N
2 Sun

microsystems

Sun Performance Library
Reference Manual

Sun™ Studio 10

Sun Microsystems, Inc.
WWW.Sun.com

Part No. 819-0497-10
January 2005, Revision A

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX s a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sunlogo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
L’utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, lelogo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

Ce produit est soumis a la législation américaine en matiére de contrdle des exportations et peut étre soumis a la réglementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour ges armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de maniére non exhaustive, la liste de personnes qui font objet d"un ordre de ne pas participer, d"une fagon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par lalégislation américaine en matiére de controle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN ’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

K‘m

Adobe PostScript

Sun Performance Library[TM] Reference Manual

Sun[tm] Studio 10

This reference manua is a PDF version of the section 3P man pages. For additional information, see the Sun Performance Library
User's Guide, available on docs. sun. com or the LAPACK Users Guide, available from the Society for Industrial and Applied
Mathematics (SIAM).

available threads - available_threads - returns information about current thread usage

blas dpermute - blas_dpermute - permutes areal (double precision) array in terms of the permutation vector P, output by
dsortv

blas dsort - blas_dsort - sorts areal (double precision) vector X inincreasing or decreasing order using quick sort
agorithm

blas dsortv - blas_dsortv - sorts area (double precision) vector X inincreasing or decreasing order using quick sort
algorithm and overwrite P with the permutation vector

blas ipermute - blas_ipermute - permutes an integer array in terms of the permutation vector P, output by dsortv

blas isort - blas isort - sorts an integer vector X in increasing or decreasing order using quick sort algorithm

blas isortv - blas_isortv - sortsareal vector X in increasing or decreasing order using quick sort algorithm and overwrite P
with the permutation vector

blas spermute - blas_spermute - permutes areal array in terms of the permutation vector P, output by dsortv

blas ssort - blas_ssort - sortsareal vector X in increasing or decreasing order using quick sort algorithm

blas ssortv - blas_ssortv - sortsareal vector X inincreasing or decreasing order using quick sort algorithm and overwrite
P with the permutation vector

caxpy - caxpy - computey :=apha* x +y

caxpyi - caxpyi - Computey :=apha* x +y

cbcomm - chcomm - block coordinate matrix-matrix multiply

cbdimm - cbdimm - block diagonal format matrix-matrix multiply

Page 1 of 4153

chdism - chdism - block diagonal format triangular solve

cbdsqr - chdsgr - compute the singular value decomposition (SVD) of area N-by-N (upper or lower) bidiagonal matrix B.

cbelmm - chelmm - block Ellpack format matrix-matrix multiply

cbelsm - chelsm - block Ellpack format triangular solve

chscmm - chscmm - block sparse column matrix-matrix multiply

cbscsm - chscsm - block sparse column format triangular solve

chsrmm - chsrmm - block sparse row format matrix-matrix multiply

cbsrsm - chsrsm - block sparse row format triangular solve

ccnvcor - cenveor - compute the convolution or correlation of complex vectors

ccnveor? - cecnveor? - compute the convolution or correlation of complex matrices

ccoomm - ccoomm - coordinate matrix-matrix multiply

ccopy - ccopy - Copy X toy

ccscmm - ccscmm - compressed sparse column format matrix-matrix multiply

ccscsm - cescsm - compressed sparse column format triangular solve

ccsrmm - ccsrmm - compressed sparse row format matrix-matrix multiply

ccsrsm - cecsrsm - compressed sparse row format triangular solve

cdiamm - cdiamm - diagonal format matrix-matrix multiply

cdiasm - cdiasm - diagonal format triangular solve

cdotc - cdotc - compute the dot product of two vectors conjg(x) and y.

cdotci - cdotci - Compute the complex conjugated indexed dot product.

cdotu - cdotu - compute the dot product of two vectors x and y.

Page 2 of 4153

cdotui - cdotui - Compute the complex unconjugated indexed dot product.

cellmm - cellmm - Ellpack format matrix-matrix multiply

cellsm - cellsm - Ellpack format triangular solve

cfft2b - cfft2b - compute a periodic sequence fromits Fourier coefficients. The xFFT operations are unnormalized, so a
call of xFFT2F followed by a call of xFFT2B will multiply the input sequence by M*N.

cfft2f - cfft2f - compute the Fourier coefficients of a periodic sequence. The xFFT operations are unnormalized, so a call
of xFFT2F followed by a call of xFFT2B will multiply the input sequence by M*N.

cfft2i - cfft2i - initialize the array WSAVE, which is used in both the forward and backward transforms.

cfft3b - cfft3b - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a call
of CFFT3F followed by acall of CFFT3B will multiply the input sequence by M*N*K.

