name = SYSTABLES
 Table Type = Catalog
 Data Object Pages = 40
 Index Object Pages = 20
588 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 LOB Object pages = 448
 Rows Read = 1298
 Rows Written = 0
 Overflows = 0
 Page Reorgs = 0

 Table Schema = DB2INST1
 Table Name = LOCAL_DEPARTMENT
 Table Type = User
 Data Object Pages = 1
 Rows Read = 3
 Rows Written = 0
 Overflows = 0
 Page Reorgs = 0

 Table Schema = DB2INST1
 Table Name = ENCRYPTIONS
 Table Type = User
 Data Object Pages = 1
 Rows Read = 5
 Rows Written = 0
 Overflows = 0
 Page Reorgs = 0

 Table Schema = SYSIBM
 Table Name = SYSROUTINES
 Table Type = Catalog
 Data Object Pages = 46
 Index Object Pages = 68
 LOB Object pages = 960
 Rows Read = 4
 Rows Written = 0
 Overflows = 0
 Page Reorgs = 0

11.5.3 Applications activity

In this section, we list the commands for monitoring applications:

� List of current application clients

– LIST APPLICATIONS or list applications show detail

– db2pd -db <dbname> -applications

– SELECT FROM SYSIBMADM.APPLICATIONS

– DB2 Control Center → Database Panel → Application list (see
Figure 11-16 on page 590).
 Chapter 11. Database administration and management 589

Example 11-77 shows how to list applications connected to the database
using the administrative view.

Example 11-77 Get the list of current applications

/WORK # cat mon_app.db2
select
 AGENT_ID,
 substr(APPL_NAME,1,15),
 substr(AUTHID,1,15),
 substr(APPL_STATUS,1,10),
 CLIENT_PID
from
 SYSIBMADM.APPLICATIONS
where
 DB_NAME='DB2_EMP';

/WORK # db2 -tf mon_app.db2

AGENT_ID 2 3 4 CLIENT_PID
------------- -------------- ------------- ---------- ------------
 1266 db2bp DB2INST1 UOWEXEC 503952
 17 db2taskd DB2INST1 CONNECTED 544866
 16 db2stmm DB2INST1 UOWWAIT 544866

 3 record(s) selected.

Figure 11-16 Get list of applications in Applications window from DB2 Control Center

� Find the application that holds the oldest transaction
590 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Sometimes your log is full because the oldest transaction did not commit an
opened transaction. When you receive the log full message, you can
determine which transaction is the oldest by using the following command:

GET SNAPSHOT FOR DB ON <dbname>

Example 11-78 shows how to find the application that holds the oldest
transaction.

Example 11-78 Find out the oldest transaction from DB snapshot

/WORK # db2 get snapshot for db on db2_emp |grep -i oldest
Appl id holding the oldest transaction = 16

� Locks in database

– GET SNAPSHOT FOR LOCKS ON <dbname>
– db2pd -db <dbname> -locks
– SELECT FROM SYSIBMADM.SNAPLOCK,SYSIBMADM.LOCKS_HELD
– Activity Monitor

Example 11-79 shows how to obtain lock snapshot information from the
administrative view.

Example 11-79 Get lock information using view

/WORK # cat mon_lock.db2
select
 AGENT_ID,
 LOCK_OBJECT_TYPE,
 LOCK_MODE,
 LOCK_STATUS,
 substr(TABNAME,1,15)as TABNAME
from SYSIBMADM.SNAPLOCK
;
/WORK # db2 -tf mon_lock.db2

AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS TABNAME
---------- ------------------ ---------- ----------- ----------
 66 INTERNALV_LOCK S GRNT -
 66 INTERNALP_LOCK S GRNT -
 66 INTERNALP_LOCK S GRNT -
 41 ROW_LOCK X GRNT EMPLOYEE
 41 INTERNALV_LOCK S GRNT -
 41 INTERNALP_LOCK S GRNT -
 41 INTERNALP_LOCK S GRNT -
 41 TABLE_LOCK IX GRNT EMPLOYEE
 23 ROW_LOCK X GRNT DEPARTMENT
 23 INTERNALP_LOCK S GRNT -
 23 TABLE_LOCK IX GRNT DEPARTMENT
 Chapter 11. Database administration and management 591

 11 record(s) selected.

� Lock wait

– GET SNAPSHOT FOR LOCKS ON <dbname>

– db2pd -db <dbname> -locks

– SELECT FROM SYSIBMADM.LOCKWAITS
SELECT from SYSIBMADM.SNAPLOCKWAIT

– Activity monitor

Figure 11-17 is a sample application locking report from Activity Monitor.

Figure 11-17 Monitoring locks from Activity Monitor

You can see the lock chain between the lock holder and the lock waiter in
Figure 11-18.
592 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Figure 11-18 Application lock chain

From the Application Lock Chains window, you drill down further to see the
lock details, as shown in Figure 11-19.
 Chapter 11. Database administration and management 593

Figure 11-19 Lock details window

� SQL statements

– GET SNAPSHOT FOR DYNAMIC SQL ON <dbname>

– db2pd -db <dbname> -dynamic or db2pd -db <dbname> -static

– Select information from the administrative views:

SYSIBMADM.SNAPAPPL or SYSIBMADM.SNAPDYN_SQL or
SYSIBMADM.SNAPSTMT or SYSIBMADM.TOP_DYNAMIC_SQL or
SYSIBMADM.LONG_RUNNING_SQL.

– Activity monitor

Example 11-80 shows how to obtain application information from the
administrative view SYSIBMADM.SNAPAPPL.

Example 11-80 Shows application activities using SYSIBMADM.SNAPAPPL view

/WORK # cat mon_appl.db2
select
 AGENT_ID as ID,
 UOW_LOG_SPACE_USED as LOG,
 ROWS_READ as READ,
 ROWS_WRITTEN as WRITE,
594 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 LOCKS_HELD as LOCKS,
 LOCK_WAITS as LWAIT
from
 SYSIBMADM.SNAPAPPL
where
 DB_NAME='DB2_EMP' ;
/WORK # db2 -tf mon_appl.db2

ID LOG READ WRITE LOCKS LWAIT
-------- -------- ----------- ---------- -------- -------
 1087 0 101 51 0 0
 1044 0 3 0 0 0
 1043 0 0 0 0 0
 1042 0 82 0 2 0

 4 record(s) selected.

Example 11-81 shows how to find out the number of times the SQL
statements are executed.

Example 11-81 Find the most run SQL statement

/WORK # cat mon_sql.db2
select
 NUM_EXECUTIONS as NUM_EXEC,
 AVERAGE_EXECUTION_TIME_S as AVG_TIME,
 STMT_SORTS as SORT,
 SORTS_PER_EXECUTION as NUM_SORT,
 substr(STMT_TEXT,1,30)
from
 SYSIBMADM.TOP_DYNAMIC_SQL
order by 1 desc;
/WORK # db2 -tf mon_sql.db2

NUM_EXEC AVG_TIME SORT NUM_SORT 5
----------- --------- ----- --------- ------------------------------
 2 0 0 0 select * from SYSIBMADM.TOP_DY
 2 0 0 0 CALL SYSINSTALLOBJECTS('DB2AC
 2 0 0 0 CREATE TABLE PRODUCTS (PROD_N
 2 0 0 0 select * from products
 2 0 0 0 DECLARE GLOBAL TEMPORARY TABLE
 2 0 0 0 CREATE TABLE PRODUCT_TXS (TX_
 2 0 0 0 LOCK TABLE SYSTOOLS.HMON_ATM_I
 1 0 0 0 values length(encrypt('IBM Red
 1 0 0 0 CALL SYSINSTALLOBJECTS('DB2AC
 1 0 0 0 update employee set firstnme='
 1 0 0 0 set encryption password = 'The
 Chapter 11. Database administration and management 595

....

 66 record(s) selected.
596 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Appendix A. Data types

This appendix explains data types in different environments:

� Supported SQL data types in C/C++

� Supported SQL data types in Java

� Mapping Oracle data types to DB2 data types

A

© Copyright IBM Corp. 2003, 2007. All rights reserved. 597

A.1 Supported SQL data types in C/C++
Table A-1 provides a complete list of SQL data types, C and C/C++ data type
mapping, and a quick description of each. Note that DB2 has multiple definitions
for DATE and multiple types for NUMBER.

For more information about mapping between SQL data types and C and C++
datatypes, refer to the DB2 document Developing Embedded SQL Applications,
SC10-4232.

Table A-1 Oracle to DB2 data type mapping

SQL data type
sqltype

C/C++ type sqllen Description

integer SMALLINT
(500 or 501)

short
short int
sqlint 16

2 � 16-bit signed integer
� Range between (-32,768

and 32,767)
� Precision of 5 digits

INTEGER
INT
(496 or 497)

long
long int
sqlint32

4 � 32-bit signed integer
� Range between

(-2,147,483,648 and
2,147,483,647)

� Precision of 10 digits

BIGINT
(492 or 493)

long long
long
__int64
sqlint64

8 � 64-bit signed integer

floating
point

REAL
FLOAT
(480 or 481)

float � Single precision floating
point

� 32-bit approximation of a
real number

� FLOAT(n) can be
synonym for REAL
if 0 < n < 25

DOUBLE
(480 or 481)
DOUBLE
PRECISION

double 8 � Double precision floating
point

� 64-bit approximation of a
real number

� Range in (0,
-1.79769E+308 to
-2.225E-307, 2.225E-307
to 1.79769E+308)

� FLOAT(n) can be
synonym for DOUBLE
if 24 < n < 54
598 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

decimal DECIMAL(p,s)
DEC(p,s)
(484 or 485)

NUMERIC(p,s)
NUM(p,s)

double /
decimal

p/2+1 � Packed decimal
� If precision /scale not

specified, default is (5,0)
� Max precision is 31 digits,

and max range between
(-10E31+1 ... 10E31 -1)

� Consider using char /
decimal functions to
manipulate packed
decimal fields as char
data

date / time DATE
(384 or 385)

struct {
short len;
char

data[10];
} dt;

char dt[11];

10 � Null-terminated character
form (11 characters) or
varchar struct form (10
characters);

� struct can be divided as
desired to obtain the
individual fields

� Example: 11/02/2000
� Stored internally as a

packed string of 4 bytes

TIME
(388 or 389)

char 8 � Null-terminated character
form (9 characters) or
varchar struct form (8
characters);

� struct can be divided as
desired to obtain the
individual fields

� Example: 19:21:39
Stored internally as a
packed string of 3 bytes

TIMESTAMP
(392 or 393)

char 26 � Null-terminated character
form (27 characters) or
varchar struct form (26
characters);

� struct can be divided as
desired to obtain the
individual fields

� Example:
2003-08-04-01.02.03.000
000

� Stored internally as a
packed string of 10 bytes

SQL data type
sqltype

C/C++ type sqllen Description
 Appendix A. Data types 599

character CHAR
(452 or 453)

char n � - Fixed-length character
string consisting of n
bytes

� Use char[n+1] where 1 <=
n <= 254

� If length not specified,
defaults to 1

VARCHAR
(460 or 461)

char n � Null-terminated variable
length character string

� Use char[n+1]
where 1 <= n <=32672

VARCHAR
(448 or 449)

struct tag {
short int;
char[n] }

len � Non null-terminated
varying character string
with 2-byte string length
indicator

� Use char[n] in struct form
where 1<= n <= 32672

� Default SQL type

LONG
VARCHAR
(456 or 457)

struct tag {
short int;
char[n] }

len � Non null-terminated
varying character string
with 2-byte string length
indicator

� se char[n] in struct form
where 32673<= n <=
32700

CLOB(n)
(408 or 409)

clob n � Non null-terminated
varying character string
with 4-byte string length
indicator

� se char[n] in struct form
where 1 <= n <=
2147483647

CLOB
(964 or 965)

clob_locator � Identifies CLOB entities
residing on the server

CLOB
(920 or 921)

clob_file � Descriptor for file
containing CLOB data

SQL data type
sqltype

C/C++ type sqllen Description
600 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

binary BLOB(n)
(404 or 405)

blob n � Non null-terminated
varying binary string with
4-byte string length
indicator

� Use char[n] in struct form
where 1 <= n <=
2147483647

BLOB
(960 or 961)

blob_locator � Identifies BLOB entities
on the server

BLOB
(916 or 917)

blob_file � Descriptor for the file
containing BLOB data

double-
byte

GRAPHIC(1)
GRAPHIC(n)
(468 or 469)

sqldbchar 24 � sqldbchar is a single
double-byte character
string

� For a fixed-length graphic
string of length integer
which may range from 1
to 127. If the length
specification is omitted, a
length of 1 is assumed.

� Precompiled with
WCHARTYPE
NOCONVERT option

VARGRAPHIC(
n)
(464 or 465)

struct {
short int;
sqldbchar[n

]
} tag;

alternately:
sqldbchar[n+
1]

n*2+
4

� For a varying-length
graphic string of
maximum length integer,
which may range from 1
to 16336.

� Precompiled with
WCHARTYPE
NOCONVERT option.

� Null terminated
variable-length

LONG
VARGRAPHIC(
n)
(472 or 473)

struct {
short int;
sqldbchar[n

]
} tag;

� For a varying-length
graphic string with a
maximum length of
16350 and a 2-byte string
length indicator
16337<=n <=16350

� Precompiled with
WCHARTYPE
NOCONVERT option

SQL data type
sqltype

C/C++ type sqllen Description
 Appendix A. Data types 601

A.2 Supported SQL data types in Java
Table A-2 shows the Java equivalent of each SQL data type, based on the JDBC
specification for data type mappings. The JDBC driver converts the data
exchanged between the application and the database using the following
mapping schema. Use these mappings in your Java applications and your
PARAMETER STYLE JAVA procedures and UDFs.

DBCLOB(n)
(412 or 413)

dbclob � For non-null-terminated
varying double-byte
character large object
maximum length in
double-byte characters.

� 4 bytes string length
indicator

� Use dbclob(n) where
1<=n <= 1073741823
double-byte characters.

� Precompiled with
WCHARTYPE
NOCONVERT option

DBCLOB dbclob_locat
or

� Identifies DBCLOB
entities residing on the
server

� Precompiled with
WCHARTYPE
NOCONVERT option

DBCLOB dbclob_file � Descriptor for file
containing DBCLOB data

� Precompiled with
WCHARTYPE
NOCONVERT option

external
data

Datalink(n) n+54 � The length of a
DATALINK
column is 200 bytes

XML
(988 or 989)

struct {
sqluint32
length;
char data[n];
}

� XML value

SQL data type
sqltype

C/C++ type sqllen Description
602 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

For more information about mapping between SQL data types and C and C++
datatypes, refer to the DB2 document Developing Embedded SQL Applications,
SC10-4232.

Table A-2 SQL data types mapped to Java declarations

SQL data type
sqltype

Java type sqllen Description

integer SMALLINT
(500 or 501)

short 2 16-bit, signed integer

INTEGER
(496 or 497)

int 4 32-bit, signed integer

BIGINT 1

(492 or 493)
long 8 64-bit, signed integer

floating
point

REAL
(480 or 481)

float Single precision floating
point

DOUBLE
(480 or 481)

double 4 Single precision floating
point

DOUBLE
(480 or 481)

double 8 Double precision floating
point

decimal DECIMAL(p,s)
(484 or 485)

java.math.
BigDecimal

n/2 Packed decimal

date /
time

DATE
(384 or 385)

java.sql.Date 10 10-byte character string

TIME
(388 or 389)

java.sql.Time 8 8-byte character string

TIMESTAMP
(392 or 393)

java.sql.
Timestamp

26 26-byte character string

character CHAR
(452 or 453)

java.lang.Stri
ng

n Fixed-length character
string of length n where n
is from
1 to 254

CHAR FOR BIT
DATA

byte[] Fixed-length character
string of length n where n
is from
1 to 254

VARCHAR
(448 or 449)

java.lang.Stri
ng

n Variable-length character
string, n <= 32672
 Appendix A. Data types 603

VARCHAR FOR
BIT DATA

byte[] Variable-length character
string

LONG
VARCHAR
(456 or 457)

java.lang.Stri
ng

n Long variable-length
character string, n <=
32672

CLOB(n)
(408 or 409)

java.lang.Clo
b

n Large object
variable-length character
string

binary BLOB(n)
(404 or 405)

java.lang.Blo
b

n Large object
variable-length binary
string

double-
byte

GRAPHIC(n)
(468 or 469)

java.lang.Stri
ng

n Fixed-length double-byte
character string

VARGRAPHIC(n
)
(464 or 465)

java.lang.Stri
ng

n*2+4 Non-null-terminated
varying double-byte
character string with
2-byte string length
indicator

LONG
VARGRAPHIC(n
)
(472 or 473)

java.lang.Stri
ng

n Non-null-terminated
varying double-byte
character string with
2-byte string length
indicator

DBCLOB(n)
(412 or 413)

java.lang.Clo
b

n Large object
variable-length
double-byte character
string

CLOB(n)
(408 or 409)

java.sql.Clob n Non null-terminated
varying character string
with 4-byte string length
indicator

binary BLOB(n)
(404 or 405)

java.sql.Blob n Non null-terminated
varying binary string with
4-byte string length
indicator

XML com.ibm.db2.j
cc.DB2Xml

XML value

SQL data type
sqltype

Java type sqllen Description
604 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

A.3 Mapping Oracle data types to DB2 data types
Table A-3 summarizes the mapping from Oracle data types to corresponding
DB2 data types. The mapping is one to many and depends on the actual usage
of the data.

Table A-3 Mapping Oracle data types to DB2 data types

Oracle data type DB2 data type Notes

CHAR(n) CHAR(n) 1 <= n <= 254

VARCHAR2(n) VARCHAR(n) n <= 32762

NCHAR(n) CHAR(n) a 1 <= n <= 254

NVARCHAR2(n) VARCHAR(n) a n <= 32762

LONG LONG VARCHAR(n) if n <= 32700 bytes

LONG CLOB(2GB) if n <= 2 GB

NUMBER(p) SMALLINT /
INTEGER /
BIGINT

� SMALLINT, if 1 <= p <= 4
� INTEGER, if 5 <= p <= 9
� BIGINT, if 10 <= p <= 18

NUMBER(p,s) DECIMAL(p,s) if s > 0

NUMBER FLOAT /
REAL /
DOUBLE

RAW(n) CHAR(n) FOR BIT DATA
/
VARCHAR(n) FOR BIT
DATA
BLOB(n)

� CHAR, if n <= 254
� VARCHAR, if 254 < n <=

32672
� BLOB, if 32672 < n <= 2 GB

LONG RAW LONG VARCHAR(n) FOR
BIT DATA /
BLOB(n)

� LONG, if n <= 32700
� BLOB, if 32700 < n <= 2GB

BLOB BLOB(n) if n <= 2 GB

CLOB CLOB(n) if n <= 2 GB

NCLOB DBCLOB(n) if n <= 2 GB, use DBCLOB(n/2)
 Appendix A. Data types 605

DATE TIMESTAMP � Use Oracle TO_CHAR()
function to extract for
subsequent DB2 load.

� Oracle default format is
DD-MON-YY

DATE (only the
date)

DATE (MM/DD/YYYY) Use Oracle TO_CHAR() function
to extract data for subsequent
DB2 load.

DATE (only the time) TIME (HH24:MI:SS) Use Oracle TO_CHAR() function
to extract for subsequent DB2
load.

TIMESTAMP TIMESTAMP

XMLType XML

a. You can map Oracle NCHAR and NVARCHAR2 columns to DB2 CHAR and
VARCHAR columns created in an Unicode database or column created with
CCSID clause to an Unicode compatible code set.

Oracle data type DB2 data type Notes
606 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Appendix B. Terminology mapping

This appendix contains the terminology mapping of Oracle to DB2.

Table B-1 Oracle terminology to DB2 mapping

B

Oracle DB2 Comments

Oracle EE DB2
Enterprise 9

Enterprise product

Oracle
Parallel

DB2
Enterprise
DPF

Support node partitioning

Oracle
Gateway

DB2 Connect DRDA® access to hosts

PL/SQL SQL
Procedural
Language

Programming language extension to SQL.
DB2 stored procedures can be programmed in SQL
Control Statements (subset of PSM standard),
Java, C, C++, COBOL, Fortran, OLE, and REXX™.
DB2 functions can be programmed in Java, C, C++,
OLE, or SQL control statements.

SQL*PLUS DB2 CLP Command line interface to the server
© Copyright IBM Corp. 2003, 2007. All rights reserved. 607

Instance Instance Processes and shared memory.
In DB2 it also includes a permanent directory
structure: an instance is usually created at install
time (or can be later) and must exist before a
database can be created. A DB2 instance is also
known as the database manager (DBM). A DB2
instance can have multiple databases. But an
Oracle instance can only have one database.

Database Database Physical structure containing data.
In Oracle, multiple instances can use the same
database, and an instance can connect to one and
only one database. In DB2, multiple databases can
be created and used concurrently in the same
instance.

Control files
and .ora files

DBM and
database
configuration
files, etc.

In Oracle, files that name the locations of files
making up the database and provide configuration
values. In DB2, each instance (DBM) and database
has its own set of configuration parameters stored in
a binary file; there are also other internal files and
directories: none is manually edited.

Database Link Federated
System

In Oracle, an object that describes a path from one
database to another.
In DB2 a federated system is used. One database is
chosen as the federated database and within it
wrappers, servers, nicknames, and other optional
objects are created to define how to access the
other databases (including Oracle databases) and
objects in them. Once an application is connected to
the federated database it can access all authorized
objects in the federated system.

Table spaces Table spaces Contains actual database data

Datafiles Containers Entities inside the table spaces

Segments Objects Entities inside the containers/data files

Extents Extents Entities inside the objects/segments

Data blocks Pages Smallest storage entity in the storage model

Oracle DB2 Comments
608 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Clusters N/A Data structure that allows related data to be stored
together on disk; can be table or hash clusters. The
closest facility to this in DB2 is a clustering index,
which causes rows inserted into a table to be placed
physically close to the rows for which the key values
of this index are in the same range.

Data
dictionary

System
catalog

Metadata of the database

N/A SMS System-managed table space

Datafiles DMS
containers

The file and raw devices under Database-managed
table space.

Data cache Buffer pools Buffers data in the table spaces to reduce disk I/O

Statement
cache

Package
cache

Caches prepared dynamic SQL statements

 Redo logs Log files Recovery logs

Rollback
segments

N/A Store the old version of data for a mutating table. In
DB2 the old version of an updated row is stored in
the log file along with the new version.