cfft3f - cfft3f - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call of
CFFT3F followed by acall of CFFT3B will multiply the input sequence by M*N*K.

cfft3i - cfft3i - initialize the array WSAVE, which is used in both CFFT3F and CFFT3B.

cfftb - cfftb - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so acall of
CFFTF followed by acall of CFFTB will multiply the input sequence by N.

cfftc - cfftc - initialize the trigonometric weight and factor tables or compute the Fast Fourier transform (forward or
inverse) of acomplex segquence.

cfftc2 - cfftc2 - initialize the trigonometric weight and factor tables or compute the two-dimensional Fast Fourier
Transform (forward or inverse) of atwo-dimensional complex array.

cfftc3 - cfftc3 - initialize the trigonometric weight and factor tables or compute the three-dimensional Fast Fourier
Transform (forward or inverse) of athree-dimensional complex array.

cfftcm - cfftcm - initialize the trigonometric weight and factor tables or compute the one-dimensional Fast Fourier
Transform (forward or inverse) of a set of data sequences stored in atwo-dimensional complex array.

cfftf - cfftf - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so acall of
CFFTF followed by acall of CFFTB will multiply the input sequence by N.

cffti - cffti - initialize the array WSAVE, which isused in both CFFTF and CFFTB.

cfftopt - cfftopt - compute the length of the closest fast FFT

Page 3 of 4153

cffts - cffts - initialize the trigonometric weight and factor tables or compute the inverse Fast Fourier Transform of a
complex sequence as follows.

cffts2 - cffts2 - initialize the trigonometric weight and factor tables or compute the two-dimensional inverse Fast Fourier
Transform of atwo-dimensional complex array.

cffts3 - cffts3 - initialize the trigonometric weight and factor tables or compute the three-dimensional inverse Fast Fourier
Transform of athree-dimensional complex array.

cfftsm - cfftsm - initialize the trigonometric weight and factor tables or compute the one-dimensiona inverse Fast Fourier
Transform of aset of complex data sequences stored in atwo-dimensional array.

cgbbrd - cgbbrd - reduce a complex general m-by-n band matrix A to real upper bidiagona form B by a unitary
transformation

cgbcon - cghcon - estimate the reciprocal of the condition number of a complex general band matrix A, in either the 1-
norm or the infinity-norm,

cgbequ - cgbequ - compute row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its
condition number

cgbmv - cgbmv - perform one of the matrix-vector operationsy := alpha* A*x + beta*y, or y := alpha*A"*x + beta*y, or y :
= adpha*conjg(A")*x + beta*y

cgbrfs - cgbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is banded, and
provides error bounds and backward error estimates for the solution

cgbsv - cgbsv - compute the solution to a complex system of linear equations A * X = B, where A is a band matrix of
order N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices

cgbsvx - cgbsvx - use the LU factorization to compute the solution to a complex system of linear equations A * X =B,
A**T* X =B,or A*x*H* X =B,

cgbtf2 - cgbtf2 - compute an LU factorization of a complex m-by-n band matrix A using partia pivoting with row
interchanges

cgbtrf - cgbtrf - compute an LU factorization of a complex m-by-n band matrix A using partial pivoting with row
interchanges

cgbitrs - cgbtrs - solve a system of linear equations A * X =B, A**T * X =B, or A**H * X = B with ageneral band matrix
A using the LU factorization computed by CGBTRF

cgebak - cgebak - form the right or left eigenvectors of acomplex general matrix by backward transformation on the
computed eigenvectors of the balanced matrix output by CGEBAL

cgebal - cgebal - balance ageneral complex matrix A

Page 4 of 4153

cgebrd - cgebrd - reduce a general complex M-by-N matrix A to upper or lower bidiagonal form B by a unitary
transformation

cgecon - cgecon - estimate the reciprocal of the condition number of a general complex matrix A, in either the 1-norm or
the infinity-norm, using the LU factorization computed by CGETRF

cgeequ - cgeequ - compute row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition
number

cgees - cgees - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and,
optionally, the matrix of Schur vectors Z

cgeesx - cgeesx - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and,
optionally, the matrix of Schur vectors Z

cgeev - cgeev - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or
right eigenvectors

cgeevx - cgeevx - compute for an N-by-N complex nonsymmetric matrix A, the eigenval ues and, optionally, the left and/or
right eigenvectors

cgegs - cgegs - routine is deprecated and has been replaced by routine CGGES

cgegv - cgegv - routine is deprecated and has been replaced by routine CGGEV

cgehrd - cgehrd - reduce a complex general matrix A to upper Hessenberg form H by a unitary similarity transformation

cgeldf - cgelgf - compute an LQ factorization of acomplex M-by-N matrix A

cgels - cgels - solve overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its
conjugate-transpose, using a QR or LQ factorization of A

cgelsd - cgelsd - compute the minimum-norm solution to areal linear least squares problem

cgelss - cgelss - compute the minimum norm solution to a complex linear least squares problem

cgelsx - cgelsx - routine is deprecated and has been replaced by routine CGELSY

cgelsy - cgelsy - compute the minimum-norm solution to a complex linear least squares problem

cgemm - cgemm - perform one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C

cgemv - cgemv - perform one of the matrix-vector operationsy := alpha* A*x + beta*y, or y := alpha* A" x + beta*y, or y :

= adpha*conjg(A")*x + beta*y

Page 5 of 4153

cgeglf - cgeglf - compute a QL factorization of acomplex M-by-N matrix A

cgeqps - cgeqp3 - compute a QR factorization with column pivoting of amatrix A

cgegpf - cgegpf - routine is deprecated and has been replaced by routine CGEQP3

cgeqrf - cgeqrf - compute a QR factorization of acomplex M-by-N matrix A

cgerc - cgerc - perform therank 1 operation A := alpha*x*conjg(y') + A

cgerfs - cgerfs - improve the computed solution to a system of linear equations and provides error bounds and backward
error estimates for the solution

cgergf - cgergf - compute an RQ factorization of a complex M-by-N matrix A

cgeru - cgeru - perform the rank 1 operation A := alpha*x*y' + A

cgesdd - cgesdd - compute the singular value decomposition (SVD) of acomplex M-by-N matrix A, optionally computing
the left and/or right singular vectors, by using divide-and-conquer method

cgesv - cgesv - compute the solution to a complex system of linear equations A * X = B,

cgesvd - cgesvd - compute the singular value decomposition (SVD) of acomplex M-by-N matrix A, optionally computing
the left and/or right singular vectors

cgesvx - cgesvx - use the LU factorization to compute the solution to a complex system of linear equations A * X =B,

cgetf2 - cgetf2 - compute an LU factorization of ageneral m-by-n matrix A using partial pivoting with row interchanges

cgetrf - cgetrf - compute an LU factorization of ageneral M-by-N matrix A using partial pivoting with row interchanges

cgetri - cgetri - compute the inverse of amatrix using the LU factorization computed by CGETRF

Ccgetrs - cgetrs - solve a system of linear equations A * X =B, A**T * X =B, or A**H * X = B with ageneral N-by-N
matrix A using the LU factorization computed by CGETRF

cagbak - cggbak - form the right or left eigenvectors of a complex generalized eigenvalue problem A*x = lambda* B*x, by
backward transformation on the computed eigenvectors of the balanced pair of matrices output by CGGBAL

cggbal - cggbal - balance a pair of general complex matrices (A,B)

cgges - cgges - compute for apair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenva ues, the
generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR)

Page 6 of 4153

cggesx - cggesx - compute for apair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the
complex Schur form (S,T),

cggev - cggev - compute for apair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and
optionally, the left and/or right generalized eigenvectors

cggevx - cggevx - compute for apair of N-by-N complex nonsymmetric matrices (A,B) the generalized eigenvalues, and
optionally, the left and/or right generalized eigenvectors

cggalm - cggglm - solve a general Gauss-Markov linear model (GLM) problem

cgghrd - cgghrd - reduce a pair of complex matrices (A,B) to generalized upper Hessenberg form using unitary
transformations, where A is ageneral matrix and B is upper triangular

caglse - cgglse - solve the linear equality-constrained least squares (L SE) problem

cagarf - cggarf - compute a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B.

caardf - cggrgf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B

cggsvd - cggsvd - compute the generalized singular value decomposition (GSVD) of an M-by-N complex matrix A and P-
by-N complex matrix B

€ggsvp - cggsvp - compute unitary matrices U, V and Q such that N-K-L K L U*A*Q=K (0A12A13) if M-K-L >=0

CQSSCO - €gssco - General sparse solver condition number estimate.

cgssda - cgssda - Deallocate working storage for the general sparse solver.

cgssfa - cgssfa - General sparse solver numeric factorization.

cossfs - cgssfs - General sparse solver one call interface.

cgssin - cgssin - Initialize the general sparse solver.

€Qssor - cgssor - General sparse solver ordering and symbolic factorization.

COSspPS - cgssps - Print general sparse solver statics.

COssIp - cgssrp - Return permutation used by the general sparse solver.

cgsssl - cgssdl - Solve routine for the general sparse solver.