SGA Database
manager and
database
shared
memory

Shared memory area(s) for the database server. In
Oracle there is one, while in DB2 there is one at the
database manager (instance) level any one for each
active database.

UGA Agent /
application
shared
memory

Shared memory area to store user-specific data
passed between application process and the
database server.

 N/A Package A precompiled access plan for an embedded static
SQL application stored in the server.

 Package N/A A logical grouping of PL/SQL blocks that can be
invoked by other PL/SQL applications.

Oracle DB2 Comments
 Appendix B. Terminology mapping 609

610 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Appendix C. Function mapping

This appendix contains the function mapping of Oracle to DB2. The function
mapping covered includes the following:

� Numeric function mapping
� Character function mapping
� Date and time function mapping
� Conversion and cast function mapping
� Aggregate function mapping
� Comparison and NULL-related function mapping
� Encoding, decoding, encryption, and decryption function mapping

For more DB2 user defined function (UDF) samples to replace Oracle functions,
refer to the following Web site:

http://www.ibm.com/developerworks/db2/library/samples/db2/0205udfs/

C

© Copyright IBM Corp. 2003, 2007. All rights reserved. 611

http://www.ibm.com/developerworks/db2/library/samples/db2/0205udfs/

C.1 Numeric function mapping
Table C-1 shows the numeric function mapping between Oracle and DB2.

Table C-1 Numeric functions

Oracle DB2 Comments

ABS ABS Returns the absolute value.

ACOS ACOS Returns the arc cosine.

ASIN ASIN Returns the arc sine.

ATAN ATAN Returns the arc tangent.

ATAN2 ATAN2 Returns the arc tangent (two value).

BITAND N/A.
Implemented by
UDF.

Returns the bit-wise AND of two
non-negative integers. Refer to
Example C-2 on page 614 for sample
UDF code.

CEIL CEIL
CEILING

Returns the smallest integer greater or
equal to the argument.

COS COS Returns the cosine.

COSH COSH Returns the hyperbolic cosine.

N/A COT Returns the cotangent.

N/A DEGREES Returns the number of degrees of an
angle.

N/A DIGITS Returns a character-string representation
of the absolute value of a number.

EXP EXP Returns the exponential function of the
argument.

FLOOR FLOOR Returns the largest integer less or equal
to the argument.

LN LN Returns the natural logarithm.

LOG LOG Returns the natural logarithm. Oracle
LOG(n2,n1) is equivalent to DB2
LOG(n1)/LOG(n2). An UDF for
LOG(n2,n1) is provided in Example C-1
on page 614.

LOG(10,n1) LOG10(n1) Returns the common logarithm (base 10).
612 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

MOD MOD Returns the remainder of the first
argument divided by the second
argument.

N/A MULTIPLY_ALT Returns the product of two arguments as
a decimal value.

NANVL N/A Returns an alternative value n1 if the
input value n2 is NaN (not a number). If
n2 is not NaN, then Oracle Returns n2.

POWER POWER Returns the result of raising the first
argument to the power of the second
argument.

REMAINDER N/A The REMAINDER function is similar to
MOD function except that it uses ROUND
in its formula, whereas MOD uses
FLOOR.

N/A RADIANS Returns the number of radians for the
argument that is expressed in degrees.

N/A RAND Returns a random number.

ROUND(arg1,arg2) ROUND(arg1,arg2) Rounds a value of the first argument to
the number of decimal places specified
by the second argument.

SIGN SIGN Returns: 1 when number is negative, 0
when number is zero, or 1 when number
is positive.

SIN SIN Returns the sine.

SINH SINH Returns the hyperbolic sine.

SQRT SQRT Returns the square root.

TAN TAN Returns the tangent.

TANH TANH Returns the hyperbolic tangent.

TRUNC(n[,m]) TRUNC(n[,m])
TRUNCATE(n[,m])

Returns the truncated number n to the
number of decimal places specified by m.

Oracle DB2 Comments
 Appendix C. Function mapping 613

Example C-1shows the DB2 code of LOG function.

Example: C-1 DB2 sample UDF - LOG(n2,n1)

CREATE FUNCTION ora_log(n1 float, n2 float)
RETURNS FLOAT
LANGUAGE SQL
DETERMINISTIC
NO EXTERNAL ACTION
RETURN
 log(n2)/log(n1);

Example C-2 shows the DB2 code of BIT_AND function and its usage.

Example: C-2 DB2 sample UDF - BIT_AND

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created: 2004/03/06
--
-- Name of UDF: BIT_AND (N1 Integer, N2 Integer)
--
-- Used UDF: None
--
-- Description: Returns bit by bit AND of both parameters.
-- Arguments should be non negative.
--
-- Author: TOKUNAGA, Takashi
--

CREATE FUNCTION BITAND (N1 Integer, N2 Integer)
 RETURNS Integer
 LANGUAGE SQL
 SPECIFIC BITANDOracle
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC

WIDTH_BUCKET N/A.
Implemented by
UDF.

WIDTH_BUCKET lets you construct
equiwidth histograms, in which the
histogram range is divided into intervals
that have identical size. The UDF is
avaialbe for download. See Appendix G,
“Additional material” on page 701 for the
download instructions.

Oracle DB2 Comments
614 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

BEGIN ATOMIC
DECLARE M1, M2, S Integer;
DECLARE RetVal Integer DEFAULT 0;

SET (M1, M2, S) = (N1, N2, 0);
WHILE M1 > 0 AND M2 > 0 AND S < 32 DO
 SET RetVal = RetVal + MOD(M1,2)*MOD(M2,2)*power(2,S);
 SET (M1, M2, S) = (M1/2, M2/2, S+1);
END WHILE;

RETURN RetVal;
END!

--
-- Usage samples
--
---------------------- Command Entered ----------------------------

VALUES BITAND(10,8)
!

1

 8

 1 record(s) selected.

---------------------- Command Entered ----------------------------

VALUES BITAND(1038,77)
!

1

 12

 1 record(s) selected.

C.2 Character function mapping
Table C-2 shows the character function mapping between Oracle and DB2.
 Appendix C. Function mapping 615

Table C-2 Character functions

Oracle DB2 Comments

ASCII ASCII Returns the decimal representation of
a character.

CHR(n) CHR(n) Returns an ASCII code that represents
n. An UDF CHR that takes a binary
number as input and return the
equivalent ASCII value is provided in
Example C-3 on page 619.

CHR (n USING
NCHAR_CS)

N/A Returns the character having the
binary equivalent to n as a VARCHAR2
value in the national character set.

CONCAT CONCAT Returns the concatenation of two
strings.
A CONCAT(||) UDF that supports
various combination of data types is
available for download. See
Appendix G, “Additional material” on
page 701 for the download
instructions.

N/A DIFFERENCE Returns a value from 0 to 4
representing the difference between
the sound of two strings based on
applying the SOUNDEX function to the
strings.

N/A GENERATE_UNIQUE Returns a bit data character string that
is unique compared to any other
execution of the same function.

INITCAP N/A.
Implemented by UDF.

Returns characters with the first letter
of each word in uppercase and the
reset of letters in lowercase. refer to
Example C-4 on page 620 for sample
code

N/A INSERT(arg1,
arg2,arg3,arg4)

Returns a string where arg3 bytes
have been deleted from arg1,
beginning at arg2, and where arg4 has
been inserted into arg1, beginning at
arg2.

INSTR POSSTR
POSITION
LOCATE

Returns an integer indicating the
position of the character in string that is
the first character of this occurrence.
616 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

INSTRB
INSTRC
INSTR2
INSTR4

N/A.
Implemented by UDF.

Returns an integer indicating the
position of the character in different
character sets. Refer to Example C-5
on page 621 for sample code.

LENGTH LENGTH Returns a length of a value.

LENGTHB
LENGTHC
LENGTH2
LENGTH4

N/A Returns the length of a character in
different character sets.

LOWER LOWER
LCASE

Returns the lower case of a character
string.

LPAD(arg1,arg2,
arg3)

N/A.
Implemented by UDF.

Returns arg1, left-padded to length
arg2 characters with the sequence of
characters in arg3. Refer to
Example C-7 on page 624 for sample
code. In addition, we provide three
variables of LPAD that allows you to
pad a character string to an intriguer or
pad, by default, blanks to the first
argument. See Example C-8 on
page 625 and Example C-9 on
page 626.
LPAD(exp1,n) is equivalent to DB2
RIGHT(exp1,n)

LTRIM LTRIM Removes blanks from the beginning of
a string expression.
An UDF that can remove a set of
characters is availabe for download.
See Appendix G, “Additional material”
on page 701 for the download
instructions.

NLS_CHARSET_
DECL_LEN
NLS_CHARSET_
ID
NLS_CHARSET_
NAME
NLS_INITCAP
NLS_LOWER

NLS_UPPER
NLSSORT

N/A NLS functions used in Oracle NCHAR
data type. In DB2, you can use
functions of the appropriate data type.

Oracle DB2 Comments
 Appendix C. Function mapping 617

N/A OCTET_LENGTH Returns the length of an expression in
octets (bytes)

N/A REPEAT(arg1,arg2) Returns a character string composed
of arg1 repeated arg2 times

REPLACE(arg1,a
rg2,arg3)

REPLACE(arg1,arg2,a
rg3)

replaces all occurrences of srg2 in
arg1 with arg3

N/A RIGHT(arg1,arg2) Returns a string consisting of the right
most arg2 bytes in arg1.

RPAD N/A.
Implemented by UDF.

Returns the first argument value,
right-padded to the length specified in
the 2nd argument with characters
specified in the third argument. Refer
to Example C-10 on page 628 for
sample code. In addition, we provide
two the variations of RPAD that pad
blank by default or pad a string to an
integer. See Example C-11 on
page 629 and Example C-12 on
page 630.
RPAD(‘’,n) is equivalent to DB2
SPACE(n).
RPAD(exp1,n) is equivalent to DB2
LEFT(exp1,n).

RTRIM RTRIM Remove blanks from the end of a string
expression.
An UDF that can remove a set of
characters is availabe for download.
See Appendix G, “Additional material”
on page 701 for the download
instructions.

SOUNDEX SOUNDEX Returns a 4-character code
representing the sound of the
argument.

N/A SPACE Returns a character string that consists
of a specified number of blanks.

SUBSTR SUBSTR
SUBSTRING

Returns a substring of a string.

Oracle DB2 Comments
618 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Example C-3 shows the DB2 UDF for CHR function. Different from Oracle, DB2
CHR(0) returns x'20' instead of x'00'. Oracle CHR(n) accept n that is more than
255, however, DB2 CHR(n) where n>255 returns 0. To avoid changing source
code that uses the CHR function, the UDF provided in Example C-3 can be used.

Example: C-3 DB2 sample UDF - CHR

CREATE FUNCTION MyOra.CHR (N FLOAT)
 RETURNS CHAR(1)
 SPECIFIC CHRFloat
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
RETURN COALESCE(SYSFUN.CHR(NULLIF(MOD(INT(N),256),0)),x'00')
;

CREATE FUNCTION MyOra.CHR (N INTEGER)
 RETURNS CHAR(1)
 SPECIFIC CHRInteger
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
RETURN COALESCE(SYSFUN.CHR(NULLIF(MOD(N,256),0)),x'00')
;

SUBSTRB
SUBSTRC
SUBSTR2
SUBSTR4

N/A Returns a substring of a string.

TRANSLATE TRANSLATE Returns a string in which one or more
characters in a string are converted to
other characters.

TREAT implement by CAST Changes the declared type of an
expression.

TRIM TRIM
STRIP

Removes leading or trailing blanks or
other specified leading or trailing
characters from a string expression.

UPPER UPPER
UCASE

Returns a string in which all the
characters have been converted to
uppercase characters.

Oracle DB2 Comments
 Appendix C. Function mapping 619

Example C-4 shows the DB2 code of the INITCAP function and its usage.

Example: C-4 DB2 sample UDF - INITCAP

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created: 2004/03/06
--
-- Name of UDF: INITCAP (C1 VarChar(4000))
--
-- Used UDF: None
--
-- Description: Convert first character of each word to uppercase
 and other characters to lowercase.
-- Words are separated by non-alphanumeric character(s).
--
-- Author: TOKUNAGA, Takashi
--
CREATE FUNCTION INITCAP (C1 VarChar(4000))
 RETURNS VarChar(4000)
 SPECIFIC INITCAPOracle
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
BEGIN ATOMIC
DECLARE AN Char(62) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
DECLARE C1L Integer;
DECLARE Pos, Flag, NewFlag Integer;
DECLARE RetVal VarChar(4000);

SET C1L = LENGTH(C1);

SET (Pos, Flag, RetVal) = (1, 0, '');
WHILE Pos <= C1L DO
 SET NewFlag = SIGN(LOCATE(SUBSTR(C1,Pos,1),AN));
 SET RetVal = RetVal
 || CASE
 WHEN Flag = 0 AND NewFlag = 1 THEN UPPER(SUBSTR(C1,Pos,1))
 WHEN Flag = 1 AND NewFlag = 1 THEN LOWER(SUBSTR(C1,Pos,1))
 ELSE SUBSTR(C1,Pos,1)
 END;
 SET (Pos, Flag) = (Pos + 1, NewFlag);
END WHILE;

RETURN RetVal;
END!
620 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

--
-- Usage sample
--
---------------------- Command Entered ----------------------------
VALUES CHAR(INITCAP('arnold talked a bear***story to maryANN, MacDonald and
jean-POLE.'),80)
!

1
--
Arnold Talked A Bear***Story To Maryann, Macdonald And Jean-Pole.

 1 record(s) selected.

Example C-5 shows the DB2 code of INSTRB function and its usage.

Example: C-5 DB2 sample UDF - INSTRB

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created: 2004/03/06
--
-- Name of UDF: INSTRB (C1 VarChar(4000), C2 VarChar(4000), N integer,
 M integer)
--
-- Used UDF: None
--
-- Description: Return the position of char2 in char1.
-- Search will be started from position N.
-- Same function as DB2 LOCATE function.
-- Add some specifications that are not in LOCATE
 function.
-- Support for Negative value of parameter N
 (start search from end of char1)
-- Add parameter M (number of occurrence of char2)
--
-- Author: TOKUNAGA, Takashi
--
--
CREATE FUNCTION INSTRB (C1 VarChar(4000), C2 VarChar(4000), N integer, M
integer)
 RETURNS Integer
 SPECIFIC INSTRBOracleBase
 LANGUAGE SQL
 CONTAINS SQL
 Appendix C. Function mapping 621

 NO EXTERNAL ACTION
 DETERMINISTIC
BEGIN ATOMIC
DECLARE Pos, R, C2L Integer;

SET C2L = LENGTH(C2);

IF N > 0 THEN
 SET (Pos, R) = (N, 0);
 WHILE R < M AND Pos > 0 DO
 SET Pos = LOCATE(C2,C1,Pos);
 IF Pos > 0 THEN
 SET (Pos, R) = (Pos + 1, R + 1);
 END IF;
 END WHILE;

 RETURN (Pos - 1)*(1-SIGN(M-R));
ELSE
 SET (Pos, R) = (LENGTH(C1)+N, 0);
 WHILE R < M AND Pos > 0 DO
 IF SUBSTR(C1,Pos,C2L) = C2 THEN
 SET R = R + 1;
 END IF;
 SET Pos = Pos - 1;
 END WHILE;

 RETURN (Pos + 1)*(1-SIGN(M-R));
END IF;

END!

--
-- Usage samples
--
---------------------- Command Entered ----------------------------
VALUES INSTRB('corporate floor','or',3,2)
!

1

 14

 1 record(s) selected.

---------------------- Command Entered ----------------------------
VALUES INSTRB('corporate floor','or',-3,2)
622 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

!

1

 2

 1 record(s) selected.

---------------------- Command Entered ----------------------------
VALUES INSTRB('corporate floor','or',-3,3)
!

1

 0

 1 record(s) selected.

Example C-6 shows a variation of INSTRB DB2 code that has one parameter
omitted.

Example: C-6 DB2 sample UDF - INSTRB with one parameter omitted

-- This INSTRB code omits parameter m

--
CREATE FUNCTION INSTRB (C1 VarChar(4000), C2 VarChar(4000), N integer)
 RETURNS Integer
 SPECIFIC INSTRBOracleParm3
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
RETURN
INSTRB(C1, C2, N, 1)
!

--
-- Usage sample
--
---------------------- Command Entered ----------------------------
 Appendix C. Function mapping 623

VALUES INSTRB('corporate floor','or',3)
!

1

 5

 1 record(s) selected.

Example C-7 shows the DB2 UDF code of LPAD function and its usage.

Example: C-7 DB2 sample UDF - LPAD.

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/08/27, 09/27, 11/06
--
-- Name of UDFs: LPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
-- LPAD (I1 Integer, N integer, C2 Varchar(4000))
--
-- Used UDF: None
--
-- Description: Add repeatedly C2 to the left of parameter 1 (C1 or I1)
-- and return N byte.
--
-- Author: TOKUNAGA, Takashi

CREATE FUNCTION LPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADBase
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 CASE
 WHEN N > length(C1) THEN
substr(repeat(C2,(N-length(C1)+length(C2))/(length(C2)+1-sign(length(C2)))),1,N
-length(C1)) || C1
 ELSE substr(C1,1,N)
 END
;

--
-- Usage samples
--
624 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

SELECT char(lpad('ABCDE',15,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
..*.*.*.ABCDE

 1 record(s) selected.

--
SELECT char(lpad('ABCDE',3,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
ABC

 1 record(s) selected.

SELECT char(lpad('ABCDE',15,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
 ABCDEX

 1 record(s) selected.

Example C-8 shows a simplified variation of LPAD that pads blanks to the left of
the value specified in the first argument to the length specified in the second
argument.

Example: C-8 DB2 sample UDF LPAD variation - pad blank to the left

--
LPAD - Omit the 3rd parameter. Blank is padded to the left.

CREATE FUNCTION LPAD (C1 VarChar(4000), N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 Appendix C. Function mapping 625

 RETURN
 LPAD(C1,N,' ')
;

--
--
-- Usage samples
--

SELECT char(lpad('ABCDE',15),20) FROM SYSIBM.SYSDUMMY1;

1

 ABCDE

 1 record(s) selected.

SELECT char(lpad('ABCDE',3),20) FROM SYSIBM.SYSDUMMY1;

1

ABC

 1 record(s) selected.

Example C-9 shows two variations of DB2 UDF LPAD. These functions allow you to pad a
character string to the left of an integer. The difference is that the second example pads,
as default, a blank to an integer.

Example: C-9 DB2 sample UDF LPAD variation - pad string to the left of an integer

--
-- LPAD : The 1st parameter is integer.
--
-- (1) The character string to be padded is specified in
-- the third argument.
-- ---
CREATE FUNCTION LPAD (I1 Integer, N integer, C2 Varchar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADIntParm3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
626 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 LPAD(rtrim(char(I1)),N,C2)
;

--
--
-- Usage samples
--

SELECT char(lpad(9021,15,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
..*.*.*.*9021

 1 record(s) selected.

SELECT char(lpad(9021,15,''),50) FROM SYSIBM.SYSDUMMY1;

1
--
 9021

 1 record(s) selected.

--
-- (2) Pad blank to the left of an integer
--

CREATE FUNCTION LPAD (I1 Integer, N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADIntParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 LPAD(rtrim(char(I1)),N,' ')
;

--
-- Usage sample
--
 Appendix C. Function mapping 627

SELECT char(lpad(9021,3),20) FROM SYSIBM.SYSDUMMY1;

1

902

 1 record(s) selected.

Example C-10 shows the DB2 UDF code of RPAD and its usage.

Example: C-10 DB2 sample UDF - RPAD

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/08/27, 09/27, 11/06
--
-- Name of UDFs: RPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
-- RPAD (I1 Integer, N integer, C2 Varchar(4000))
--
-- Used UDF: None
--
-- Description: Add repeatedly C2 to the right(RPAD) of
-- parameter 1 (C1 or I1) and return N byte.
--
-- Author: TOKUNAGA, Takashi
--

CREATE FUNCTION RPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADBase
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 substr(C1 ||
repeat(C2,((sign(N-length(C1))+1)/2)*(N-length(C1)+length(C2))/(length(C2)+1-si
gn(length(C2)))),1,N)
;

--
-- Usage samples
--

628 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

SELECT char(rpad('ABCDE',12,'*.'),20) FROM SYSIBM.SYSDUMMY1;

1

ABCDE*.*.*.*

 1 record(s) selected.

SELECT char(rpad('ABCDE',3,'*.'),20) FROM SYSIBM.SYSDUMMY1;

1

ABC

 1 record(s) selected.

SELECT char(rpad('ABCDE',20,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
ABCDE X

 1 record(s) selected.

Example C-11 shows two variations of DB2 UDF LPAD. These functions allow
you to pad a character string to the left of an integer. The difference is that the
second example pads, as default, a blank to an integer.

Example: C-11 DB2 sample UDF - RPAD variation - pad with blank

--
-- RPAD - omits the 3rd parameter, pads blank instead.

CREATE FUNCTION RPAD (C1 VarChar(4000), N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADVarCharParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 Appendix C. Function mapping 629

 RETURN
 RPAD(C1,N,' ')
;

--
-- Usage sample
--

SELECT char(rpad('ABCDE',15) || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
ABCDE X

 1 record(s) selected.

SELECT char(rpad('ABCDE',3) || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
ABCX

 1 record(s) selected.

Example C-12 shows two variations of RPAD that allow you to pad a character
string to the right of an integer. The first one requires three arguments. The third
argument is the character string to be padded to the right of the integer specified
in the first argument. The second code example is a simplified version of the first
one. It takes only two arguments and will pad a blank to the right of the integer
specified in the first argument. The usage samples are included.

Example: C-12 DB2 sample UDF RPAD variation - pad character string to an integer

--
-- RPAD variation - The 1st parameter is integer.
--
-- (1) Three arguments are required. The third argument is
-- the character string to be padded to the right of the
-- integer specified in the first argument.
--

630 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

CREATE FUNCTION RPAD (I1 Integer, N integer, C2 Varchar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADIntParm3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 RPAD(rtrim(char(I1)),N,C2)
;

--
-- Usage samples
--

SELECT char(rpad(927,12,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
927*.*.*.*.*

 1 record(s) selected.