Page 7 of 4153

€Qssuo - cgssuo - User supplied permutation for ordering used in the genera sparse solver.

cgtcon - cgtcon - estimate the reciprocal of the condition number of a complex tridiagonal matrix A using the LU
factorization as computed by CGTTRF

cathr - cgthr - Gathers specified elements fromy into x.

cgthrz - cgthrz - Gather and zero.

catrfs - cgtrfs - improve the computed solution to a system of linear equations when the coefficient matrix is tridiagonal,
and provides error bounds and backward error estimates for the solution

cgtsv - cgtsv - solve the equation A*X = B,

catsvx - cgtsvx - use the LU factorization to compute the solution to a complex system of linear equations A * X =B,
A**T* X =B,or A*x*H* X =B,

cgttrf - cgttrf - compute an LU factorization of a complex tridiagonal matrix A using elimination with partial pivoting and
row interchanges

cattrs - cgttrs - solve one of the systems of equations A * X =B, A**T* X =B, or A**H* X =B,

chbev - chbev - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

chbevd - chbevd - compute al the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

chbevx - chbevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

chbgst - chbgst - reduce a complex Hermitian-definite banded generalized eigenproblem A*x = lambda* B*x to standard
form C*y = lambda*y,

chbgv - chbgv - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite
banded eigenproblem, of the form A*x=(lambda)* B* x

chbgvd - chbgvd - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-
definite banded eigenproblem, of the form A*x=(lambda)* B* x

chbgvx - chbgvx - compute all the eigenvalues, and optionally, the eigenvectors of acomplex generalized Hermitian-
definite banded eigenproblem, of the form A*x=(lambda)* B* x

chbmv - chbmv - perform the matrix-vector operation y := apha* A*x + beta*y

chbtrd - chbtrd - reduce a complex Hermitian band matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation

Page 8 of 4153

checon - checon - estimate the reciprocal of the condition number of a complex Hermitian matrix A using the factorization
A =U*D*U**H or A = L*D*L**H computed by CHETRF

cheev - cheev - compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

cheevd - cheevd - compute all eigenvalues and, optionally, eigenvectors of acomplex Hermitian matrix A

cheevr - cheevr - compute selected eigenvalues and, optionally, eigenvectors of acomplex Hermitian tridiagona matrix T

cheevx - cheevx - compute selected eigenvalues and, optionally, eigenvectors of acomplex Hermitian matrix A

chegs? - chegs? - reduce a complex Hermitian-definite generalized eigenproblem to standard form

chegst - chegst - reduce a complex Hermitian-definite generalized eigenproblem to standard form

chegv - chegv - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

chegvd - chegvd - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-
definite eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)* x

chegvx - chegvx - compute selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

chemm - chemm - perform one of the matrix-matrix operations C := alpha* A*B + beta* C or C := alpha*B*A + beta*C

chemv - chemv - perform the matrix-vector operation y := alpha* A*x + beta*y

cher - cher - perform the hermitian rank 1 operation A := alpha*x*conjg(x') + A

cher2 - cher2 - perform the hermitian rank 2 operation A := alpha*x*conjg(y') + conjg(apha)*y*conjg(x') + A

cher2k - cher2k - perform one of the Hermitian rank 2k operations C := alpha* A*conjg(B') + conjg(apha)* B* conjg
(A") + beta*C or C := apha*conjg(A')*B + conjg(apha)*conjg(B')*A + beta*C

cherfs - cherfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
indefinite, and provides error bounds and backward error estimates for the solution

cherk - cherk - perform one of the Hermitian rank k operations C := apha* A*conjg(A") + beta* C or C := apha*conjg
(A")*A + beta*C

chesv - chesv - compute the solution to a complex system of linear equations A * X = B,

Page 9 of 4153

chesvx - chesvx - use the diagonal pivoting factorization to compute the solution to a complex system of linear equations
A* X =B,

chetf2 - chetf2 - compute the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting
method

chetrd - chetrd - reduce a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation

chetrf - chetrf - compute the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting
method

chetri - chetri - compute the inverse of acomplex Hermitian indefinite matrix A using the factorization A = U*D*U**H or
A =L*D*L**H computed by CHETRF

chetrs - chetrs - solve a system of linear equations A*X = B with acomplex Hermitian matrix A using the factorization A
=U*D*U**H or A = L*D*L**H computed by CHETRF

chgegz - chgegz - implement a single-shift version of the QZ method for finding the generalized eigenvalues w(i)=ALPHA
(i)/BETA(i) of the equation det(A-w(i) B) = 0 If JOB='S, then the pair (A,B) is simultaneously reduced to Schur form (i.
e., A and B are both upper triangular) by applying one unitary tranformation (usually caled Q) on the left and another
(usually called Z) on theright