SELECT char(rpad(927,12,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
927 X

 1 record(s) selected.

--
-- (2) RPAD - pad blank to the right of an integer
--

CREATE FUNCTION RPAD (I1 Integer, N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADIntParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 Appendix C. Function mapping 631

 RPAD(rtrim(char(I1)),N,' ')
;

--
-- Usage samples
--

SELECT char(rpad(9021,3),20) FROM SYSIBM.SYSDUMMY1;

1

902

 1 record(s) selected.

C.3 Date and time function mapping
Table C-3 shows the date and time function mapping between Oracle and DB2.

Table C-3 Date and time functions

Oracle DB2 Comments

ADD_MONTHS N/A.
Implemented by
UDF.

Returns the date argument plus integer
months. Refer to Example C-13 on
page 634 for sample code.

CURRENT_DATE CURRENT DATE Returns the current date.

CURRENT_TIME
STAMP

CURRENT
TIMESTAMP

Returns the current date and time.

N/A DAYNAME Returns a mixed case character string
containing the name of the day.

N/A DAYOFWEEK Returns the day of the week from a
value, where 1 is Sunday and 7 is
Saturday.

N/A DAYOFYEAR Returns the day of the year from a value.

N/A DAYS Returns an integer representation of a
date.

DBTIMEZONE CURRENT
TIMEZONE

Returns the value of the database time
zone.
632 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

EXTRACT(
datetime)

YEAR()
MOMTH()
DAY()
HOUR()
MINUTE()
SECOND()
MICROSECOND()

Extracts and returns the value of a
specified datetime field from a datetime
expression.

FROM_TZ N/A Converts a timestamp value and a time
zone.

N/A JULIAN_DAY Returns an integer value representing
the number of days from Jan 1, 4712
B.B. to the date specified in the
argument.

LAST_DAY N/A.
Implemented by
UDF.

Returns the date of the last day of the
month of the input date. We also provide
code sample that accept timestamp as
the input. Refer to Example C-14 on
page 636 for sample code.

MONTHS_BETW
EEN(arg1,arg2)

N/A.
Implemented by
UDF.

Returns number of months between
dates specified in arg1 and arg2. Refer to
Example C-15 on page 638 for sample
code.

NEW_TIME(date,
arg1,arg2)

N/A.
Implemented by
UDF.

Returns the date and time in the time
zone specified in arg2 of the date
specified in the first input argument.
Refer to Example C-16 on page 641 for
sample code.

NEXT_DAY(arg1,
arg2)

N/A.
Implemented by
UDF.

Returns the date of the first weekday
named by arg2 that is later than the date
arg1. Refer to Example C-17 on
page 643 for sample code.

NUMTOSDINTER
VAL
NUMTOYMINTER
VAL

N/A Convert a value to an interval value.

ROUND(date,fmt) N/A.
Implemented by
UDF.

Returns date rounded to the unit
specified by the format model fmt. Refer
toExample C-18 on page 646 for sample
code.

Oracle DB2 Comments
 Appendix C. Function mapping 633

Example C-13 shows DB2 user-defined function ADD_MONTHS and its usage.

Example: C-13 DB2 UDF ADD_MONTHS

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/08/31, 11/06
--
-- Name of UDF: ADD_MONTH (D Date, N integer)
--
-- Used UDF: None
--
--
-- Description: Add N month to the date specified in D.
-- If the date specified in D is the last day
-- of the month, the date returned will be the
-- last day of the returned month.
--

SESSIONTIMEZO
NE

CURRENT
TIMEZONE

Returns the time zone of the current
session.

SYS_EXTRACT_
UTC

Implement by
CURRENT
TIMESTAMP -
CURRENT
TIMEZONE

Returns the UTC time from a datetime
value with time zone offset or time zone.

SYSDATE CURRENT DATE Returns the current date.

SYSTIMESTAMP implement by
CURRENT
TIMESTAMP+
CURRENT
TIMEZONE

Returns the current timestamp.

N/A TIMESTAMPDIFF Returns an estimated number of intervals
of the type defined by the first argument,
based on the difference between two
timestamps.

TRUNC(arg1,arg2) N/A
Implemented by
UDF

Returns arg1 with the time portion of the
day truncated to the unit specified by
arg2. Refer to Example C-19 on
page 647 for sample code.

TZ_OFFSET N/A Returns the time zone offset

Oracle DB2 Comments
634 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

-- Author: TOKUNAGA, Takashi
--

CREATE FUNCTION ADD_MONTHS (D Date, N integer)
 RETURNS Date
 LANGUAGE SQL
 SPECIFIC ADD_MONTHSOracle
 DETERMINISTIC
 NO EXTERNAL ACTION
 CONTAINS SQL
 RETURN
CASE
WHEN day(D + 1 day) = 1 THEN (D + N month + 4 days) - day(D + N month + 4 days)
days
ELSE D + N month
END;

--
-- Usage samples
--

SELECT add_months(date('2001-02-27'),11) FROM sysibm.sysdummy1;

1

2002-01-27

 1 record(s) selected.

SELECT add_months(date('2001-02-28'),11) FROM sysibm.sysdummy1;

1

2002-01-31

 1 record(s) selected.

SELECT add_months(date('2001-01-29'),13) FROM sysibm.sysdummy1;

1

2002-02-28
 Appendix C. Function mapping 635

 1 record(s) selected.

SELECT add_months(date('2003-01-31'),13) FROM sysibm.sysdummy1;

1

2004-02-29

 1 record(s) selected.

Example C-14 shows the two DB2 sample code for LAST_DAY and theirs usage.
One function accepts a date as the input argument, the other accepts timestamp
as the input argument.

Example: C-14 DB2 sample UDF - LAST_DAY

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/08/29, 11/06, 2002/05/05
--
-- Name of UDF: LAST_DAY (D Date)
-- LAST_DAY (D Timestamp)
--
-- Used UDF: None
--
-- Description: Last day of month.
--
-- Author: TOKUNAGA, Takashi
--
-- (1) Argument is a date

CREATE FUNCTION LAST_DAY (D Date)
 RETURNS Date
 LANGUAGE SQL
 SPECIFIC LAST_DAYDate
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
D + 1 month - day(D + 1 month) day
;

--
-- Usage sample
--
636 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

select hiredate, last_day(date(hiredate)) "Last_Date"
 from (values ('1980-10-17')
 ,('1980-01-31')
 ,('1981-02-22')
 ,('1981-03-02')
 ,('1987-04-19')
 ,('1981-05-01')
 ,('1981-06-09')
 ,('1981-07-08')
 ,('1981-09-28')
 ,('1981-11-17')
 ,('1981-12-01')
 ,('1981-12-31')
 ,('1982-01-23')
) q(hiredate)
;

HIREDATE Last_Date
---------- ----------
1980-10-17 1980-10-31
1980-01-31 1980-01-31
1981-02-22 1981-02-28
1981-03-02 1981-03-31
1987-04-19 1987-04-30
1981-05-01 1981-05-31
1981-06-09 1981-06-30
1981-07-08 1981-07-31
1981-09-28 1981-09-30
1981-11-17 1981-11-30
1981-12-01 1981-12-31
1981-12-31 1981-12-31
1982-01-23 1982-01-31

 13 record(s) selected.

select last_day(date('2001-1-1')) from sysibm.sysdummy1;

1

2001-01-31

 1 record(s) selected.

 Appendix C. Function mapping 637

--
-- (2) Argument is a timestamp
--

CREATE FUNCTION LAST_DAY (D Timestamp)
 RETURNS Timestamp
 LANGUAGE SQL
 SPECIFIC LAST_DAYTimestamp
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
D + 1 month - day(D + 1 month) day
;

--
-- Usage sample
--

select sysdate(),
 last_day(sysdate()) "Last",
 last_day(sysdate()) - sysdate() "Days Left"
 from sysibm.sysdummy1
;

1 Last Days Left
---------------- -------------------------- ----------------------
2002-05-06-08.41.41.723001 2002-05-31-08.41.41.723001 25000000.000000

 1 record(s) selected.

Note that the result of subtracting two timestamps is a timestamp duration. Its
data type is DECIMAL(20,6) with the format as follows:

yyyymmddhhmiss.ssssss

Example C-15 shows the DB2 sample code of MONTHS_BETWEEN and its
usage.

Example: C-15 DB2 sample UDF - MONTHS_BETWEEN

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/09/01, 2002/04/16
--
-- Name of UDF: MONTHS_BETWEEN (D1 Date, D2 Date)
--
638 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

-- Used UDF: None
--
-- Description: Months between D1 and D2.
-- Fractions are calculated considering the month with
-- 31 days.
-- If D1 and D2 are both end of month,
-- then fractional will be 0.
--
-- Author: TOKUNAGA, Takashi
--

CREATE FUNCTION MONTHS_BETWEEN (D1 Date, D2 Date)
 RETURNS Double
 LANGUAGE SQL
 SPECIFIC MONTHS_BETWEENdate
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
(year(D1) - year(D2)) * 12 + month(D1) - month(D2) +
CASE
WHEN day(D1 + 1 day) = 1 and day(D2 + 1 day) = 1 THEN 0
ELSE double(day(D1) - day(D2)) / 31
END
;

--
-- Usage sample
--

select months_between(date('1995-02-02'),date('1995-01-01')) from
sysibm.sysdummy1;

1

 +1.03225806451613E+000

 1 record(s) selected.

select months_between(date('2001-07-06'),date('2001-06-06')) from
sysibm.sysdummy1;

1
 Appendix C. Function mapping 639

 +1.00000000000000E+000

 1 record(s) selected.

select months_between(date('2001-06-21'),date('2001-06-07')) from
sysibm.sysdummy1;

1

 +4.51612903225806E-001

 1 record(s) selected.

select months_between(date('2001-06-21'),date('2001-06-07'))*31 from
sysibm.sysdummy1;

1

 +1.40000000000000E+001

 1 record(s) selected.

select months_between(date('2001-06-30'),date('2001-02-28')) from
sysibm.sysdummy1;

1

 +4.00000000000000E+000

 1 record(s) selected.

select months_between(date('2000-02-29'),date('1995-01-31')) from
sysibm.sysdummy1;
640 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

1

 +6.10000000000000E+001

 1 record(s) selected.

Example C-16 shows the DB2 code sample of NEW_TIME function and its
usage.

Example: C-16 DB2 sample UDF - NEW_TIME

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/11/05, 11/12, 2002/05/06
--
-- Name of UDF: NEW_TIME (D Timestamp, Z1 Varchar(3), Z2 Varchar(3))
--
-- Used UDF: None
--
-- Description:
-- Convert time of time zone Z1 to time zone Z2.
-- Common across the DB2 family.
--
-- Z1 and Z2 must be following strings:
--
-- AST, ADT: Atlantic standard time and Atlantic daylight time
-- BST, BDT: Bering standard time and Bering daylight time
-- CST, CDT: Central standard time and Central daylight time
-- EST, EDT: Eastern standard time and Eastern daylight time
-- GMT: Greenwich mean time
-- HST, HDT: Hawaiian standard time and Hawaiian daylight time
-- MST, MDT: Mountain standard time and Mountain daylight time
-- NST: Newfoundland standard time
-- PST, PDT: Pacific standard time and Pacific daylight time
-- YST, YDT: Yukon standard time and Yukon daylight time
--
-- Author: TOKUNAGA, Takashi
--

CREATE FUNCTION NEW_TIME (D Timestamp, Z1 Varchar(3), Z2 Varchar(3))
 RETURNS Timestamp
 LANGUAGE SQL
 SPECIFIC NEW_TIMECommon
 DETERMINISTIC
 CONTAINS SQL
 Appendix C. Function mapping 641

 NO EXTERNAL ACTION
 RETURN D
- DECIMAL(
 CASE ucase(Z1)
 WHEN 'AST' THEN -4
 WHEN 'ADT' THEN -3
 WHEN 'BST' THEN -11
 WHEN 'BDT' THEN -10
 WHEN 'CST' THEN -6
 WHEN 'CDT' THEN -5
 WHEN 'EST' THEN -3
 WHEN 'EDT' THEN -2
 WHEN 'GMT' THEN 0
 WHEN 'HST' THEN -10
 WHEN 'HDT' THEN -9
 WHEN 'MST' THEN -7
 WHEN 'MDT' THEN -6
 WHEN 'NST' THEN -3.3
 WHEN 'PST' THEN -8
 WHEN 'PDT' THEN -7
 WHEN 'YST' THEN -9
 WHEN 'YDT' THEN -8
 ELSE null
 END
 * 10000,6,0)
+ DECIMAL(
 CASE ucase(Z2)
 WHEN 'AST' THEN -4
 WHEN 'ADT' THEN -3
 WHEN 'BST' THEN -11
 WHEN 'BDT' THEN -10
 WHEN 'CST' THEN -6
 WHEN 'CDT' THEN -5
 WHEN 'EST' THEN -3
 WHEN 'EDT' THEN -2
 WHEN 'GMT' THEN 0
 WHEN 'HST' THEN -10
 WHEN 'HDT' THEN -9
 WHEN 'MST' THEN -7
 WHEN 'MDT' THEN -6
 WHEN 'NST' THEN -3.3
 WHEN 'PST' THEN -8
 WHEN 'PDT' THEN -7
 WHEN 'YST' THEN -9
 WHEN 'YDT' THEN -8
 ELSE null
 END
 * 10000,6,0)
;

642 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

--
-- Usage samples
--

SELECT NEW_TIME(TIMESTAMP('2001-10-31-22.35.17.000000'),'AST','ADT') FROM
sysibm.sysdummy1;

1

2001-10-31-23.35.17.000000

 1 record(s) selected.

SELECT NEW_TIME(TIMESTAMP('1999-11-10-01.23.45.000000'),'AST','PST') FROM
sysibm.sysdummy1;

1

1999-11-09-21.23.45.000000

 1 record(s) selected.

SELECT NEW_TIME(TIMESTAMP('1999-11-10-01.23.45.000000'),'NST','PST') FROM
sysibm.sysdummy1;

1

1999-11-09-20.53.45.000000

 1 record(s) selected.

Example C-17 shows the DB2 code sample of the NEXT_DAY function and its
usage.

Example: C-17 DB2 sample UDF - NEXT_DAY

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
 Appendix C. Function mapping 643

-- Created: 2002/09/05
--
-- Name of UDF: NEXT_DAY (D Date, DN Varchar(10))
--
-- Used UDF: None
--
-- Description: Returns first day with dayname specified by DN after D.
--
-- Author: TOKUNAGA, Takashi
--

CREATE FUNCTION NEXT_DAY (D Date, DN Varchar(10))
 RETURNS Date
 SPECIFIC NEXT_DAYAnyLang
 LANGUAGE SQL
 CONTAINS SQL
 EXTERNAL ACTION
 NOT DETERMINISTIC
BEGIN ATOMIC
DECLARE N INTEGER DEFAULT 0;
Loop1: WHILE ucase(dayname(D + N days)) <> ucase(DN) AND N < 7 DO
 SET N = N + 1;
END WHILE Loop1;
IF N = 0 THEN
 RETURN D + 7 days;
ELSEIF N < 7 THEN
 RETURN D + N days;
ELSE
 SIGNAL SQLSTATE 'U1846' SET MESSAGE_TEXT = 'Specified dayname is invalid.';
END IF;
END
!

--
-- Usage samples
--

Values next_Day(date('1998-03-15'), 'Tuesday');

1

1998-03-17

 1 record(s) selected.

644 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Values next_Day(date('1992-3-15'), 'SUNDAY');

1

1992-03-22

 1 record(s) selected.

Values next_Day(date('1992-3-15'), 'tuesday');

1

1992-03-17

 1 record(s) selected.

Values next_Day(date('1992-3-29'), 'Wednesday');

1

1992-04-01

 1 record(s) selected.

Values next_Day(date('1992-3-15'), ' Sunday');

1

SQL0438N Application raised error with diagnostic text: "Specified dayname is
invalid.". SQLSTATE=U1846

Example C-18 shows the DB2 sample code for ROUND function. We also
include a simplified version which returns a rounded timestamp in a default
format.
 Appendix C. Function mapping 645

Example: C-18 DB2 sample UDF - ROUND for Timestamp

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created: 2004/03/12
--
-- Name of UDF: ROUND (inTS Timestamp, Fmt VarChar(5))
--
-- Used UDF: None
--
--
-- Description: Return rounded imestamp value according
-- to specified format.
--
-- Refer to Oracle manual for String format
-- Author: Tokunaga, Takashi
--
--
CREATE FUNCTION ROUND(inTS Timestamp, Fmt VarChar(5))
 RETURNS Timestamp
 LANGUAGE SQL
 SPECIFIC ROUND_Timestamp2
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
BEGIN ATOMIC
DECLARE Jan01, Mon01 DATE;
DECLARE UCASE_Fmt VarChar(5);

SET UCASE_Fmt = UCASE(Fmt);

IF UCASE_Fmt = 'WW' THEN
 SET Jan01 = DATE(SUBSTR(CHAR(inTS),1,4)||'001');
ELSEIF UCASE_Fmt = 'W' THEN
 SET Mon01 = DATE(inTS) - (DAY(inTS)-1) DAYS;
END IF;

RETURN
CASE
WHEN UCASE_Fmt IN ('CC', 'BCC') THEN
 TIMESTAMP(SUBSTR(DIGITS(YEAR(inTS)+100),7,2) ||
'00-01-01-00.00.00.000000')
WHEN UCASE_Fmt IN ('SYYYY', 'YYYY', 'YEAR', 'SYEAR', 'YYY', 'YY', 'Y') THEN
 TIMESTAMP(SUBSTR(CHAR(inTS + 7 MONTHS),1, 4) || '-01-01-00.00.00.000000')
WHEN UCASE_Fmt IN ('MONTH', 'MON', 'MM', 'RM') THEN
 TIMESTAMP(SUBSTR(CHAR(inTS + 1 MONTH - 15 DAYS),1, 7) ||
'-01-00.00.00.000000')
WHEN UCASE_Fmt IN ('DDD', 'DD', 'J') THEN
646 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 TIMESTAMP(SUBSTR(CHAR(inTS),1,10) || '-00.00.00.000000')
WHEN UCASE_Fmt = 'WW' THEN
 TIMESTAMP(CHAR(Jan01 + MOD(DAYOFWEEK(inTS)-DAYOFWEEK(Jan01)+7,7) DAYS,ISO)
|| '-00.00.00.000000')
WHEN UCASE_Fmt = 'W' THEN
 TIMESTAMP(CHAR(Mon01 + MOD(DAYOFWEEK(inTS)-DAYOFWEEK(Mon01)+7,7) DAYS,ISO)
|| '-00.00.00.000000')
WHEN UCASE_Fmt IN ('DAY', 'DY', 'D') THEN
 TIMESTAMP(CHAR(DATE(inTS) - (DAYOFWEEK(inTS)-1) DAYS,ISO) ||
'-00.00.00.000000')
WHEN UCASE_Fmt IN ('HH', 'HH12', 'HH24') THEN
 TIMESTAMP(SUBSTR(CHAR(inTS),1,13) || '.00.00.000000')
WHEN UCASE_Fmt = 'MI' THEN
 TIMESTAMP(SUBSTR(CHAR(inTS),1,16) || '.00.000000')
END;

END!

--
-- (2) This simplified ROUND version returns a timestamp with
-- the default format 00.00.00.000000

CREATE FUNCTION ROUND(inTS Timestamp)
 RETURNS Timestamp
 LANGUAGE SQL
 SPECIFIC ROUND_Timestamp1
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
RETURN
 TIMESTAMP(SUBSTR(CHAR(inTS), 1, 10) || '-00.00.00.000000')
!

Example C-19 shows the DB2 sample code for TRUNC function. We also include
an simplified version which returns the truncated timestamp with a default format.

Example: C-19 DB2 sample UDF - TRUNC

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created: 2004/03/12
--
-- Name of UDF: TRUNC (inTS Timestamp, Fmt VarChar(5))
--
-- Used UDF: None
--
--
 Appendix C. Function mapping 647

-- Description: Return truncated timestamp value according
-- to specified format.
--
-- Refer to Oralce maual for string format
--
-- Author: Tokunaga, Takashi

CREATE FUNCTION TRUNC(inTS Timestamp, Fmt VarChar(5))
 RETURNS Timestamp
 LANGUAGE SQL
 SPECIFIC TRUNC_Timestamp2
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
BEGIN ATOMIC
DECLARE Jan01, Mon01 DATE;
DECLARE UCASE_Fmt VarChar(5);

SET UCASE_Fmt = UCASE(Fmt);

IF UCASE_Fmt = 'WW' THEN
 SET Jan01 = DATE(SUBSTR(CHAR(inTS),1,4)||'001');
ELSEIF UCASE_Fmt = 'W' THEN
 SET Mon01 = DATE(inTS) - (DAY(inTS)-1) DAYS;
END IF;

RETURN
CASE
WHEN UCASE_Fmt IN ('CC', 'BCC') THEN
 TIMESTAMP(SUBSTR(DIGITS(YEAR(inTS)+100),7,2) ||
'00-01-01-00.00.00.000000')
WHEN UCASE_Fmt IN ('SYYYY', 'YYYY', 'YEAR', 'SYEAR', 'YYY', 'YY', 'Y') THEN
 TIMESTAMP(SUBSTR(CHAR(inTS),1, 4) || '-01-01-00.00.00.000000')
WHEN UCASE_Fmt IN ('MONTH', 'MON', 'MM', 'RM') THEN
 TIMESTAMP(SUBSTR(CHAR(inTS),1, 7) || '-01-00.00.00.000000')
WHEN UCASE_Fmt IN ('DDD', 'DD', 'J') THEN
 TIMESTAMP(SUBSTR(CHAR(inTS),1,10) || '-00.00.00.000000')
WHEN UCASE_Fmt = 'WW' THEN
 TIMESTAMP(CHAR(Jan01 + MOD(DAYOFWEEK(inTS)-DAYOFWEEK(Jan01)+7,7) DAYS,ISO)
|| '-00.00.00.000000')
WHEN UCASE_Fmt = 'W' THEN
 TIMESTAMP(CHAR(Mon01 + MOD(DAYOFWEEK(inTS)-DAYOFWEEK(Mon01)+7,7) DAYS,ISO)
|| '-00.00.00.000000')
WHEN UCASE_Fmt IN ('DAY', 'DY', 'D') THEN
 TIMESTAMP(CHAR(DATE(inTS) - (DAYOFWEEK(inTS)-1) DAYS,ISO) ||
'-00.00.00.000000')
WHEN UCASE_Fmt IN ('HH', 'HH12', 'HH24') THEN
 TIMESTAMP(SUBSTR(CHAR(inTS),1,13) || '.00.00.000000')
WHEN UCASE_Fmt = 'MI' THEN
648 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 TIMESTAMP(SUBSTR(CHAR(inTS),1,16) || '.00.000000')
END;

END!
--
--
-- (2) This simplified TRUNC version returns a timestamp with
-- the default format 00.00.00.000000
--
--
CREATE FUNCTION TRUNC(inTS Timestamp)
 RETURNS Timestamp
 LANGUAGE SQL
 SPECIFIC TRUNC_Timestamp1
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
RETURN
 TIMESTAMP(SUBSTR(CHAR(inTS), 1, 10) || '-00.00.00.000000')
!

C.4 Conversion and cast function mapping
Table C-4 shows the conversion and cast function mapping between Oracle and
DB2.

Table C-4 Conversion and cast functions

Oracle DB2 Comments

ASCIISTR N/A Returns the ASCII string equivalent of
the argument.

BIN_TO_NUM N/A Converts a bit vector to its equivalent
number.

CAST CAST Converts one built-in datatype or
collection-typed value into another
built-in datatype or collection-typed
value.

CHARTOROWID N/A Converts a value from CHAR,
VARCHAR2, NCHAR, or NVARCHAR2
datatype to ROWID Oracle datatype.

COMPOSE N/A Returns an Unicode string in its fully
normalized form in the same character
set as the input.
 Appendix C. Function mapping 649

CONVERT N/A Converts a character string from one
character set to another.

DECOMPOSE N/A Returns an Unicode string after
decomposition in the same character set
as the input.

HEXTORAW N/A.
Implemented by
UDF.

Converts CHAR containing hexadecimal
digits in the character set to a raw value.
Refer to Example C-20 on page 652 for
sample code.

NUMTODSINTER
VAL
NUMTOYMINTER
BVAL

N/A Converts a number to an Oracle
INTERVAL data type.

RAWTOHEX HEX Converts raw to a character value
containing its hexadecimal equivalent.

RAWTONHEX N/A Converts raw to the Oracle
NVARCHAR2 character value containing
its hexadecimal equivalent.

ROWIDTOCHAR N/A Converts a row ID value to the Oracle
VARCHAR2 data type.

ROWIDTONCHAR N/A Converts a row ID value to the Oracle
NVARCHAR2 data type.

SCN_TO_TIMEST
AMP

N/A Returns the approximate timestamp
associated with the Oracle SCN(System
Change Number).

TIESTAMP_TO_S
CN

N/A Returns the approximate system change
number (SCN) associated with that
timestamp.

TO_BINARY_DOU
BLE

DOUBLE Returns a double-precision floating-point
number.

TO_BINARY_FLO
AT

FLOAT Returns a single-precision floating-point
number.

TO_CHAR(charact
er)

N/A Converts the Oracle NCHAR,
NVARCHAR2, CLOB, or NCLOB data to
the database character set.

TO_CHAR
(datetime)

TO_CHAR Converts a datetime value to a string in
the format specified by the date format.

Oracle DB2 Comments
650 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

TO_CHAR
(datetime, ’DAY’)

DAYNAME
(expression)

Returns the name of the day in datetime.

TO_CHAR
(datetime, ’D’)

DAYOF WEEK
(expression)

Returns the day of week of datetime.

TO_CHAR
(datetime, ’DDD’)

DAYOFYEAR
(expression)

Returns the day of year of datetime.

TO_CHAR
(datetime, ’J’)

JURIAN_DAY
(expression)

Returns the Jurian day of datetime.

TO_CHAR
(datetime,
’MONTHD’)

MONTHNAME
(expression)

Returns the name of the month in
datetime.

TO_CHAR(number
)

N/A.
Implement by CHAR
function or UDF.

Converts the number using the optional
format specified. Refer to Example C-21
on page 654 for sample code.

TO_CLOB N/A Converts a value of Oracle NCLOB type
to LOB value.

TO_DATE DATE()
FORMAT_TIMESTA
MP()
TO_DATE()

Returns a date from a character string.
Two UDFs that convert a date and time
string based on the format specified are
availabe for download. See See
Appendix G, “Additional material” on
page 701 for the download instructions.

TO_DSINTERVAL N/A Converts a character string of the Oracle
CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to an INTERVAL
DAY TO SECOND value.

TO_LOB BLOB()
CLOB()

Returns a LOB(BLOB or CLOB)
representation of a string.

TO_MULTI_BYTE N/A Returns characters with all of its
single-byte characters converted to their
corresponding multibyte characters.

TO_NCHAR(chara
cter)
TO_NCHAR(dateti
me)
TO_NCHAR(numb
er)
TO_NCLOB

N/A Converts an argument value to the
Oracle national character set.

Oracle DB2 Comments
 Appendix C. Function mapping 651

Example C-20 shows the DB2 sample of HEXTORAW function and its usage.

Example: C-20 DB2 sample UDF - HEXTORAW

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created 2004/03/06
-- Updated 2006/10/19: Remove leading and trailing blanks.
-- If input length id odd, add leading '0' to
-- the hex string.
-- 2007/03/08: Replace IF statement with Complex expression

TO_NUMBER BIGINT()
INT()
FLOAT()
DECIMAL()
DOUBLE()
REAL()
SMALLINT()

Converts an argument to a value of the
Oracle NUMBER datatype. In DB2 you
can choose an appropriate function
according to the type.

TO_SINGLE_BYT
E

N/A Returns a character string with all of its
multibyte characters converted to their
corresponding single-byte characters.

TO_TIMESTAMP TO_DATE
TIME
TIMESTAMP
TIMESTAMP_FOR
MAT
TIMESTAMP_ISO

Returns a value of TIMESTAMP
datatype converted to CHAR data type.

TO_TIMESTAMP_
TZ

N/A Converts the argument to a value of
TIMESTAMP WITH TIME ZONE data
type.

TO_YMINTERVAL N/A Converts the argument to an INTERVAL
YEAR TO MONTH type.

TRANSLATE(expr,
from_str,to_str)

TRANSLATE(expr,to
_str,from_str)

Returns expr with all occurrences of each
character in from_str replaced by its
corresponding character in to_str.

UNISTR N/A Takes as its argument a text literal or an
expression that resolves to character
data and returns it in the national
character set.

Oracle DB2 Comments
652 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

-- to add leading '0'.
-- Take steps for CHR(0) = x'20' by COALESCE and NULLIF.
--
-- Syntax:: HexToRaw (HX VarChar(4000))
--
-- Description: Convert input hexadecimal value to character string.
-- Leading and trailing blanks will be removed.
-- If input length is odd, add leading '0' to the hex string.
--
-- Author: TOKUNAGA, Takashi
--

------------------------------ Command Entered ------------------------------
CREATE FUNCTION HexToRaw (HX VarChar(4000))
 RETURNS VarChar(2000) FOR BIT DATA
 SPECIFIC HexToBitChar
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
BEGIN ATOMIC
DECLARE HXU VarChar(4000);
DECLARE HXLen Integer;
DECLARE XDigits CHAR(16) DEFAULT '123456789ABCDEF';
DECLARE RetVal VarChar(2000) FOR BIT DATA;
DECLARE Pos Integer;
DECLARE DiagText VARCHAR(70);

SET (HXU, HXLen) = (
SUBSTR('0',1,MOD(LENGTH(LTRIM(RTRIM(HX))),2))||UCASE(LTRIM(RTRIM(HX)))
 ,LENGTH(LTRIM(RTRIM(HX)))+MOD(LENGTH(LTRIM(RTRIM(HX))),2)
);

IF TRANSLATE(HXU, '*', ' 0'||XDigits) <> '' THEN
 SET DiagText = 'Input data contains invalid character. Position = '
 || RTRIM(CHAR(HXLen - LENGTH(LTRIM(TRANSLATE(HXU, '*', '
0'||XDigits))) + 1));
 SIGNAL SQLSTATE VALUE 'UX002' SET MESSAGE_TEXT = DiagText;
END IF;

SET (Pos, RetVal) = (1, '');
WHILE Pos < HXLen DO
 SET RetVal = RetVal || COALESCE(CHR(NULLIF(LOCATE(SUBSTR(HXU,Pos,
1),XDigits)*16

+LOCATE(SUBSTR(HXU,Pos+1,1),XDigits), 0)),x'00');
 SET Pos = Pos + 2;
END WHILE;
 Appendix C. Function mapping 653

RETURN RetVal;
END!

------------------------------ Commands Entered ------------------------------
SELECT n
 , HEX(n) AS HEX_N
 , SUBSTR(HEXTORAW(HEX(n)),1,4) AS HEXTORAW
 FROM (VALUES 63065, 65535, -65536, 0) TestData(n)!
--

N HEX_N HEXTORAW
----------- -------- -------------------
 63065 59F60000 x'59F60000'
 65535 FFFF0000 x'FFFF0000'
 -65536 0000FFFF x'0000FFFF'
 0 00000000 x'00000000'

 4 record(s) selected.

Example C-21 shows the DB2 sample code for the TO_CHAR function and its usage.

Example: C-21 DB2 sample UDF - TO_CHAR

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created: 2004/03/07
-- Updated: 2006/09/27 Added single parameter(Float) version.
-- 2007/03/13 Tuning performance.
--
-- Name of UDF: TO_CHAR (DI DEC(31,10), FMT VARCHAR(50))
--
-- Used UDF: None
--
-- Description: Returns character string expression of DI according to FMT.
--
-- Sopported format characters:
-- , : put comma at this position. multiple commas are allowed.
-- . : put period at this position. only one period can be specified.
-- 9 : digit with leading zero supressed.
-- 0 : starting digit without leading zero supressed.
-- S : return '-' for negative value.
-- return '+' for positive value.
-- Note: only allowed at leftmost or rightmost position.
--
-- Author: TOKUNAGA, Takashi
--
654 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DROP SPECIFIC FUNCTION TO_CHARDecimal

CREATE FUNCTION TO_CHAR (DI DEC(31,10), FMT VARCHAR(50))
 RETURNS VARCHAR(50)
 SPECIFIC TO_CHARDecimal
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC

BEGIN ATOMIC
DECLARE Retv VARCHAR(50);
DECLARE DIdg CHAR(31);
DECLARE Posd
 , Posf
 , SigI SMALLINT;

IF length(rtrim(translate(FMT, ' ', ',.90S'))) > 0
OR length(ltrim(rtrim(translate(FMT, ' ', ',90S')))) > 1
OR posstr(FMT, 'S') NOT IN (0, 1, length(FMT))
THEN
 RETURN '*** Format Error. ***';
END IF;

SET DIdg = digits(DI);
SET Posd = 22 - length(replace(substr(FMT, 1, posstr(FMT||'.', '.') - 1),
',', ''))
 + sign(posstr(substr(FMT, 1, posstr(FMT||'.', '.') - 1),'S'));

SET (Posf, SigI, Retv) = (1, 0, '');

WHILE Posf <= length(FMT) DO
 SET SigI = CASE
 WHEN substr(FMT,Posf,1) IN ('0', '.')
 OR substr(FMT,Posf,1) = '9' AND substr(DIdg,Posd,1) <> '0' THEN
 1
 ELSE SigI
 END;

 SET Retv = CASE
 WHEN SigI = 1
 AND substr(FMT,Posf,1) IN ('0', '9') THEN
 Retv || substr(DIdg,Posd,1)
 WHEN SigI = 1
 AND substr(FMT,Posf,1) IN (',', '.') THEN
 Appendix C. Function mapping 655

 Retv || substr(FMT,Posf,1)
 WHEN substr(FMT,Posf,1) = 'S' THEN
 Retv || CASE
 WHEN DI > 0 THEN '+'
 WHEN DI < 0 THEN '-'
 ELSE ' '
 END
 WHEN Posf = length(FMT) THEN
 Retv || '0'
 ELSE Retv || ' '
 END;

 SET Posd = CASE
 WHEN substr(FMT,Posf,1) IN ('0', '9') THEN
 Posd + 1
 ELSE Posd
 END;

 SET Posf = Posf + 1;
END WHILE;

RETURN Retv;
END!

DB20000I The SQL command completed successfully.

CREATE FUNCTION TO_CHAR (InFloat FLOAT)
 RETURNS VARCHAR(50)
 SPECIFIC TO_CHARDFloatOnly
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
RETURN TRANSLATE(RTRIM(LTRIM(TRANSLATE(CHAR(DEC(InFloat,31,10)),'','0'))),'0','
')

------------------------------ Commands Entered ------------------------------
VALUES TO_CHAR(1.2345E+2);
--

1
--
123.45

 1 record(s) selected.
656 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

------------------------------ Commands Entered ------------------------------
VALUES TO_CHAR(-1234567890,'9999999999S');
--

1
--
1234567890-

 1 record(s) selected.

------------------------------ Commands Entered ------------------------------
VALUES TO_CHAR(-1234567890,'99,999,999,999.S');
--

1
--
 1,234,567,890.-

 1 record(s) selected.

------------------------------ Commands Entered ------------------------------
VALUES TO_CHAR(-1234567890.123,'S99,999,999,999.99');
--

1
--
- 1,234,567,890.12

 1 record(s) selected.

------------------------------ Commands Entered ------------------------------
VALUES TO_CHAR(0,'S99,999,999,999.99');
--

1
--
 .00

 1 record(s) selected.

------------------------------ Commands Entered ------------------------------
VALUES TO_CHAR(0,'S99,999,999,900.99');
 Appendix C. Function mapping 657

--

1
--
 00.00

 1 record(s) selected.

C.5 Aggregate function mapping
Table C-5 shows the aggregate function mapping between Oracle and DB2.

Table C-5 Aggregate functions

Oracle DB2 Comments

AVG AVG Returns the average of a set of numbers.

CORR CORR
CORRELATION

Returns the coefficient of correlation of a
set of number pairs.

CORR_* N/A Returns the coefficient nonparametric or
rank correlation of a set of number pairs.

COUNT COUNT Returns the number of rows or values in
a set of rows or values.

COVAR_POP COVARIANCE Returns the covariance of a set of
number pairs.

COVAR_SAMP N/A Returns the sample covariance of a set of
number pairs.

CUME_DIST N/A Returns the cumulative distribution of a
value in a group of values.

DENSE_RANK DENSE_RANK () Returns the value of dense rank position
of a row.

FIRST_VALUE N/A Returns the first value in an ordered set
of values

GROUP_ID N/A Assigns an unique integer number,
beginning with 0, to duplicate groups
resulting from a GROUP BY
specification.

GROUPING GROUPING This function is used with grouping-sets
and super-groups to indicate sub-total of
rows generated by a grouping set.
658 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

GROUPING_ID N/A Returns a number corresponding to the
GROUPING bit vector associated with a
row.

LAG (expr [,
offset][,default])
[OVER
(analytic_clause)]

N/A Provides access to more than one row of
a table at the same time without a self
join.

LAST N/A Returns the last value in an ordered set.

MAX MAX Returns the maximum value of a set of
numbers.

MEDIAN N/A Returns the median which is an inverse
distribution function that assumes a
continuous distribution
model.

MIN MIN Returns the minimum value of a set of
numbers.

PERCENT_RANK N/A Computes an interpolated value that
would fall into a specified percentile value
with respect to the ORDER BY CLAUSE,
assuming continuous distribution.

PECENTILE_CON
T

N/A An inverse distribution function that
assumes a continuous distribution
model. It takes a percentile value and a
sort specification, and returns an
interpolated value that would fall into that
percentile value with respect to the sort
specification.

PERCENTILE_DIS
C

N/A Same to PERCENTILE_CONT, but
assumes a discrete distribution model.

RANK(expr, ...)
WITHIN GROUP
(ORDER BY ...)

N/A Computes the rank of a row among all
rows of the aggregation group.

RANK()
OVER(analytic_cla
use)

RANK() Computes the rank of a row among all
rows of the aggregation group.

Oracle DB2 Comments
 Appendix C. Function mapping 659

RATIO_TO_REPO
RT(rr_expr)
OVER(analytic_cla
use)

N/A Computes the ratio of a value to the sum
of a set of values.

REGR_regr_type
(expr1, expr2)
[OVER
(analytic_clause)]
e.g.,
REGR_SLOPE
REGR_INTERCEP
T
REGR_COUNT
REGR_R2
REGR_AVGX
REGR_AVGY
REGR_SXX
REGR_SYY
REGR_SXY

REGR_regr_type
(expr1, expr2)
[OVER
(analytic_clause)]
e.g.,
REGR_SLOPE
REGR_INTERCEP
T
REGR_COUNT
REGR_R2
REGR_AVGX
REGR_AVGY
REGR_SXX
REGR_SYY
REGR_SXY

Least-squares regression line to a set of
number pairs returned by expr1 and
expr2.

ROW_NUMBER()
OVER

ROW_NUMBER()
OVER

Assigns a unique sequential number,
beginning with 1, to each row returned to
the query.

STATS_BINOMIAL
_TEST

N/A An exact probability test used for
dichotomous variables, where only two
possible values exist.

STATS_CROSSTA
B

N/A Returns the result of a method called
crosstabulation which is used to analyze
two nominal variables.

STATS_F_TEST N/A Tests whether two variances are
significantly different.

STATS_KS_TEST N/A A Kolmogorov-Smirnov function that
compares two samples to test whether
they are from the same population or
from populations that have the same
distribution.

STATS_MODE N/A Returns the value that occurs with the
greatest frequency.

Oracle DB2 Comments
660 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

STATS_MW_TEST N/A Returns the result of a Mann Whitney test
which compares two independent
samples to test the null hypothesis that
two populations have the same
distribution function against the
alternative hypothesis that the two
distribution functions are different.

STATS_ONE_WAY
_ANOVA

N/A Returns the result of the one-way
analysis of variance function
(STATS_ONE_WAY_ANOVA) which
tests differences in means for statistical
significance by comparing two different
estimates of variance.

STATS_T_TEST N/A Returns the result of the t-test functions

STATS_WSR_TES
T

N/A Returns the result of a Wilcoxon Signed
Ranks which test of paired samples to
determine whether the median of the
differences between the samples is
significantly different from zero.

STDDEV STDDEV Returns the sample standard deviation of
a set of numbers.

STDDEV_POP N/A Computes the population standard
deviation and returns the square root of
the population variance.

STDDEV_SAMP N/A Computes the cumulative sample
standard deviation and returns the
square root of the sample variance.

SUM SUM Returns the sum of a set of numbers.

VAR_POP N/A Returns the population variance of a set
of numbers after discarding the nulls in
this set.

VAR_SAMP N/A Returns the sample variance of a set of
numbers after discarding the nulls in this
set.

VARIANCE VARIANCE Returns the variance of a set of numbers.

Oracle DB2 Comments
 Appendix C. Function mapping 661

C.6 Comparison and NULL-related function mapping
Table C-6 shows the comparison and NULL-related function mapping between
Oracle and DB2.

Table C-6 Comparison and NULL-related functions

Oracle DB2 Comments

GREATEST N/A Returns the greatest value of the list of
values.

LEAST N/A Returns the least of the list of values

COALESCE COALESCE
VALUE

Returns the first argument that is not null.

LNNVL N/A Evaluates a condition when one or both
operands of the condition may be null.

NULLIF NULLIF Compares two expressions. Returns a
null value if the arguments are equal,
otherwise it returns the value of the first
argument.

NVL N/A.
Implemented by
COALESCE
function.
A UDF that allows
mixed data type
input is available for
download. See
Appendix G,
“Additional material”
on page 701 for the
download
instructions.

Replaces null with a string.

NVL2(arg1,arg2,
arg3)

N/A.
Implemented by
CASE clause.

Returns arg2 when arg1 is not null and
Returns arg3 when arg1 is null
662 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

C.7 Encoding, decoding, encryption, and decryption
function mapping

Table C-7 shows the encoding, decoding, encryption, and decryption function
mapping between Oracle and DB2.

Table C-7 Encoding, decoding, encryption, and decryption functions

Example C-21 shows the DB2 sample code for DUMP function and its usage.

Example: C-22 DB2 sample UDF - DUMP

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created: 2004/03/13
--
-- Name of UDF: DUMP (EXP VarChar(32672)/Char(254), RetFmt Integer, SPos
Integer, Len Integer)
--
-- Input data type: VarChar, Char
--
-- Used UDF: X2D, X2O
--
-- Description: Returns data type, length and internal representations.

Oracle DB2 Comments

DECODE(expr,
srch_val1,result1,,,
,default)

N/A.
Implemented by
CASE clause.

Compares the expr to each srch_val one
by one. If the expr is equal to a srch_val,
then returns the corresponding result.
An UDF is provided for dwonload. See
Appendix G, “Additional material” on
page 701for the download instructions.

DUMP N/A
Implemented by
UDF.

Returns a string value containing the data
type code, length in bytes, and internal
representation of argument. Refer to
Example C-22 on page 663 for sample
code

N/A DECRYPT_BIN
DECRYPT_CHAR

Returns a value that is the result of
decrypting encrypted-data.

N/A ENCRYPT Returns a value that is the result of
encrypting data.

N/A GETHINT Returns the password hint if one is found
in the encrypted-data.
 Appendix C. Function mapping 663

--
-- RetFmt specify format of returned value.
-- 8 --- Octal
-- 10 --- Decimal
-- 16 --- Hexadecimal
-- 17 --- Character
--
-- Author: TOKUNAGA, Takashi
--

(1) VARCHAR, CHAR

(1-1) VARCHAR

DROP SPECIFIC FUNCTION DUMPVarChar!

-------------------------- Command Entered --------------------------
CREATE FUNCTION DUMP (EXP VarChar(32672), RetFmt Integer, SPos Integer, Len
Integer)
 RETURNS VarChar(4000)
 SPECIFIC DUMPVarChar
 LANGUAGE SQL
 CONTAINS SQL
 EXTERNAL ACTION
 DETERMINISTIC
BEGIN ATOMIC
DECLARE ByteData VarChar(1000);
DECLARE HexData VarChar(2000) DEFAULT '';
DECLARE HexComma VarChar(3000);
DECLARE SPosN Integer;
DECLARE Pos Integer;

SET SPosN = CASE WHEN SPos > 0 THEN SPos ELSE 1 END;
SET ByteData = SUBSTR(EXP,SPosN,CASE WHEN Len > 0 THEN Len ELSE
LENGTH(EXP)-SPosN+1 END);

IF RetFmt <> 17 THEN
 SET HexData = HEX(ByteData);
END IF;

IF RetFmt = 16 THEN
 SET (Pos , HexComma)= (1, '');
 WHILE Pos < LENGTH(HexData) DO
 SET HexComma = HexComma || ',' || SUBSTR(HexData,Pos,2);
 SET Pos = Pos + 2;
 END WHILE;
END IF;

RETURN
664 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 'Type=96 Len=' || RTRIM(CHAR(LENGTH(EXP))) || ': '
 || CASE RetFmt
 WHEN 17 THEN ByteData
 WHEN 16 THEN SUBSTR(HexComma,2)
 WHEN 10 THEN X2D(HexData)
 WHEN 8 THEN X2O(HexData)
 ELSE X2D(HexData)
 END;

END!

-------------------------- Command Entered --------------------------
VALUES VARCHAR(DUMP('abcde',17,2,3),50)
!

1
--
Type=96 Len=5: bcd

 1 record(s) selected.

-------------------------- Command Entered --------------------------
VALUES VARCHAR(DUMP('abcde',16,2,3),50)
!

1
--
Type=96 Len=5: 62,63,64

 1 record(s) selected.

-------------------------- Command Entered --------------------------
VALUES VARCHAR(DUMP('abcde',10,2,3),50)
!

1
--
Type=96 Len=5: 98,99,100

 1 record(s) selected.
 Appendix C. Function mapping 665

-------------------------- Command Entered --------------------------
VALUES VARCHAR(DUMP('abcde',8,2,3),50)
!
--

1
--
Type=96 Len=5: 142,143,144

 1 record(s) selected.
666 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Appendix D. Oracle Call Interface (OCI)
mapping

This appendix provides a mapping of the most frequently used Oracle 10g OCI
calls to the closest DB2 Call Level Interface (CLI) equivalents. Refer to the Call
Level Interface Guide and Reference, Volume 1, SC10-4224, and Volume 2,
SC10-4225 for details about the CLI calls. Numbers in parentheses refer to the
corresponding notes below the tables. N/A means that the OCI call has no
equivalent in CLI.

Table D-1 Connect/initialize/authorize

D

OCI command CLI command

OCIInitialize N/A

OCIEnvInit SQLAllocHandle (1)

OCIServerAttach SQLConnect (2), (3)

OCIServerDetach SQLDisconnect

OCISessionBegin N/A (3)

OCISessionEnd N/A

OCILogon SQLConnect (2)
© Copyright IBM Corp. 2003, 2007. All rights reserved. 667

Table D-2 Handles/descriptors

Table D-3 Transaction management

Table D-4 Bind/define/describe

OCILogoff SQLDisconnect

OCI command CLI command

OCIHandleAlloc SQLAllocHandle (1)

OCIHandleFree SQLFreeHandle

OCIAttrGet SQLGet__Attr (4)

OCIParamGet N/A (5)

OCIParamSet N/A (6)

OCIAttrSet SQLSet__Attr (7)

OCIDescriptorAlloc SQLSetStmtAttr (5)

OCIDescriptorFree SQLFreeHandle (8)

OCI command CLI command

OCITransCommit SQLEndTran (9)

OCITransDetach N/A

OCITransRollback SQLEndTran (9)

OCITransStart N/A

OCITransPrepare N/A (10)

OCITransForget N/A (10)

OCI command CLI command

OCIBindDynamic SQL___Data (11)

OCIBindByName SQLBindParameter

OCIBindByPos SQLBindParameter

OCIBindObject N/A (12)

OCIBindArrayOfStruct SQLBindParameter (13)

OCI command CLI command
668 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Table D-5 Prepare/execute/fetch

Table D-6 Miscellaneous

Notes for the tables:

1. SQLAllocHandle is passed the desired handle type: environment, connection,
statement, or descriptor.

2. SQLDriverConnect is an alternative to SQLConnect, providing additional
parameters.

OCIStmtGetBindInfo N/A (14)

OCIDefineArrayOfStruct N/A (13)

OCIDefineDynamic N/A

OCIDefineByPos SQLBindCol (15)

OCIDefineObject N/A (12)

OCIDescribeAny (many) (16)

OCI command CLI command

OCIStmtPrepare SQLPrepare

OCIStmtExecute SQLExecute

OCIStmtFetch2 SQLFetch (17)

OCI command CLI command

OCIBreak SQLCancel

OCIServerVersion SQLGetInfo (18)

OCIPasswordChange N/A

OCIErrorGet SQLGetDiagRec

OCIStmtGetPieceInfo SQLGetData (11)

OCIStmtSetPieceInfo SQL___Data (11)

OCILdaToSvcCtx N/A

OCISvcCtxToLda N/A

OCI command CLI command
 Appendix D. Oracle Call Interface (OCI) mapping 669

3. OCISessionBegin has no CLI equivalent. To establish multiple database
connections in CLI, multiple connection handles must be allocated and
OCIServerAttach calls replaced by SQLConnect calls.

4. OCIAttrGet can be replaced by SQLGetConnectAttr, SQLGetEnvAttr, or
SQLGetStmtAttr, depending on the type of handle that the attribute value is
wanted for.

5. 5. SQLSetStmtAttr must be called with an Attribute value of
SQL_ATTR_APP_PARAM_DESC or SQL_ATTR_APP_ROW_DESC.
However, descriptors can be allocated implicitly instead. The function of
OCIParamGet is performed by SQLSetStmtAttr (or implicitly).

6. CLI does not have complex object retrieval (COR) descriptors or handles.

7. OCIAttrSet can be replaced by SQLSetConnectAttr, SQLSetEnvAttr, or
SQLSetStmtAttr, depending on the type of handle for which an attribute value
is to be set.

8. SQLFreeHandle must be called with a HandleType of SQL_HANDLE_DESC
(or the connection can be freed).

9. SQLEndTran does either a commit or a rollback, depending on the
completion type parameter value.

10.There are no CLI calls specifically for two-phase commit, but it is supported
(refer to Call Level Interface Guide and Reference, Volume 1, SC10-4224,
and Volume 2, SC10-4225).

11.For piecewise operations there is no direct replacement for OCIBindDynamic,
but for inserts, SQLParamData and SQLPutData must be called, and for
selects, SQLGetData.

12.CLI has no special support for user-defined types. CLI treats one as it does
the underlying built-in type. In SQL statements the CAST function must be
used to convert a parameter with a user-defined type to the corresponding
built-in type (or vice-versa). For more information, refer to Chapter 15,
“User-defined types (UDT)” in Call Level Interface Guide and Reference,
Volume 1, SC10-4224.

13.To use array inserts, SQLBindParameter must be called. In addition, calls to
SQLSetStmtAttr are needed to set attributes SQL_ATTR_PARAMSET_SIZE
(array size) and SQL_ATTR_PARAM_BIND_TYPE (row-wise or column-wise
binding of parameters). OCIDefineArrayOfStruct calls can be ignored.

14.No direct equivalent, but SQLDescribeParam is the closest.

15.To use array fetches, SQLBindCol must be called. In addition, calls to
SQLSetStmtAttr are needed to set attributes
SQL_ATTR_ROW_ARRAY_SIZE (array size) and
SQL_ATTR_ROW_BIND_TYPE (row-wise or column-wise array retrieval).
670 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

16.An OCIDescribeAny call should be replaced by the appropriate call from
among SQLColAttribute, SQLColumns, SQLDescribeCol, SQLForeignKeys,
SQLGetFunctions, SQLPrimaryKeys, SQLProcedures,
SQLProcedureColumns, SQLSpecialColumns, SQLStatistics,
SQLTablePrivileges, and SQLTables.

17.SQLFetch fetches a single row. Use SQLFetchScroll to return a rowset; the
simplest type of usage is a basic array fetch.

18.SQLGetInfo provides much more than the server version. One call is needed
per type of information wanted.
 Appendix D. Oracle Call Interface (OCI) mapping 671

672 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Appendix E. Converter for SQL*Loader

This appendix contains the converter and generator scripts for the samples in
Chapter 9, “Script conversion” on page 423. The scripts are referred to in the text
of the book, and in the comments section of each listing contain a short
description of their functionalities.

This appendix provides the following converters for the Oracle control files:

� conv_ctl.pl
� gen_load_update.pl

You can download the source of the scripts as well at the additional materials link
on the IBM Redbooks Internet site. For more information, see Appendix G,
“Additional material” on page 701.

E

© Copyright IBM Corp. 2003, 2007. All rights reserved. 673

E.1 Converting control files for Oracle SQL*Loader
This Perl script generates a DB2 load command based on an Oracle control file.
The script is tested with:

� GNU Perl v5.8 on Windows 2000
� GNU Perl v5.8.2 on AIX 5.3

GNU Perl v5.8.0 on Linux has a known bug with the split function used in the
function parse_field_list().

Example: E-1 Conversion of Oracle control file to the DB2 load command

#!/usr/bin/perl
#
Script: conv_ctl.pl
Author: Stefan Hummel
Date: 01/08/2002
#
Syntax: perl conv_ctl.pl -c <controlfile> [options]
-t LOAD | IMPORT
-m INSERT | REPLACE
-f ASC | IXF
#
Description: Conversion of Oracle control file (*.ctl) to DB2 load file
#
#

use Text::ParseWords;

#
initialization
#
$infile_name = '';
$table_name = '';
$mode = '';
$i = 0;
$column = 0;
$delimiter = ';';
$method = 'L';

$type = 'LOAD';
$mode = 'INSERT';
$filetype = 'ASC';

#
functions
#
sub usage {
674 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 printf("USAGE: perl conv_ctl.pl -c controlfile [options]\n");
 printf("\t-t LOAD | IMPORT\n");
 printf("\t-m INSERT | REPLACE\n");
 printf("\t-f IXF | ASC\n");
 exit;
}

sub read_controlfile {
 $delim = '\s+';
 $i = 1;
 open(CTLFILE, $_[0]);
 @ctl_lines = <CTLFILE>;
 foreach (@ctl_lines) {
 @words = &parse_line($delim, 1, $_);
 foreach (@words) {
 if ($_ ne '","') {
 @parts = split (/([,])/, $_);
 $n = 0;
 foreach (@parts) {
 $array[$i++] = $parts[$n++];
 }
 }
 else {
 $array[$i++] = $_ ;
 }
 }
 }
 $max_line = $i-1;
 close(CTLFILE);
}

sub parse_load {
}

sub parse_data {
}

sub parse_into {
 $i++;
 $i++;
 $table_name = $array[$i];
}

sub parse_characterset {
}

sub parse_infile {
 $i++;
 $infile_name = $array[$i];
 Appendix E. Converter for SQL*Loader 675

}

sub parse_delimiter {
 $i++; $i++; $i++;
 $delimiter = substr($array[$i],1,1);
 $method = 'P';
}

sub set_mode {
 if ('' eq $mode) {
 $mode = $_[0];
 }
}

sub parse_field_list {
 while (")" ne $array[$i]) {
 $column++;
 $i++;
 $field_list[$column][1] = $array[$i]; # 1. column name
 $i++;
 @position = split (/([:()])/, $array[$i]);
 $field_list[$column][2] = $position[2]; # 2. from column
 $field_list[$column][3] = $position[4]; # 3. up to column
 while (("," ne $array[$i]) && (")" ne $array[$i])) {
 $i++;
 }
 }
}

#
main
#

read command parameters
while ($parameter=shift(@ARGV)) {
 if ("-c" eq $parameter) {
 $filename = shift @ARGV;
 }
 elsif ("-t" eq $parameter) {
 $type = shift @ARGV
 }
 elsif ("-m" eq $parameter) {
 $mode = shift @ARGV
 }
 elsif ("-f" eq $parameter) {
 $filetype = shift @ARGV
 };
};
if ('' eq $filename) {
676 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 &usage;
}

read the control file, save each word in array
&read_controlfile($filename);

read array and parse commands
$i = 1;
while ($i <= $max_line) {
 if ("LOAD" eq uc($array[$i])) {
 &parse_load($i);
 }
 elsif ("DATA" eq uc($array[$i])) {
 &parse_data;
 }
 elsif ("INTO" eq uc($array[$i])) {
 &parse_into;
 }
 elsif ("CHARACTERSET" eq uc($array[$i])) {
 &parse_characterset;
 }
 elsif ("INFILE" eq uc($array[$i])) {
 &parse_infile;
 }
 elsif ("INSERT" eq uc($array[$i])) {
 &set_mode('INSERT');
 }
 elsif ("APPEND" eq uc($array[$i])) {
 &set_mode('APPEND');
 }
 elsif ("REPLACE" eq uc($array[$i])) {
 &set_mode('REPLACE');
 }
 elsif ("TRUNCATE" eq uc($array[$i])) {
 &set_mode('TRUNCATE');
 }
 elsif ("FIELDS" eq uc($array[$i])) {
 &parse_delimiter;
 }
 elsif ("(" eq uc($array[$i])) {
 &parse_field_list;
 }
 ;
 $i++;
};

generate DB2 Load File
printf("%s FROM %s of %s\n", $type, $infile_name, $filetype);
if ($method eq 'L') {
 Appendix E. Converter for SQL*Loader 677

 printf("METHOD %s \n\t(", $method);
 for ($c=1;$c<$column;$c++) {
 if (1 < $c) {
 printf("\n\t ,");
 }
 printf("%s %s", $field_list[$c][2]
 , $field_list[$c][3]);
 }
 printf(")\n");
};
if ($method eq 'P') {
 printf("MODIFIED BY COLDEL%s \n", $delimiter);
 printf("METHOD %s (", $method);
 for ($c=1;$c<$column;$c++) {
 if (1 < $c) {
 printf(", ");
 }
 printf("%d", $c);
 }
 printf(")\n");
};
printf("%s INTO %s \n\t(", $mode, $table_name);
for ($c=1;$c<$column;$c++) {
 if (1 < $c) {
 printf("\n\t ,");
 }
 printf("%s", $field_list[$c][1]);
}
printf(")!\n");

E.2 Generation of additional DB2 commands
Example E-2 is a sample script to generate DB2 UPDATE commands from
Oracle control files.

Example: E-2 Generation of additional DB2 update commands

#!/usr/bin/perl
#
Script: gen_load_update.pl
Author: Stefan Hummel
Date: 07/31/2003

Syntax: perl gen_load_update.pl -c <controlfile>

Description: Generation of additional UPDATE commands for DB2 UDB
678 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

regarding to an Oracle control file

#

use Text::ParseWords;

#
initialization
#
$tablename = '<missing>';

#
functions
#
sub usage {
 printf("USAGE: perl gen_load_update.pl -c controlfile\n\n");
 exit;
};

sub read_controlfile {
 $delim = '\s+';
 $i = 1;
 open(CTLFILE, $_[0]);
 @ctl_lines = <CTLFILE>;
 foreach (@ctl_lines) {
 @words = &parse_line($delim, 1, $_);
 foreach (@words) {
 @parts = split (/([,])/, $_);
 $n = 0;
 foreach (@parts) {
 $array[$i++] = $parts[$n++]
 }
 }
 }
 $max_line = $i-1;
 close(CTLFILE);
};

sub current_columnname {
 $x = $_[0] - 1;
 while (('(' ne $array[$x]) && (',' ne $array[$x]) && ($x > 0)) {
 $x--;
 }
 return $array[$x + 1];
};

sub parse_nullif {
 $i++;
 $condition[$c][0] = $tablename; # tablename
 Appendix E. Converter for SQL*Loader 679

 $condition[$c][1] = ¤t_columnname($i); # tablename
 $condition[$c][2] = 'NULL'; # set condition
 $condition[$c][3] = $array[$i]; # where clause
 $c++;
};

sub parse_defaultif {
 $i++;
 $condition[$c][0] = $tablename; # tablename
 $condition[$c][1] = ¤t_columnname($i); # tablename
 $condition[$c][2] = 'DEFAULT'; # set condition
 $condition[$c][3] = $array[$i]; # where clause
 $c++;
};

sub parse_into {
 $i++;
 $i++;
 $tablename = $array[$i];
};

#
main
#

read the parameters
while ($parameter=shift(@ARGV)) {
 if ("-c" eq $parameter) {
 $filename = shift @ARGV;
 };
};
if ('' eq $filename) {
 &usage;
}

read the control file, save each word in array
&read_controlfile($filename);

read array and parse commands
$i = 1;
$c = 1;
while ($i <= $max_line) {
 if ("NULLIF" eq uc($array[$i])) {
 # print "NULLIF !!!"
 &parse_nullif;
 }
 elsif ("DEFAULTIF" eq uc($array[$i])) {
 # print "NULLIF !!!"
 &parse_defaultif;
680 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 }
 elsif ("INTO" eq uc($array[$i])) {
 &parse_into;
 };
 $i++;
};
$max_condition = $c;

generate DB2 update commend
for ($n=1;$n<$max_condition;$n++) {
 printf("UPDATE %s\n" ,$condition[$n][0]);
 printf("SET %s=%s\n" ,$condition[$n][1]
 ,$condition[$n][2]);
 printf("WHERE %s\);\n\n" ,$condition[$n][3]);
};
 Appendix E. Converter for SQL*Loader 681

682 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Appendix F. Example Oracle database

This appendix contains the definitions of tables, views, triggers, and procedures
of the Oracle database ORA_EMP used in this book. The complete source code
can be downloaded from the IBM Redbooks Web site. Refer to Appendix G,
“Additional material” on page 701 for the details.

F.1 Table definition
The table, index, and referential integrity definition of the ORA_EMP database
are as follows:

CREATE TABLE "ACCOUNTS" (
 "ACCT_ID" NUMBER(3) NOT NULL,
 "DEPT_CODE" CHAR(3) NOT NULL,
 "ACCT_DESC" VARCHAR2(2000),
 "MAX_EMPLOYEES" NUMBER(3),
 "CURRENT_EMPLOYEES" NUMBER(3),
 "NUM_PROJECTS" NUMBER(1))
TABLESPACE USER_DATA_TBS;
ALTER TABLE ACCOUNTS ADD
 (CONSTRAINT ACCOUNTS_DEPT_CODE_ACCT_ID
 PRIMARY KEY ("DEPT_CODE", "ACCT_ID"));

CREATE TABLE "DEPARTMENTS" (
 "DEPT_CODE" CHAR(3) NOT NULL,

F

© Copyright IBM Corp. 2003, 2007. All rights reserved. 683

 "DEPT_NAME" VARCHAR2(30),
 "TOTAL_PROJECTS" NUMBER,
 "TOTAL_EMPLOYEES" NUMBER)
TABLESPACE USER_DATA_TBS;
ALTER TABLE DEPARTMENTS ADD
 (CONSTRAINT PK_DEPT_CODE PRIMARY KEY ("DEPT_CODE"));

CREATE TABLE "DESTINATION" (
 "KEY" NUMBER(5),
 "VALUE" NUMBER)
TABLESPACE USER_DATA_TBS;

CREATE TABLE "EMPLOYEES" (
 "EMP_ID" NUMBER(5) NOT NULL,
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(20),
 "DEPARTMENT" VARCHAR2(30),
 "CURRENT_PROJECTS" NUMBER(3),
 "EMP_MGR_ID" NUMBER(5),
 "DEPT_CODE" CHAR(3) NOT NULL,
 "ACCT_ID" NUMBER(3) NOT NULL,
 "OFFICE_ID" NUMBER(5),
 "BAND" CHAR(1))
TABLESPACE USER_DATA_TBS;
ALTER TABLE EMPLOYEES ADD
 (CONSTRAINT SYS_C0012108 PRIMARY KEY ("EMP_ID"));

CREATE TABLE "EMP_PHOTO" (
 "EMP_ID" NUMBER(5) NOT NULL,
 "PHOTO_FORMAT" VARCHAR2(10) NOT NULL,
 "PICTURE" BLOB)
TABLESPACE USER_DATA_TBS;
ALTER TABLE EMP_PHOTO ADD
 (CONSTRAINT EMP_PHOTO_PK11058611148823 PRIMARY KEY ("EMP_ID"));

CREATE TABLE "EMP_PHOTO2" (
 "EMP_ID" NUMBER(5),
 "PHOTO_FORMAT" VARCHAR2(10),
 "PICTURE" BLOB)
TABLESPACE USER_DATA_TBS;

CREATE TABLE "EMP_RESUME" (
 "EMP_ID" NUMBER(5) NOT NULL,
 "RESUME_FORMAT" VARCHAR2(10),
684 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 "RESUME" CLOB)
TABLESPACE USER_DATA_TBS;
ALTER TABLE EMP_RESUME ADD
 (CONSTRAINT EMP_RESUME_UK11058551798461 UNIQUE ("EMP_ID"));

CREATE TABLE "LOG_TABLE" (
 "CODE" NUMBER,
 "MESSAGE" VARCHAR2(200),
 "INFO" VARCHAR2(100))
TABLESPACE USER_DATA_TBS;

CREATE TABLE "MANAGER_AUDIT" (
 "CHANGE_TYPE" CHAR(1) NOT NULL,
 "CHANGED_BY" VARCHAR2(8) NOT NULL,
 "TIMESTAMP" DATE NOT NULL,
 "OLD_EMPLOYEE_ID" NUMBER(5),
 "OLD_DEPT_CODE" CHAR(3),
 "OLD_ACCT_ID" NUMBER(3),
 "OLD_BAND" CHAR(1),
 "NEW_EMPLOYEE_ID" NUMBER(5),
 "NEW_DEPT_CODE" CHAR(3),
 "NEW_ACCT_ID" NUMBER(3),
 "NEW_BAND" CHAR(1))
TABLESPACE USER_DATA_TBS;

CREATE TABLE "OFFICES" (
 "OFFICE_ID" NUMBER(5) NOT NULL,
 "BUILDING" VARCHAR2(15),
 "OFFICE_NUMBER" NUMBER(4),
 "NUMBER_SEATS" NUMBER(4),
 "DESCRIPTION" VARCHAR2(50))
TABLESPACE USER_DATA_TBS;
ALTER TABLE OFFICES ADD
 (CONSTRAINT SYS_C0012109 PRIMARY KEY ("OFFICE_ID"));

CREATE TABLE "TEMP_TABLE" (
 "NUM_COL" NUMBER,
 "CHAR_COL" VARCHAR2(60))
TABLESPACE USER_DATA_TBS;

ALTER TABLE ACCOUNTS ADD
 (CONSTRAINT FK_ACC_DEPT_CODE FOREIGN KEY ("DEPT_CODE")
 REFERENCES DEPARTMENTS ("DEPT_CODE"));
 Appendix F. Example Oracle database 685

ALTER TABLE EMPLOYEES ADD
 (CONSTRAINT FK_EMP_MGR_ID FOREIGN KEY ("EMP_MGR_ID")
 REFERENCES EMPLOYEES ("EMP_ID"));

ALTER TABLE EMPLOYEES ADD
 (CONSTRAINT FK_EMP_OFFICE_ID FOREIGN KEY ("OFFICE_ID")
 REFERENCES OFFICES ("OFFICE_ID"));

ALTER TABLE EMPLOYEES ADD
 (CONSTRAINT M_DEPT_CODE_ACCT_ID FOREIGN KEY ("DEPT_CODE", "ACCT_ID")
 REFERENCES ACCOUNTS ("DEPT_CODE", "ACCT_ID"));

ALTER TABLE EMP_PHOTO ADD
 (CONSTRAINT FK_EMP_PHOTO_ID FOREIGN KEY ("EMP_ID")
 REFERENCES EMPLOYEES ("EMP_ID") ON DELETE CASCADE);

ALTER TABLE EMP_RESUME ADD
 (CONSTRAINT FK_EMP_RESUME_ID FOREIGN KEY ("EMP_ID")
 REFERENCES EMPLOYEES ("EMP_ID") ON DELETE CASCADE);

CREATE INDEX IND_ACCT_ID
 ON ACCOUNTS ("ACCT_ID") TABLESPACE USER_IND_TBS;

CREATE INDEX IND_DEPT_NAME
 ON DEPARTMENTS ("DEPT_NAME") TABLESPACE USER_IND_TBS;

CREATE INDEX IND_EMP_NAME
 ON EMPLOYEES ("LAST_NAME") TABLESPACE USER_IND_TBS;

CREATE INDEX IND_LOG_CODE
 ON LOG_TABLE ("CODE") TABLESPACE USER_IND_TBS;

CREATE INDEX IND_OFFICE_BLD
 ON OFFICES ("BUILDING") TABLESPACE USER_IND_TBS;

F.2 View definition
There are two views in the ORA_EMP database:
686 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

CREATE VIEW employees_offices("DEPT_CODE", "ACCT_ID", "BUILDING", "OFFICE_ID")
AS
SELECT dept_code,
 acct_id,
 building,
 offices.office_id
FROM offices, employees
WHERE offices.office_id = employees.office_id;

CREATE VIEW office_summary("BUILDING", "TOTAL_SEATS") AS
SELECT building,
 sum(number_seats) total_seats
FROM offices
 GROUP BY building;

F.3 Procedure and functions
The stored procedures and user defined function in the ORA_EMP database are
as follows:

CREATE OR REPLACE FUNCTION AccountFull (
 p_dept_code accounts.dept_code%TYPE,
 p_acct_id accounts.acct_id%TYPE)
RETURN BOOLEAN IS
 v_CurrentEmployees NUMBER;
 v_MaxEmployees NUMBER;
 v_ReturnValue BOOLEAN;
 v_FullPercent CONSTANT NUMBER := 90;
BEGIN
 -- Get the current and maximum employees for the requested
 -- acct_id.
 SELECT current_employees, max_employees
 INTO v_CurrentEmployees, v_MaxEmployees
 FROM accounts
 WHERE dept_code = p_dept_code
 AND acct_id = p_acct_id;
 -- If the account is more full than the percentage given by
 -- v_FullPercent, return TRUE. Otherwise, return FALSE.
 IF (v_CurrentEmployees / v_MaxEmployees * 100) > v_FullPercent
 THEN
 v_ReturnValue := TRUE;
 ELSE
 v_ReturnValue := FALSE;
 END IF;
 RETURN v_ReturnValue;
END AccountFull;
 Appendix F. Example Oracle database 687

/

CREATE OR REPLACE FUNCTION AVERAGEBAND (
 p_Department IN employees.department%TYPE,
 p_ACCT_ID IN employees.ACCT_ID%TYPE)
RETURN CHAR AS
 v_AverageBAND CHAR(1);
 v_NumericBAND NUMBER;
 v_NumberEmployees NUMBER;
BEGIN
/* First we need to see how many employees there are for
 this account. If there aren't any, we need to raise an error. */
 SELECT COUNT(*)
 INTO v_NumberEmployees
 FROM employees
 WHERE department = p_Department
 AND acct_id = p_ACCT_ID;

 IF v_NumberEmployees = 0 THEN
 RAISE_APPLICATION_ERROR(-20001, 'No employees exist for ' ||
 p_Department || ' ' || p_ACCT_ID);
 END IF;

 /* Since bands are stored as letters, we can't use the AVG
 function directly on them. Instead, we can use the DECODE
 function to convert the bands to numeric values,
 and take the average of those. */

 SELECT AVG(DECODE(band, '1', 1,
 '2', 2,
 '3', 3,
 '4', 4,
 '5', 5))
 INTO v_NumericBAND
 FROM employees
 WHERE department = p_Department
 AND acct_id = p_ACCT_ID;

 /* v_NumericBAND now contains the average band, as a number from
 1 to 5. We need to convert this back into a letter. The DECODE
 function can be used here as well. Note that we are SELECTing
 the result into v_AverageBand rather than assigning to it,
 because the DECODE function is only legal in an SQL statement. */

 SELECT DECODE(ROUND(v_NumericBAND), 5, 'A',
 4, 'B',
 3, 'C',
688 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 2, 'D',
 1, 'E')
 INTO v_AverageBand FROM dual;
 RETURN v_AverageBand;
END AverageBand;
/

CREATE OR REPLACE FUNCTION COUNTPROJECTS (
 /* Returns the number of projects in which the employee
 identified by p_emp_ID is currently engaged */
 p_empID IN employees.emp_ID%TYPE)
RETURN NUMBER AS
 v_TotalProjects NUMBER;
 -- Total number of projects
 v_AccountProjects NUMBER;
 -- projects for one account
 CURSOR c_DeptAccts IS
 SELECT dept_code, acct_id
 FROM employees
 WHERE emp_id = p_empID;
BEGIN
 FOR v_AccountRec IN c_DeptAccts LOOP
 -- Determine the projects for this account.
 SELECT num_projects
 INTO v_AccountProjects
 FROM accounts
 WHERE dept_code = v_AccountRec.dept_code
 AND acct_id = v_AccountRec.acct_id;
 -- Add it to the total so far.
 v_Totalprojects := v_Totalprojects + v_AccountProjects;
 END LOOP;

 RETURN v_Totalprojects;
END CountProjects;
/

CREATE OR REPLACE FUNCTION MAXPROJECTS
 (p_dept_code IN employees.dept_code%TYPE)
 RETURN NUMBER
IS
 CURSOR projcur IS
 SELECT MAX(current_projects) maxprojects
 FROM employees
 WHERE p_dept_code = dept_code;
 Appendix F. Example Oracle database 689

 projrec projcur%ROWTYPE;

BEGIN

 OPEN projcur;
 FETCH projcur INTO projrec;
 RETURN projrec.maxprojects;

END maxprojects;
/

CREATE OR REPLACE PROCEDURE AddNewEmployee (
 p_FirstName employees.first_name%TYPE,
 p_LastName employees.last_name%TYPE,
 p_Department employees.department%TYPE) AS
BEGIN

 -- Insert a new row in the employees table. Use
 -- employee_sequence to generate the new employee ID, and
 -- 0 for current_projects.

 INSERT INTO employees (emp_id, first_name, last_name,
 department, current_projects)
 VALUES (employee_sequence.nextval, p_FirstName, p_LastName,
 p_Department, 0);
 COMMIT;
END AddNewEmployee;
/

CREATE OR REPLACE PROCEDURE Assign (
 /* Promotes the employee identified by the p_EmployeeID parameter in
 the account identified by the p_Dept_code and p_AcctId parameters.
 Before calling AccountPackage.AddEmployee, which actually adds
 the employee to the account, this procedure verifies that there is
 room in the account, and that the account exists. */
 p_EmployeeID IN employees.emp_id%TYPE,
 p_Dept_code IN accounts.dept_code%TYPE,
 p_AcctId IN accounts.acct_id%TYPE) AS

 v_CurrentEmployees NUMBER;
 -- Current number of empoloyees in the account
 v_MaxEmployees NUMBER;
 -- Maximum number of employees in the account

BEGIN
690 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 /* Determine the current number of employees registered, and
 the maximum number of employees allowed to be hired for
 this dept. */
 SELECT current_employees, max_employees
 INTO v_CurrentEmployees, v_MaxEmployees
 FROM accounts
 WHERE acct_id = p_AcctId
 AND dept_code = p_Dept_code;

 /* Make sure there is enough room for this additional employees. */
 IF v_CurrentEmployees + 1 > v_MaxEmployees THEN
 RAISE_APPLICATION_ERROR(-20000, 'Can''t assign more employees to ' ||
 p_Dept_code || ' ' || p_AcctId);
 END IF;

 /* Add the employee to the account. */

 AccountPackage.AddEmployee(p_EmployeeID, p_Dept_code, p_AcctId);

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 /* Account information passed to this procedure doesn't exist.
 Raise an error to let the calling program know of this. */
 RAISE_APPLICATION_ERROR(-20001, p_Dept_code || ' ' || p_AcctId ||
 ' doesn''t exist!');
END Assign;
/

CREATE OR REPLACE PROCEDURE EMPLOYEEDYNAMICQUERY (
 /* Uses DBMS_SQL to query the employees table, and puts the
 * results in temp_table. The first names, last names, and
 * majors are inserted for up to two majors inputted.
 */

 p_department1 IN employees.department%TYPE DEFAULT NULL,

 p_department2 IN employees.department%TYPE DEFAULT NULL) AS

 v_CursorID INTEGER;
 v_SelectStmt VARCHAR2(500);
 v_FirstName employees.first_name%TYPE;
 v_LastName employees.last_name%TYPE;
 v_Department employees.department%TYPE;
 v_Dummy INTEGER;

BEGIN
 Appendix F. Example Oracle database 691

 -- Open the cursor for processing.

 v_CursorID := DBMS_SQL.OPEN_CURSOR;

 -- Create the query string.
 v_SelectStmt := 'SELECT first_name, last_name, department
 FROM employees
 WHERE department IN (:d1, :d2)
 ORDER BY v_Department, last_name';

 -- Parse the query.

 DBMS_SQL.PARSE(v_CursorID, v_SelectStmt, DBMS_SQL.NATIVE);

 -- Bind the input variables.
 DBMS_SQL.BIND_VARIABLE(v_CursorID, ':d1', p_department1);
 DBMS_SQL.BIND_VARIABLE(v_CursorID, ':d2', p_department2);

 -- Define the select list items.

 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 1, v_FirstName, 20);
 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 2, v_LastName, 20);
 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 3, v_Department, 30);

 -- Execute the statement. We don't care about the return
 -- value, but we do need to declare a variable for it.

 v_Dummy := DBMS_SQL.EXECUTE(v_CursorID);
 -- This is the fetch loop.
 LOOP

 -- Fetch the rows into the buffer, and also check for the exit
 -- condition from the loop.

 IF DBMS_SQL.FETCH_ROWS(v_CursorID) = 0 THEN

 EXIT;

 END IF;

 -- Retrieve the rows from the buffer into PL/SQL variables.

 DBMS_SQL.COLUMN_VALUE(v_CursorID, 1, v_FirstName);
692 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 DBMS_SQL.COLUMN_VALUE(v_CursorID, 2, v_LastName);
 DBMS_SQL.COLUMN_VALUE(v_CursorID, 3, v_Department);

 -- Insert the fetched data into temp_table.

 INSERT INTO temp_table (char_col)
 VALUES (v_FirstName || ' ' || v_LastName || ' is a ' ||
 v_Department || ' department.');
 END LOOP;

 -- Close the cursor.
 DBMS_SQL.CLOSE_CURSOR(v_CursorID);

 -- Commit our work.

 COMMIT;

EXCEPTION
 WHEN OTHERS THEN

 -- Close the cursor, then raise the error again.

 DBMS_SQL.CLOSE_CURSOR(v_CursorID);
 RAISE;

END EmployeeDynamicQuery;
/

CREATE OR REPLACE PROCEDURE SELECTROW
 (

 pEmp_ID IN EMPLOYEES.EMP_ID%TYPE,
 pRow OUT REFPKG.RCT1
)

 IS
 BEGIN

 OPEN pRow FOR

 SELECT FIRST_NAME, LAST_NAME, DEPARTMENT, BAND
 FROM EMPLOYEES
 WHERE Emp_ID = Emp_ID;

 END;
 Appendix F. Example Oracle database 693

CREATE OR REPLACE PROCEDURE ShowFullAccounts AS
 CURSOR c_Accounts IS
 SELECT dept_code, acct_id FROM Accounts;

BEGIN

 FOR v_AccountRecord IN c_Accounts LOOP
 -- Record all Accounts which don't have very much room left
 -- in temp_table.

 IF AccountFull(v_AccountRecord.dept_code, v_AccountRecord.acct_id) THEN
 INSERT INTO temp_table (char_col) VALUES
 (v_AccountRecord.dept_code || ' ' || v_AccountRecord.acct_id ||
 ' is almost full!');
 END IF;

 END LOOP;

END ShowFullAccounts;
/

F.4 Packages
The package procedures in the ORA_EMP database are as follows:

CREATE OR REPLACE PACKAGE AccountPackage AS

 -- Add a new Employee into the specified Account.

 PROCEDURE AddEmployee(p_EmployeeID IN Employees.emp_id%TYPE,
 p_dept_code IN accounts.dept_code%TYPE,
 p_acct_id IN accounts.acct_id%TYPE);

 -- Removes the specified Employee from the specified Account.

 PROCEDURE RemoveEmployee(p_EmployeeID IN Employees.emp_id%TYPE,
 p_dept_code IN accounts.dept_code%TYPE,
 p_acct_id IN accounts.acct_id%TYPE);

 PROCEDURE AccountList(p_dept_code IN accounts.dept_code%TYPE,
 p_acct_id IN accounts.acct_id%TYPE,
 p_NumEmployees OUT NUMBER);
694 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

END AccountPackage;

CREATE OR REPLACE PACKAGE BODY AccountPackage AS

 -- Add a new Employee for the specified account.

 PROCEDURE AddEmployee(p_EmployeeID IN Employees.emp_id%TYPE,
 p_dept_code IN accounts.dept_code%TYPE,
 p_acct_id IN accounts.acct_id%TYPE) IS

 BEGIN

 INSERT INTO Employees (Emp_id, dept_code, acct_id)
 VALUES (p_EmployeeID, p_dept_code, p_acct_id);
 COMMIT;

 END AddEmployee;

 -- Removes the specified Employee from the specified account.

 PROCEDURE RemoveEmployee(p_EmployeeID IN Employees.emp_id%TYPE,
 p_dept_code IN accounts.dept_code%TYPE,
 p_acct_id IN accounts.acct_id%TYPE) IS
 e_EmployeeNotRegistered EXCEPTION;

 BEGIN

 DELETE FROM Employees
 WHERE Emp_id = p_EmployeeID
 AND dept_code = p_dept_code
 AND acct_id = p_acct_id;

 -- Check to see if the DELETE operation was successful.
 -- If it didn't match any rows, raise an error.

 IF SQL%NOTFOUND THEN
 RAISE e_EmployeeNotRegistered;
 END IF;

 COMMIT;

 END RemoveEmployee;

 PROCEDURE AccountList(p_dept_code IN accounts.dept_code%TYPE,
 p_acct_id IN accounts.acct_id%TYPE,
 p_NumEmployees OUT NUMBER) IS
 Appendix F. Example Oracle database 695

 v_EmployeeID Employees.Emp_id%TYPE;
 -- Local cursor to fetch the registered Employees.
 CURSOR c_RegisteredEmployees IS
 SELECT Emp_id
 FROM Employees
 WHERE dept_code = p_dept_code
 AND acct_id = p_acct_id;
 BEGIN
 /* p_NumEmployees will be the table index. It will start at
 0, and be incremented each time through the fetch loop.
 At the end of the loop, it will have the number of rows
 fetched, and therefore the number of rows returned in
 p_IDs. */
 p_NumEmployees := 0;
 OPEN c_RegisteredEmployees;
 LOOP
 FETCH c_RegisteredEmployees INTO v_EmployeeID;
 EXIT WHEN c_RegisteredEmployees%NOTFOUND;
 p_NumEmployees := p_NumEmployees + 1;
 END LOOP;
 END AccountList;
END AccountPackage;

CREATE OR REPLACE PACKAGE
 "REFPKG" AS
 TYPE RCT1 IS REF CURSOR;

END REFPKG;
/

F.5 Triggers
The triggers in the ORA_EMP database are as follows:

CREATE TRIGGER CreateEmployeeID
 BEFORE INSERT ON employees
 FOR EACH ROW

BEGIN
 /* Fill in the emp_id field of employees with the next value from
 employee_sequence. Since emp_id is a column in employees, :new.emp_id
 is a valid reference. */
 SELECT employee_sequence.nextval
696 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

 INTO :new.emp_id
 FROM dual;
END CreateEmployeeID;
/

CREATE TRIGGER EmployeesOfficesInsert
 INSTEAD OF INSERT ON employees_offices

DECLARE
 v_office_ID offices.office_id%TYPE;
BEGIN
 -- First determine the office ID
 SELECT office_id
 INTO v_office_ID
 FROM offices
 WHERE building = :new.building
 AND office_id = :new.office_id;
 -- And now update the account
 UPDATE employees
 SET office_id = v_office_ID
 WHERE dept_code = :new.dept_code
 AND acct_id = :new.acct_id;
END EmployeesOfficesInsert;
/

CREATE TRIGGER InsertEmployee
 BEFORE INSERT ON employees
 FOR EACH ROW

DECLARE
 v_num_projects accounts.num_projects%TYPE;
BEGIN
 SELECT num_projects
 INTO v_num_projects
 FROM accounts
 WHERE dept_code = :new.dept_code
 AND acct_id = :new.acct_id;

 :new.current_projects := v_num_projects;

 UPDATE accounts
 SET current_employees = current_employees + 1
 WHERE dept_code = :new.dept_code
 AND acct_id = :new.acct_id;
END InsertEmployees;
/

 Appendix F. Example Oracle database 697

CREATE TRIGGER ManagersChange
 BEFORE INSERT OR DELETE OR UPDATE ON Employees
 FOR EACH ROW

DECLARE
 v_ChangeType CHAR(1);
BEGIN
 /* Use 'I' for an INSERT, 'D' for DELETE, and 'U' for UPDATE. */
 IF INSERTING THEN
 v_ChangeType := 'I';
 ELSIF UPDATING THEN
 v_ChangeType := 'U';
 ELSE
 v_ChangeType := 'D';
 END IF;
 /* Record all the changes made to managers in
 managers_audit. Use SYSDATE to generate the timestamp, and
 USER to return the userid of the current user. */
 INSERT INTO manager_audit
 (change_type, changed_by, timestamp,
 old_employee_id, old_dept_code, old_acct_id, old_band,
 new_employee_id, new_dept_code, new_acct_id, new_band)
 VALUES
 (v_ChangeType, USER, SYSDATE,
 :old.emp_mgr_id, :old.dept_code, :old.acct_id, :old.band,
 :new.emp_mgr_id, :new.dept_code, :new.acct_id, :new.band);
END ManagersChange;
/

CREATE TRIGGER office_summary_delete
 INSTEAD OF DELETE ON office_summary
 FOR EACH ROW

BEGIN
 -- Delete all of the rows in rooms which match this single row
 -- in room_summary
 DELETE FROM offices
 WHERE building = :old.building;
END office_summary_delete;
/

CREATE TRIGGER UpdateDepartments
AFTER INSERT OR DELETE OR UPDATE ON employees
698 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DECLARE
 CURSOR c_projects IS
 SELECT dept_code
 ,COUNT(*) AS total_employees
 ,SUM(current_projects) AS total_projects
 FROM employees
 GROUP BY dept_code;
BEGIN
 FOR v_project_rec in c_projects LOOP
 UPDATE departments
 SET total_projects = v_project_rec.total_projects
 ,total_employees = v_project_rec.total_employees
 WHERE dept_code = v_project_rec.dept_code;
 END LOOP;
END UpdateDepartments;
/

CREATE TRIGGER UpdateEmployees
 BEFORE INSERT OR UPDATE ON employees
 FOR EACH ROW

DECLARE
 v_dept_name departments.dept_name%TYPE;
 v_dept_code departments.dept_code%TYPE;
BEGIN
 v_dept_code := :NEW.dept_code;
 SELECT dept_name
 INTO v_dept_name
 FROM departments
 WHERE dept_code = v_dept_code;
 :NEW.department := v_dept_name;
END UpdateEmployees;
/

 Appendix F. Example Oracle database 699

700 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Appendix G. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material
The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247048

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
book form number, SG247048.

Using the Web material
The additional Web material that accompanies this book includes the following
files:

convert_load.zip Perl scripts to convert Oracle control files. Includes:
conv_ctl.pl

G

© Copyright IBM Corp. 2003, 2007. All rights reserved. 701

ftp://www.redbooks.ibm.com/redbooks/SG247048
ftp://www.redbooks.ibm.com/redbooks/SG247048
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

gen_load_update.pl
data_unload.zip Shell scripts to unload data from Oracle tables. Includes:

data_unload.sh
count.awk
desc.awk

db2_emp.zip Scrips to create DB2 example database. Includes:
crtdb.sql - create database
crttbs.sql - create tablespaces

db2_xml.zip Scrips to create DB2 XML tables. Includes:
crtab.sql
customer.xsd
po_xml_tab.ddl
po_xml_tab-insert.sql

db2bkp.sh Script to backup DB2 example database
exp.sh Script to export Oracle logical DB
export_table.zip Sample stored procedure to unload Oracle data. Includes:

export_table.sql
hierarch_query.zip DB2 functions for recursive SQL. Includes:

hierachical_query.fnc
put_line.zip Zipped user-define function samples to enable file output

from pure SQL for AIX, HP, Linux, Sun Solaris and
Windows. Includes:
put_lin_readme.pdf
put_line_aix.db2v72.tar.Z
put_line_aix.db2v81.tar.Z
put_line_hpux.db2v72.tar.Z
put_line_solaris.db2v72.tar.Z
put_line_linux.db2v72.tar.Z
put_lin_w2k.ZIP

UDF.zip Zipped user-define function samples Includes:
CONCAT.txt
HexToRaw.txt
NVL.txt
Ora_CHR.txt
Ora_LTRIM_RTRIM.txt
TO_CHAR_N.txt
TO_CHAR_TX.txt
TO_DATE_S1.txt
TO_DATE_S2.txt
MigrateDECODE_proc.txt

ora_emp.zip Scrips to create Oracle example database. Includes:
packages.src
procedures_functions.src
sequences.src
tables.src
702 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

triggers.src
views.srcl

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 5 MB minimum
Operating System: Windows 2000
Processor: Intel® 386 or higher
Memory: 16 MB

To download to AIX Linux or UNIX, use the equivalent or higher system capacity
as specified for Windows

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
 Appendix G. Additional material 703

704 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 708. Note that some of the documents referenced here may
be available in softcopy only.

� DB2 UDB Exploitation of the Windows Environment, SG24-6893

� Up and Running with DB2 for Linux, SG24-6899

� DB2 UDB Evaluation Guide for Linux and Windows, SG24-6934

� Scaling DB2 UDB on Windows Server 2003, SG24-7019

Other publications
These publications are also relevant as further information sources:

� DB2 SQL PL: Essential Guide for DB2 UDB on Linux, UNIX, Windows, i5/OS,
and z/OS, ISBN 0131477005

IBM - DB2 9
� What's New, SC10-4253

� Administration Guide: Implementation, SC10-4221

� Administration Guide: Planning, SC10-4223

� Administrative API Reference, SC10-4231

� Administrative SQL Routines and Views, SC10-4293

� Administration Guide for Federated Systems, SC19-1020

� Call Level Interface Guide and Reference, Volume 1, SC10-4224

� Call Level Interface Guide and Reference, Volume 2, SC10-4225

� Command Reference, SC10-4226

� Data Movement Utilities Guide and Reference, SC10-4227
© Copyright IBM Corp. 2003, 2007. All rights reserved. 705

� Data Recovery and High Availability Guide and Reference, SC10-4228

� Developing ADO.NET and OLE DB Applications, SC10-4230

� Developing Embedded SQL Applications, SC10-4232

� Developing Java Applications, SC10-4233

� Developing Perl and PHP Applications, SC10-4234

� Developing SQL and External Routines, SC10-4373

� Getting Started with Database Application Development, SC10-4252

� Getting started with DB2 installation and administration on Linux and
Windows, GC10-4247

� Message Reference Volume 1, SC10-4238

� Message Reference Volume 2, SC10-4239

� Migration Guide, GC10-4237

� Performance Guide, SC10-4222

� Query Patroller Administration and User's Guide, GC10-4241

� Quick Beginnings for DB2 Clients, GC10-4242

� Quick Beginnings for DB2 Servers, GC10-4246

� Spatial Extender and Geodetic Data Management Feature User's Guide and
Reference, SC18-9749

� SQL Guide, SC10-4248

� SQL Reference, Volume 1, SC10-4249

� SQL Reference, Volume 2, SC10-4250

� System Monitor Guide and Reference, SC10-4251

� Troubleshooting Guide, GC10-4240

� Visual Explain Tutorial, SC10-4319

� XML Extender Administration and Programming, SC18-9750

� XML Guide, SC10-4254

� XQuery Reference, SC18-9796

� DB2 Connect User's Guide, SC10-4229

� DB2 9 PureXML Guide, SG24-7315

� Quick Beginnings for DB2 Connect Personal Edition, GC10-4244

� Quick Beginnings for DB2 Connect Servers, GC10-4243
706 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

IBM - DB2 8.2
� What’s New V8, SC09-4848-01

� Administration Guide: Implementation V8, SC09-4820-01

� Administration Guide: Performance V8, SC09-4821-01

� Administration Guide: Planning V8, SC09-4822-01

� Application Development Guide: Building and Running Applications V8,
SC09-4825-01

� Application Development Guide: Programming Client Applications V8,
SC09-4826-01

� Application Development Guide: Programming Server Applications V8,
SC09-4827-01

� Call Level Interface Guide and Reference, Volume 1, V8, SC09-4849-01

� Call Level Interface Guide and Reference, Volume 2, V8, SC09-4850-01

� Command Reference V8, SC09-4828-01

� Data Movement Utilities Guide and Reference V8, SC09-4830-01

� Data Recovery and High Availability Guide and Reference V8, SC09-4831-01

� Guide to GUI Tools for Administration and Development, SC09-4851-01

� Installation and Configuration Supplement V8, GC09-4837-01

� Quick Beginnings for DB2 Clients V8, GC09-4832-01

� Quick Beginnings for DB2 Servers V8, GC09-4836-01

� Replication and Event Publishing Guide and Reference, SC18-7568

� SQL Reference, Volume 1, V8, SC09-4844-01

� SQL Reference, Volume 2, V8, SC09-4845-01

� System Monitor Guide and Reference V8, SC09-4847-01

� Data Warehouse Center Application Integration Guide Version 8 Release 1,
SC27-1124-01

� DB2 XML Extender Administration and Programming Guide Version 8
Release 1, SC27-1234-01

� Federated Systems PIC Guide Version 8 Release 1, GC27-1224-01

Online resources
These Web sites are also relevant as further information sources:

� DB2 Information Center
 Related publications 707

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

� Database and Information Management home page

http://www.ibm.com/software/data/

� DB2 Universal Database home page

http://www.ibm.com/software/data/db2/udb/

� DB2 Technical Support

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/
index.d2w/report

� DB2 online library

http://www.ibm.com/db2/library

Migration to DB2

� IBM Software Migration Project Office

http://www.ibm.com/software/solutions/softwaremigration/contacts.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
708 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://www-3.ibm.com/software/data/
http://www-3.ibm.com/software/data/db2/udb/
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www.ibm.com/db2/library
http://www.ibm.com/software/solutions/softwaremigration/contacts.html

Index

Symbols
! 157
$INSTHOME 83
%FOUND 192
%ISOPEN 189
%NOTFOUND 190
%ROWNCOUNT 190
%TYPE 161
.c 259
.exp 260
.rpt 72
.sqc 259
@ 157

Numerics
7x24 267
8i 91

A
acceptance tests 452
ACCOUNTS table 426
accounts.dat datafile 425–426
active subagent 20
ADMIN_COPY_SCHEMA 430
ADMIN_COPY_SCHEMA procedure 432
administration scripts 437

conversion 437
administrator 57
AFTER trigger 154
AIX 76
alert log file 20
ALL clause 555
ALL PRIVILEGES clause 555
annotate 420
annotation 338
ANSI/IEEE 448
API 287, 294
applets 298
Application Shared Memory 15
applications 420
applications activity 589

application with oldest transaction 590
© Copyright IBM Corp. 2003, 2007. All rights reserved
current application clients 589
lock wait 592
SQL statements 594

architectural assessment 36
archive logging 558
archive logging recovery mode 559
ARCHIVELOG mode 559, 561
arrays 291
assessment 39
attribute 231
AUTOMATIC 569
automatic database configuration 567
automatic database management 565
AUTOMATIC parameters 567
automatic storage 572

automatic BACKUP 575
automatic statistics collection 574
REORG on tables and indexes 573
utility throttling 575

AUTOMATIC STORAGE NO 572
auto-start instance 524

db2iauto command 524
example 525
Linux operating system 524
Oracle equivalent command 524
UNIX-based system 524
Windows operating system 524

availability 266, 286
awk 272

B
background process 17, 521
backup 441
backup scripts 441
backup scripts, conversion 441
Backup Wizard 443
BEFORE trigger 154
BEGIN BACKUP command 560
BIGINT 290
bldmapp.bat 296
bldrtn 259
BP_TEST buffer pool 553
buffer pools 14
. 709

alter buffer pool 551
ALTER BUFFERPOOL statement 551
ALTER SYSTEM command 552
example 552
Oracle equivalent command 552

create 551
CREATE BUFFERPOOL statement 551
example 551
Oracle equivalent command 551

drop buffer pool 552
DROP BUFFERPOOL statement 552
examples 552
Oracle equivalent command 552

managing 551
retrieve buffer pool information 552

examples 553
GET SNAPSHOT FOR BUFFERPOOLS
command 552
GET SNAPSHOT FOR BUFFERPOOLS IN-
FORMATION 553
Oracle equivalent command 553
SNAP_GET_BP table function 552
SNAP_GET_BP_PART table function 552
SNAPBP administrative views 552
SNAPBP_PART administrative views 552

buffer_size 293
BUFFERPOOL 547
build 91
built-in 288
BULK COLLECT 195
bulk-insert 357
business dependency 36

C
C 289
C++ 42, 289
calibration 42
cardinality 231
CASE 217
catalog cache 14
catalog view 343
change management 40
circular logging 558
circular logging recovery mode 558
ckeckpoint 16
CKPT 16
CLOB 350
COBOL 42, 288

codepage 49
codeset 50
collection 193
collection type 342
column path index 337
columns 68
Comma Separated Value 354
Command Line Processor 167
Command Window 167
command-line interface (CLI) tool 514
commands

add xmlschema document 346
ALTER DATABASE 546, 572
ALTER SYSTEM 531, 546
attach 523
BACKUP database 441
CREATE DATABASE 535
db2iauto 524
db2icrt 520
db2idrop 521
db2ilist 525
db2level 526
db2ls 526
db2set 534
db2start 521
db2stop 522
detach 524
frequently used 440
GET DATABASE MANAGER CONFIGURA-
TION 528
GET DBM CFG 528
SHOW PARAMETER 528
UPDATE DATABASE MANAGER configuration
531

compatibility 286
complexity 37
component 342
CONDITION HANDLER 189
condition handlers 201
Configuration Advisor 44
configuration advisor

create database 567
Configuration Assistant 28
configure operating environment 533
CONNECT command 516
connect to instance

attach command 523
example 524
Oracle equivalent command 523
710 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

CONNECT command 523
connection 289
connectivity 387
constraint 68, 369
CONTAINER_UTILIZATION 550
CONTAINER_UTILIZATION administrative view
550
containers 22
CONTINUE 202
CONTROL 555
Control Center

functionality of accessible tools 518
interface views 516

Advanced 517
advanced 516
basic 516
custom 516

launch other DB2 tools 518
tools accessed 518

Control Center wizards 519
control file 20, 425
conversion 68, 266
Convert 71, 89
convert Data Pump scripts 430
COPY 430
COPYERROR table 432
COPYSCHEMA table space 432
COPYSCHEMA.timestamp.err 432
COPYSCHEMA.timestamp.ms 432
crash recovery 558
Create Database Wizard 443
Create Tablespace Wizard 443
creating instances 520

db2icrt command 520
examples 520
Linux operating system 520
Oracle equivalent command 520
Windows operating system 521

criteria 451
crontab 47
CSV 354
current buffer pool list 583
current buffer pool usage 584
cursor 155, 291, 375

D
data 68

dictionary objects 439

load migration 425
load scripts 424
migration 43
organization scheme 227
partition 227

Data Definition Language (DDL) 424
data files 20
data files backup 441
data partitioning 227
Data Pump

dumpfiles 429
features 428
function 429
migration approach 430
schema import 431
scripts 429

data type 50, 397, 420
DATA_LOADER driver 428
data_pump_dir1 430
database

metadata, exporting 433
object 36
partition 227
partitioning 44, 230
physical design 38

database backup and recovery
backup database 559
BACKUP DATABASE command 559–560
BACKUP DATABASEcommand 558
backup images location 559
example 560–561
managing 558
Oracle backups 560

logical 560
physicals 560

Oracle equivalent command 560–561
RECOVER DATABASE command 558, 561
recovery methods 558
restore database 560
RESTORE DATABASE command 560
roll forward database 558, 561
ROLLFORWARD DATABASE command 561

database configuration parameters 542, 569
manage 542

example 542
GET database configuration parameter 542
GET DB CFG command 542
Oracle equivalent command 542

update 545
 Index 711

example 546
Oracle equivalent command 546
UPDATE DATABASE CONFIGURATION
command 545
UPDATE DB CFG command 546

database heap 14
database log retention logging

activate 561
example 562
Oracle equivalent command 561

database management commands
 535
activate database 536

ACTIVATE DATABASE command 536
example 536
Oracle equivalent command 536

connect to database 537
CONNECT command 537
example 537
Oracle equivalent command 537

create database 535
CREATE DATABASE command 535
example 535
Oracle equivalent command 535

deactivate database 537
DEACTIVATE DATABASE command 537
Example 537
Oracle equivalent command 537

drop database 536
DROP DATABASE command 536
example 536
Oracle equivalent command 536
UNCATALOG DATABASE command 536

quit, connect reset and terminate 538
CONNECT RESET command 538
example 538
Oracle equivalent command 538
QUIT command 538
TERMINATE command 538

QUIT, CONNECT RESET, and TERMINATE
538

database security
administrative views 556

privileges 557
use 556

catalog views 557
example 555–556
grant 555
GRANT command 555

GRANT statement 555
grant statement 556
instance authority 555
list existing privileges 556

db2look command 557
example 557
Oracle equivalent command 557

managing 555
Oracle equivalent command 555–556
revoke 556
REVOKE command 556
REVOKE statement 556

database writer 16
DATABASE_MEMORY 14
databases 67
DB cfg file 22
DB_GET_CFG table function 542
DB2 administration tools 514

DB2 command line processor (CLP) 514
DB2 Control Center 516

DB2 Alphablox tool 446
DB2 BACKUP command 429–430
DB2 catalog equivalents 439
DB2 CLP

operation modes 514
batch mode 514
command mode 514
interactive mode 514

DB2 CLP processes 515
back-end process 515
front-end process 515

DB2 CLP tool 514
DB2 communication manager 19
DB2 Control Center 443

tasks 516
DB2 coordinating agent 19
DB2 cube models metadata 446
DB2 daemon spawner 18
DB2 Data Warehouse Edition 446
DB2 db2move utility 431
DB2 Develper Workbench 420
DB2 DWE 446
DB2 DWE OLAP 446
DB2 format log 18
DB2 Import utility 424
DB2 instances and databases 514
DB2 Load utility 424

build indexes 424
copy index data 424
712 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

DATALINK violation 424
delete rows 424
load data 424

DB2 Olap acceleration feature 446
DB2 optimize 446
DB2 Query Management Facility 445
DB2 RESTORE command 429–430
DB2 subagen 19
DB2 system controller 18
DB2 system logger 18
DB2 TCP manager 19
db2 utility 514
DB2 watchdog 18
db2_dsv database 431
db2_prd database 431
db2admin 82
db2agent 19
db2agnta 19
db2agntp 20
DB2COMM 28
db2diag.log 22, 465
db2dlock 19
db2dump 24
db2fmtlg 18
db2gds 18
db2ipccm 19
db2loggr 19
db2logw 19
db2look 429, 434, 455
db2look parameter -m 432
db2look -xd parameter 432
db2move 428, 434, 436

COPY 428
EXPORT 428
IMPORT 428
LOAD 428

db2move command 434
db2move COPY action 428

copy mode 428
copy modifier 428
DDL_AND_LOAD 428
DDL_ONLY 428
list of schemas 428
LOAD_ONLY 428

db2move utility 434
db2move with COPY action 430
db2move.lst file 434
db2pclnr 19
db2pfchr 19

db2sysc 18
db2syslog 18
db2tcpcm 19
db2wdog 18
DBA_DATA_FILES 550
DBA_ROLE_PRIVS 557
DBA_SYS_PRIVS 557
DBA_TAB_PRIVS 557
DBA_TABLESPACES 548
DBA_XML_SCHEMAS 343
DBADM 52
DBCFG administrative view 542, 545
DBM cfg 22
DBMS_SQL 180
DBWR 16
DDL 68, 70, 74, 351, 424
DDLs by DBA 440
DDLs, frequently used 440
DEACTIVATE DATABASE 537
deadlock detector 19
DECLARE 171
DECODE 217
decomposition 336, 353
decompostion 420
DEFERRED 551
DELETE 52
delimiter 426
DEPLOY 74
Deploy to Target 72, 89
DESCRIBE TABLE 272
Design Advisor 44, 443
DGTT 193, 195
DIAGLEVEL 466, 531
DIFF 457
dimension 231
dimension key 231
DISCONNECT command 538
document object model 341
DOM 341
dot notation 237
Driver Manager 306
drop 71
drop instances 520

db2idr op command 521
example 521
Oracle equivalent command 521

duplicate schemas 432
duration 36
DWB 420
 Index 713

dynamic performance view 437
dynamic performance views 437

categories 437

E
EDU 14, 17
education 288
EJBs 298
embedded XQuery 375
END BACKUP command 560
Engine dispatchable units 14
etNumberVal() 362
EXCEPTION HANDLERS 201
EXEC SQL 290
EXECUTE 182
EXECUTE IMMEDIATE 181
EXIT Handler 161
expdp 428
EXPDP (Data Pump) tools 560
expdp utility 441
explicit cursors 187
explicitly 187
EXPORT 429–430, 434
export (EXP) utility 428
export data operations 433
export file 259
Export Scripts option 443
EXPORT tools 560
EXPORT utility 359
export utility 441
EXPORT.out file 434
external procedures 258
extracting 70

F
fallback 267
FETCH FIRST N ROWS ONLY 191
FETCH INTO 196
finish DB2 CLP processes 516
fixed-format fields

loading 425
fixed-length 290
flat files 268
FOR 171
FOR LOOP 187
FORCE option 523
fragment 369
full schema export 434

full schema import 436
functional testing 451
functions 68

G
Generate Data Transfer 73
Generate Data Transfer Scripts 89
generator 286
GET DIAGNOSTICS 171, 192
getClobVal() 362
getNamespace() 362
getStringVal() 362
Global Declared Temporary Table 193
Global Memory 14
GRANT 52
graphical user interface (GUI) tool 514
Group 51
GUI 69

H
hashing algorithm 230
Health Monitor

Activity Monitor 579
db2pd utility 581
monitoring tasks examples 579
system-defined tasks 579

automatic diagnostics 576
monitoring tools 578

Activity Monitor 578
activity Monitor 579
db2pd 579
db2pd utility 581
Snapshot monitoring 579

hierarchical structure 340
hierarchy 210, 335
High Performance Unload (HPU) 434
host variable 289–290, 357

I
IBM Migration Toolkit 66, 89
IBMDEFAULTBP 567
IF 171
ime planning 267
IMMEDIATE 551
impdb 428
IMPDP tools 560
implicit parsing 357
714 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

implicit privilege 52
IMPORT 429
import 73, 93
import (IMP) utility 428
import data functionality 435
IMPORT tools 560
IMPORT utility 359
importing 70
indexes 68
individual privileges 52
Information Integrator 276
INOUT 209, 294
input parameter 347
INSERT 52
installation 81
instance 83
instance configuration parameters

commands 528
get database manager configuration com-
mand 528
GET DBM CFG 528
Oracle equivalent command 528, 531
update database manager configuration
command 531

Example 531
example 529
SHOW DETAIL 528

instance information
retrieving 525

instance management commands 520
CLP commands 520
system commands 520

integration testing 44
interface 356
internal indexes 338
inter-process communication 19
invoke

DB2 CLP 514
IPC 19
ITERATE 171

J
J2EE 420
J2SE 297
Java 68
Java class 387
Java methods

DB2Xml.getDB2AsciiStream 389

DB2Xml.getDB2BinaryStream 389
DB2Xml.getDB2Bytes 389
DB2Xml.getDB2CharacterStream 390
DB2Xml.getDB2String 390
DB2Xml.getDB2XmlAsciiStream 390
DB2Xml.getDB2XmlBinaryStream 390
DB2Xml.getDB2XmlBytes 390
DB2Xml.getDB2XmlCharacterStream 390
DB2Xml.getDB2XmlString 390
PreparedStatement.setAsciiStream(397
PreparedStatement.setClob() 397–398
PreparedStatement.setString() 397
ResultSet.getAsciiStream 389
ResultSet.getBinaryStream 389
ResultSet.getBytes 389
ResultSet.getCharacterStrea 389
ResultSet.getObject 388–389
ResultSet.getString 389
ResultSet.getXXX 388

Java ServerPages 298
javac 261
JDBC 42, 70

L
LEAVE 171
LGWR 16
LINESIZE 272
Linux 76
list DB2 instances 525

db2ilist command 525
example 525
Linux operating system 525
Oracle equivalent command 525
UNIX-based systems 525
Windows operating system 525

list history 563
example 564
LIST HISTORY command 563
Oracle equivalent command 563

list partitioning 229
list products and features installed 526

db2ls commands 526
examples 527
Oracle equivalent command 526

LISTENER.ORA 534
LOAD 73, 429–430
LOAD APIs 428
Load authority 52
 Index 715

Load Wizard 443
loading data from Oracle to DB2 91
LOADTABLE.timestamp.err 432
LOADTABLE.timestamp.msg 432
LOB 58
Lock list 14
LOCKLIST 569
log reader 19
log usage 585
log writer 16, 19
logical backup 441
LOGRETAIN parameter 559, 562
long character 58
long table space 58
LOOP 179

M
manage database configuration parameters

GET database configuration parameter
example 542
GET DATABASE CONFIGURATION PA-
RAMETER command 542

manage node and database directories 538
catalog TCPIP node and database 539

CATALOG DATABASE command 539
CATALOG TCPIP NODE command 539
example 539
Oracle equivalent command 539

list node directory and database directory 540
example 541
LIST DATABASE DIRECTORY command
540
LIST NODE DIRECTORY command 540
Oracle equivalent command 541

uncatalog TCPIP node and database 540
example 540
Oracle equivalent command 540
UNCATALOG DATABASE command 540
UNCATALOG TCPIP NODE command 540

managing instances 520
materialized query table 44
MAX_CONNECTIONS 15
MAXLOCKS 569
MDAC 307
MDC 44
mechanisms 292
memory 341
message_buffer is 293

metadata 68
methodology 39
Microsoft 92
Microsoft SQL Server 67
migration 66
migration keys 331
migration project 36
mkfifo 276
monitoring 578
monitoring database objects 581

 581
configuration parameter 582
current memory usage 582

MQT 44
MTK 65, 89, 91
multidimensional clustering table 44
multiple tables

loading data 427

N
named pipe 276
namespace 342
native hierarchical format 336
nested tables 193
NEWLOGPATH 23
NO CASCADE 174
NOARCHIVELOG mode 559, 561
node 340
non-recoverable database 558
NPIPE 28
NULL 192, 355

O
object type 342
object-relational table 341
OCI 305
ODBC 42, 70, 306
OEM 343
OFA 21
OLAP 446
OLAP metadata 446
ON COMMIT PRESERVE ROWS 208
Open Database Connectivity 311
open the Control Center 516
operating system environment variables 533
operating systems 67
Optimal Flexible Architecture 21
ORA_EMP database 425
716 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

ora_usr schema 431
ora_usr_ddl. file 434
Oracle 8i 67, 92
Oracle Application Clusters 32
Oracle Call Interface 305
Oracle Data Dictionary 439
Oracle Data Pump functions 428
Oracle Data Pump scripts 428–429
Oracle Enterprise Manager 514
Oracle instance 437
Oracle Net Services. 27
Oracle SQL*Loader control file 424

initializations 427
Oracle SQL*Plus 514
ORACLE_SID, NLS_LANG 534
outer join 215
OVERHEAD 547

P
package 344
package cache 14
packages 68
page cleaner 19
PAGESIZE 272, 551
parallel testing 44
parameter -e 434
parameter file 20
parameter marker 315, 357
parameter -sn 434
parameter -z 434
partition 34
password file 20
performance testing 44
performance tuning 38
PL/SQL 68, 179
PMON 16
PMON processes 525
Post-Schema Validation Infoset 342
precompiler 305
PREFETCHSIZE 547
pre-migration task 37
preparation 81
primary document 346
privileges 52
problem determination 463
Process Monitor 16
processes 15
processor parameters 571

project 92
project management 38
Project Name - Required 92
protocol 28
prune history 563

example 564
Oracle equivalent command 563
PRUNE HISTORY command 563

ps 525
PSVI 342

Q
QMF 445
QUIT command 516

R
RAC 32
RAISE_APPLICATION_ERROR 205
range 227
range partitioning 227
reader 276
recoverable database 558
Recovery Manager (RMAN) utility 560
recursive 211
Redbooks Web site 708

Contact us xix
Redo Log Files 20
REF cursor 224
REFERENCE NEW AS n 174
referential integrity 369
Refine 89
REFINE task 72
regions index 337
registry variable 28
registry variables 533

DB2 global level profile registry 533
DB2 instance level profile registry 533
DB2 instance node level profile registry 533
DB2 instance profile registry 533

regular tablespace 58
relational data 335
relational table 336
relational table structure 338
remove logical DB2 instance 524

detach command 524
example 524

REORG command 573
REPLACE 173
 Index 717

replication 30
report tools 445
reports 72
repository 286, 342
RESET command 516
restriction 369
RETURN TO CALLER 199
RETURN TO CLIENT 199
RETURNING INTO 196
Rewrite Data Pump scripts 430
ring 558
RMAN RECOVER command 561
RMAN RESTORE command 561
rollforward recovery 558
roll-in 235
roll-out 235, 288
root 82
root authority 524
ROWNUM 218
RUNSTATS utility 574
run-time 294

S
sample shell script 442
SAP R/3 333
schema ora_usr 434
schema registration 347
schemas 420
Scope 448
SCOPE clause 531
SDK 307
security 20
security planning 40
SELECT 52
SELECT INTO 196
self tuning configuration parameters 571
self tuning memory 568

enable 568
enable self tuning for database 568
enable self tuning memory area 569

SELF_TUNING_MEM 568
sequences 68
server-side dump files 428
servlets 298
SET 171, 178
SET INTEGRITY 456
set registry variables 533

db2set command 534

examples 534
Oracle equivalent command 534

Setup.exe 82
Shared Memory 14
shared nothing architecture 33
SHOW DETAIL 528, 542, 550
SHOW DETAILS clause 540, 548
shredding 338, 353
SHUTDOWN command 537
SIGNAL 171
SIGNAL SQLSTATE 205
size 268
SMON 16
SMS 57
SNAPBP administrative view 552
SNAPBP_PART administrative view 552–553
SNAPCONTAINER 550
software requirements 82
source 67, 91
source view 419
sparse 193
Specify Source 70, 93
SQL Communication Area 293
SQL cursor 185
SQL Server, versions 92
SQL Translator 72, 75
SQL*Loader 424
SQL*Plus 27, 68, 269, 272
SQL/XML 362
SQL-based API 446
SQLCA 293, 309
SQLCODE 188, 206, 464
SQLDA 295
SQLERRM 206
SQLEXCEPTION 202
SQLEXEPTION 201
sqlint32 290
sqlint64 290
SQLj 297
SQLPlus utility 428
SQLSTATE 201
SQLWARNING 201
start instances 520

db2start admin mode command 522
example 522
Linux operating system 522
Oracle equivalent command 522

ALTER SYSTEM QUIESCE DATABASE
522
718 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

STARTUP command 522
STARTUP RESTRICT command 522

quiesce mode 522
START DATABASE MANAGER command 522
UNIX-based operating system 522
Windows operating system 522

start instances db2start command 521
STARTUP command 536
statistics 418
stop instances 520

db2stop command 522
db2stop force command 523
example 523
FORCE APPLICATION command 523
Linux operating system 523
Oracle equivalent command 523

SHUTDOWN command 523
SHUTDOWN IMMEDIATE command 523

STOP DATABASE MANAGER command 523
UNIX-based operating system 523
Windows operating system 523

store error log messages 432
stored procedure 68
strategy 35
stress testing 452
string data type 357
structured storage 339, 351
subscript 193
Sybase 92
Sybase Enterprise 67
syntactical rule 340
syntax 287
SYSADM 51, 522–524, 531, 535–537, 539–540,
545, 547, 551, 559–561
SYSCAT 26
SYSCTRL 51, 522–523, 535–537, 539–540, 545,
547, 551, 559–561
SYSIBM 26, 432
SYSIBMADM.LOG_UTILIZATION 585
SYSIBMADM.SNAPAPPL 594
SYSIBMADM.SNAPBP_PART 583
SYSIBMADM.SNAPCONTAINER 586
SYSIBMADM.SNAPDB_MEMORY_POOL 582
SYSIBMADM.SNAPTBSP 587
SYSMAINT 51, 522–523, 536–537, 545, 559–561
SYSSTAT 26
system catalog views 439
system monitor 16
system testing 44

T
table data, exporting 433
table function 437
table list 587
table space list 585
table space statistics 587
table spaces

alter table space 547
ALTER TABLESPACE command 547
ALTER TABLESPACE statement 547
example 547
Oracle equivalent command 547

create table space 546
CREATE TABLESPACE statement 546
example 547
Oracle equivalent command 547

drop table space
 548
DROP TABLESPACE command 548
DROP TABLESPACE statement 548
example 548

list table space container 550
example 550
LIST TABLESPACE CONTAINER command
550
LIST TABLESPACES command 550
Oracle equivalent command 550

list table spaces 548
db2tbst command 548
example 548
LIST TABLESPACE command 548
Oracle equivalent command 548

managing 546
create table space

CREATE TABLESPACE command 547
table statistics 588
tables 68
target 67, 91
Task Center 444
Task Center GUI tool. 514
TBSP_UTILIZATION administrative view 548–549
TCP 28
temporary tablespace 58
TERMINATE command 516, 538
terminating character 157
test phases 451
text string 340
thin JDBC driver 387
TNS 28
 Index 719

TNSNAMES.ORA 534
tools and wizards 443
transaction log 22
TRANSFERRATE 547
transferring a schema 430
translator 68
tree object 341
tree view 418
triggers 68, 154
Type 2 387
Type 4 387

U
UDF 213, 261
ulimit 268
Unicode database 337
unique value 231
unit of storage 340
unload 73
unquiesce 522
UNQUIESCE INSTANCE command 522
UPDATE 52
UPDATE command 427
UPDATE DB CFG 546
UPDATE DB CFG command 546
UPDATE DBM CFG 531
UPDATE statements 432
user process 16
USEREXIT 559
USEREXIT parameter 559
UTF-8 337
UTIL_IMPACT_LIM 576
utilemb.h 296
utilemb.sqc 296
Utility heap 14
UTL_FILE package 428
UTL_FILE_DIR 273

V
V$DATABASE 437, 542
V$DATAFILE 437, 550
V$INSTANCE 437, 542
V$LOGFILE 542
V$PARAMETER 542, 553
V$PARAMETER view 528
V$SYSSTAT 553
V$TABLESPACE 437, 548
validation 342, 360, 451

variable-length data
loading 426

variables 289
varrays 193
Version 91
version and service level command 526

db2level command 526
example 526
Oracle equivalent command 526
select banner from v$version 526

version recovery 558
views 68
violation 424
VLDB 32

W
WEB 452
well-formed XML 336
WHILE 171
wildcard 364
workload 36
writer 276

X
XDS 359
XML 362
XML Data Specifier 359
XML instance document 346
XML schema 346
XML Schema Definition 342
XML Schema Repository 337, 342
XML schemas 337
XMLAGG 364
XMLAgg 363
XMLAttribute 363
XMLATTRIBUTES 364
XML-based API 446
XMLCAST 363
XMLCast 363
XMLCONCAT 363
XMLConcat 363
XMLELEMENT 364
XMLElement 363
XMLEXISTS 363
XML-extension 375
XMLFOREST 364
XMLForest 363
XMLPARSE 363
720 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

XMLParse 362
XMLQUERY 363
XMLSERIALIZE 337, 363
XMLSerialize 362
XMLTABLE 363
XMLType 362
XQuery 336
XSD 342
XSR 337, 342
 Index 721

722 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Oracle to DB2 Conversion Guide
for Linux, UNIX, and W

indow
s

®

SG24-7048-01 ISBN 0738489271

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Oracle to DB2
Conversion Guide
for Linux, UNIX, and Windows
Step-by-step guide
to migrating from
Oracle to DB2 9.1

Conversion
examples - including
XML conversion

Step-by-step guide
to MTK tool usage

IBM DB2 has long been known for its technology leadership.
This IBM Redbooks publication, intended for technical staff
who are involved in an Oracle to DB2 conversion project, is
an informative guide that describes how to migrate the
database system from Oracle to DB2 Version 9 on Linux,
UNIX, and Microsoft Windows platforms.

This book provides conversion methodology and
step-by-step instructions for installing and using IBM
Migration Toolkit (MTK) to port the database objects and data
from Oracle to DB2. It illustrates, with examples, how to
convert the stored procedures, functions, and triggers.
Application programming and conversion considerations are
discussed, along with the differences in features and
functionality of the two products.

In addition, you can find script conversion samples for data
loading, database administration, and reports that are useful
for DBAs. The testing section provides procedures and tips
for conversion testing and database tuning. The laboratory
examples are performed under Oracle 10g and DB2
Version 9. However, the migration process and examples can
be applied to Oracle 7, 8, and 9i.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Acknowledgments

	Become a published author
	Comments welcome

	Summary of changes
	August 2007, Second Edition

	Chapter 1. Introduction
	1.1 DB2 family of products
	1.1.1 DB2 9 Autonomic computing features

	1.2 Terminology
	1.2.1 Terminology mapping

	1.3 Architecture overview
	1.3.1 Memory architecture
	1.3.2 Process architecture
	1.3.3 Files and directory structure
	1.3.4 Data Dictionary and Catalog
	1.3.5 Communication
	1.3.6 Data replication

	1.4 Parallel database architecture
	1.4.1 Real Application Clusters
	1.4.2 DB2 Enterprise with the Database Partitioning Feature (DPF)

	Chapter 2. Conversion methodology
	2.1 Pre-conversion tasks
	2.1.1 IBM Software Migration Project Office team

	2.2 IBM conversion strategy
	2.2.1 Assessment phase
	2.2.2 Conversion phase
	2.2.3 The test phase
	2.2.4 Implementation and cutover phase
	2.2.5 Migration project skills, roles, and responsibilities

	2.3 Additional migration resources
	2.4 Conversion planning technical considerations
	2.4.1 Task scheduling
	2.4.2 Auditing
	2.4.3 National Language support
	2.4.4 Authentication and authorization
	2.4.5 Data partitioning
	2.4.6 Oracle External tables
	2.4.7 Oracle bigfile table spaces
	2.4.8 Table space design
	2.4.9 Data encryption
	2.4.10 Disaster recovery solutions
	2.4.11 Oracle Database Resource Manager
	2.4.12 Replication considerations
	2.4.13 Data Warehouse considerations

	Chapter 3. MTK
	3.1 MTK overview
	3.1.1 MTK facts
	3.1.2 MTK features
	3.1.3 MTK GUI interface
	3.1.4 Migration tasks
	3.1.5 The MTK SQL Translator

	3.2 MTK planning
	3.2.1 Operating system and version requirements
	3.2.2 MTK hardware requirements
	3.2.3 MTK software requirements
	3.2.4 MTK requirements for data extraction
	3.2.5 Where to install MTK

	3.3 MTK installation
	3.3.1 Windows installation
	3.3.2 UNIX and Linux Installation
	3.3.3 Verifying the environment for creating MTK Java UDFs

	Chapter 4. Porting with MTK
	4.1 Preparation for porting
	4.2 Overview of available documentation
	4.3 Running MTK
	4.3.1 Migration details
	4.3.2 Creating and opening an MTK project

	4.4 Extracting or importing metadata into MTK
	4.4.1 Choosing objects to extract
	4.4.2 Import or extract strategies
	4.4.3 Viewing extracted files

	4.5 The Convert task
	4.6 The Refine task
	4.6.1 Message categories and migration impact
	4.6.2 The Messages sub-tab
	4.6.3 Translator Messages
	4.6.4 Refining the metadata conversion

	4.7 The Generate Data Transfer Scripts task
	4.7.1 Creating unload and load scripts
	4.7.2 Files generated by the Generate Data Transfer Script task

	4.8 Deploy to Target
	4.8.1 Considerations
	4.8.2 Deployment strategy
	4.8.3 Deployment results

	4.9 Next steps
	4.10 Converting the remaining objects
	4.10.1 Translator Messages
	4.10.2 Status

	4.11 Deployment of the remaining objects
	4.11.1 Verification report

	4.12 Manual conversion for ORA_EMP database objects
	4.12.1 Stored procedures
	4.12.2 Manual deployment of stored procedures

	Chapter 5. Conversion reference
	5.1 Tools
	5.1.1 Developer Workbench
	5.1.2 The DB2 Command Window
	5.1.3 Control Center
	5.1.4 Recommended reading materials

	5.2 Comparing SQL PL and inline SQL PL
	5.2.1 Create procedure
	5.2.2 Create trigger
	5.2.3 Create function
	5.2.4 Variables declaration and assignment
	5.2.5 Conditional statements and flow control

	5.3 Dynamic SQL
	5.4 Cursor conversion
	5.4.1 Converting an explicit cursor in a procedure
	5.4.2 Converting an explicit cursor in functions and triggers
	5.4.3 Converting cursor attributes

	5.5 Collections
	5.5.1 Nested tables and varrays
	5.5.2 Bulk collect
	5.5.3 Passing result sets between procedures

	5.6 Condition handling
	5.6.1 Condition handling in stored procedure
	5.6.2 Condition handling in triggers and functions
	5.6.3 Converting RAISE_APPLICATION_ERROR

	5.7 Package initialization
	5.8 Global variables
	5.9 Hierarchical queries
	5.10 Print output messages
	5.11 Implicit casting in SQL
	5.12 Outer join
	5.13 Decode statement
	5.14 Rownum
	5.15 INSERT, UPDATE, DELETE returning values
	5.16 Select from DUAL
	5.17 Manipulating date and time
	5.18 Set operations
	5.19 Function that returns rowtype
	5.20 Local functions
	5.21 Partitioning and MDC
	5.22 %ROWTYPE and %TYPE
	5.23 MERGE
	5.24 Index conversion
	5.24.1 Differences between Oracle and DB2

	5.25 Oracle database links
	5.26 Temporary tables
	5.27 Concurrency and transaction
	5.27.1 Read concurrency
	5.27.2 Update concurrency
	5.27.3 Miscellaneous differences
	5.27.4 Transaction

	5.28 Encryption
	5.29 Oracle multitable, conditional, and pivot insert
	5.30 Additional considerations
	5.30.1 Building C/C++ routines
	5.30.2 Building Java routines

	Chapter 6. Data conversion
	6.1 Data conversion process
	6.2 Time planning
	6.3 Data movement through flat files
	6.3.1 Moving data using the MTK
	6.3.2 Using shell scripts
	6.3.3 Using Oracle’s stored procedures

	6.4 Alternative ways for moving data
	6.4.1 Data movement through named pipes
	6.4.2 WebSphere Federation Server

	Chapter 7. Application conversion
	7.1 DB2 application development introduction
	7.1.1 Embedded SQL
	7.1.2 Driver support

	7.2 Application migration planning
	7.3 Self-build application
	7.3.1 Converting Oracle Pro*C applications to DB2
	7.3.2 Converting Oracle Java applications to DB2
	7.3.3 Converting Oracle Call Interface applications
	7.3.4 Converting ODBC applications
	7.3.5 Converting Perl applications
	7.3.6 Converting PHP applications
	7.3.7 Converting .NET applications

	7.4 Package applications migration planning
	7.4.1 SAP

	Chapter 8. XML conversion
	8.1 DB2 XML data type introduction
	8.1.1 DB2 pureXML native storage
	8.1.2 DB2 decomposition

	8.2 Converting the XML data model
	8.2.1 XML data type differences
	8.2.2 XML schema conversion and registration
	8.2.3 Oracle unstructured and structured storage to DB2 pureXML
	8.2.4 Oracle structured storage to DB2 decomposition

	8.3 XML data movement
	8.3.1 Exporting XML data from Oracle
	8.3.2 Inserting XML data into DB2
	8.3.3 Importing XML data into DB2
	8.3.4 XML validation

	8.4 Converting XML queries
	8.4.1 SQL/XML
	8.4.2 XQuery
	8.4.3 Updates and deletes
	8.4.4 Referential Integrity

	8.5 Converting XML indexes
	8.6 Converting XML in stored procedures
	8.6.1 Comparison overview
	8.6.2 Converting an Oracle procedure with XML to DB2
	8.6.3 The Oracle procedures
	8.6.4 DB2 stored procedure
	8.6.5 Other restrictions or limitations

	8.7 Converting XML in Java applications
	8.7.1 JDBC drivers
	8.7.2 XML retrieval
	8.7.3 Java XML insert
	8.7.4 Java XML update
	8.7.5 XMLType object method mapping

	8.8 XML tools and utilities
	8.8.1 Oracle Enterprise Manager, DB2 Control Center
	8.8.2 Oracle JDeveloper, DB2 Developer Workbench

	8.9 Best practices

	Chapter 9. Script conversion
	9.1 Data load scripts
	9.1.1 Data load migration approach
	9.1.2 Loading fixed-format fields
	9.1.3 Loading variable-length data
	9.1.4 Initializations in the Oracle SQL*Loader control file
	9.1.5 Loading data into multiple tables

	9.2 Oracle Data Pump scripts
	9.2.1 Data Pump migration approach
	9.2.2 Transferring a schema
	9.2.3 Export data operations
	9.2.4 Import data functionality

	9.3 Administration scripts
	9.3.1 Dynamic performance views and table function
	9.3.2 System catalog views
	9.3.3 Frequently used commands and DDLs by DBA
	9.3.4 Backup scripts conversion

	9.4 Tools and wizards
	9.5 Report tools

	Chapter 10. Testing
	10.1 Planning
	10.1.1 Principles of software tests
	10.1.2 Test documentation
	10.1.3 Test phases
	10.1.4 Time planning and time exposure

	10.2 Data checking technique
	10.2.1 IMPORT/LOAD messages
	10.2.2 Data checking scripts

	10.3 Code and application testing
	10.3.1 View sanity check
	10.3.2 PL/SQL to SQL PL object check
	10.3.3 Application code check
	10.3.4 Security
	10.3.5 Tools for testing and problem tracking

	10.4 Troubleshooting
	10.4.1 Interpreting DB2 informational messages
	10.4.2 DB2 diagnostic logs
	10.4.3 DB2 support information
	10.4.4 Problem determination tools

	10.5 Initial tuning
	10.5.1 Table spaces
	10.5.2 Physical placement of database objects
	10.5.3 Buffer pools
	10.5.4 Large transactions
	10.5.5 SQL execution plan
	10.5.6 Configuration Advisor
	10.5.7 Design Advisor

	Chapter 11. Database administration and management
	11.1 DB2 administration tools
	11.1.1 DB2 command line processor
	11.1.2 DB2 Control Center

	11.2 Instance management commands
	11.2.1 Managing instances
	11.2.2 Retrieving instance information
	11.2.3 Managing instance configuration parameters
	11.2.4 Setting registry variables

	11.3 Database management
	11.3.1 Managing databases
	11.3.2 Managing node and database directories
	11.3.3 Managing database configuration parameters
	11.3.4 Managing table spaces
	11.3.5 Managing buffer pools
	11.3.6 Managing database security
	11.3.7 Managing database backup and recovery

	11.4 Automatic database management
	11.4.1 Automatic database configuration
	11.4.2 Automatic storage
	11.4.3 Automated REORG on tables and indexes
	11.4.4 Automatic statistics collection
	11.4.5 Automatic backup
	11.4.6 Utility throttling
	11.4.7 Automatic diagnostics using Health Monitor

	11.5 Monitoring
	11.5.1 Monitoring tools
	11.5.2 Monitoring database objects
	11.5.3 Applications activity

	Appendix A. Data types
	A.1 Supported SQL data types in C/C++
	A.2 Supported SQL data types in Java
	A.3 Mapping Oracle data types to DB2 data types

	Appendix B. Terminology mapping
	Appendix C. Function mapping
	C.1 Numeric function mapping
	C.2 Character function mapping
	C.3 Date and time function mapping
	C.4 Conversion and cast function mapping
	C.5 Aggregate function mapping
	C.6 Comparison and NULL-related function mapping
	C.7 Encoding, decoding, encryption, and decryption function mapping

	Appendix D. Oracle Call Interface (OCI) mapping
	Appendix E. Converter for SQL*Loader
	E.1 Converting control files for Oracle SQL*Loader
	E.2 Generation of additional DB2 commands

	Appendix F. Example Oracle database
	F.1 Table definition
	F.2 View definition
	F.3 Procedure and functions
	F.4 Packages
	F.5 Triggers

	Appendix G. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