chpcon - chpcon - estimate the reciprocal of the condition number of a complex Hermitian packed matrix A using the
factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF

chpev - chpev - compute al the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed storage

chpevd - chpevd - compute all the eigenvalues and, optionally, eigenvectors of acomplex Hermitian matrix A in packed
storage

chpevx - chpevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed
storage

chpgst - chpgst - reduce a complex Hermitian-definite generalized eigenproblem to standard form, using packed storage

chpav - chpgv - compute al the eigenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

chpgvd - chpgvd - compute all the eigenvalues and, optionally, the eigenvectors of acomplex generalized Hermitian-
definite eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)* x

chpagvx - chpgvx - compute selected eigenval ues and, optionally, eigenvectors of a complex generalized Hermitian-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

chpmv - chpmv - perform the matrix-vector operation y := apha*A*x + beta*y

Page 10 of 4153

chpr - chpr - perform the hermitian rank 1 operation A := alpha*x*conjg(x') + A

chpr2 - chpr2 - perform the Hermitian rank 2 operation A := alpha*x*conjg(y') + conjg(apha)*y*conjg(x') + A

chprfs - chprfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
indefinite and packed, and provides error bounds and backward error estimates for the solution

chpsv - chpsv - compute the solution to a complex system of linear equations A * X = B,

chpsvx - chpsvx - use the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution to a

complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format and X and
B are N-by-NRHS matrices

chptrd - chptrd - reduce a complex Hermitian matrix A stored in packed form to real symmetric tridiagona form T by a
unitary similarity transformation

chptrf - chptrf - compute the factorization of a complex Hermitian packed matrix A using the Bunch-Kaufman diagonal
pivoting method

chptri - chptri - compute the inverse of a complex Hermitian indefinite matrix A in packed storage using the factorization
A =U*D*U**H or A = L*D*L**H computed by CHPTRF

chptrs - chptrs - solve a system of linear equations A* X = B with a complex Hermitian matrix A stored in packed format
using the factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF

chsein - chsein - use inverse iteration to find specified right and/or |eft eigenvectors of a complex upper Hessenberg matrix
H

chseqr - chsegr - compute the eigenval ues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and Z

from the Schur decomposition H =Z T Z**H, where T is an upper triangular matrix (the Schur form), and Z is the unitary
matrix of Schur vectors

cjadmm - cjadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)

cjadrp - cjadrp - right permutation of ajagged diagonal matrix

cjadsm - cjadsm - Jagged-diagonal format triangular solve

clarz - clarz - applie acomplex elementary reflector H to a complex M-by-N matrix C, from either the left or the right

clarzb - clarzb - applie acomplex block reflector H or its transpose H**H to a complex distributed M-by-N C from the left
or the right

clarzt - clarzt - form the triangular factor T of acomplex block reflector H of order > n, which is defined as a product of k
elementary reflectors

Page 11 of 4153

clatzm - clatzm - routine is deprecated and has been replaced by routine CUNMRZ

cosgb - cosgb - synthesize a Fourier sequence from its representation in terms of a cosine series with odd wave numbers.

The COSQ operations are unnormalized inverses of themselves, so a call to COSQF followed by acall to COSQB will
multiply the input sequence by 4 * N.

cosgf - cosgf - compute the Fourier coefficientsin a cosine series representation with only odd wave numbers. The COSQ

operations are unnormalized inverses of themselves, so a call to COSQF followed by a call to COSQB will multiply the
input sequence by 4 * N.

cosqi - cosqi - initialize the array WSAVE, which is used in both COSQF and COSQB.

cost - cost - compute the discrete Fourier cosine transform of an even sequence. The COST transforms are unnormalized
inverses of themselves, so acall of COST followed by another call of COST will multiply the input sequence by 2 * (N-1).

costi - cogti - initialize the array WSAVE, which is used in COST.

cpbcon - cpbeon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite
band matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF

cpbequ - cpbequ - compute row and column scalings intended to equilibrate a Hermitian positive definite band matrix A
and reduce its condition number (with respect to the two-norm)

cpbrfs - cpbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite and banded, and provides error bounds and backward error estimates for the solution

cpbstf - cpbstf - compute a split Cholesky factorization of a complex Hermitian positive definite band matrix A

cpbsv - cpbsv - compute the solution to a complex system of linear equations A * X = B,

cpbsvx - cpbsvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X =B,

cpbtf2 - cpbtf2 - compute the Cholesky factorization of acomplex Hermitian positive definite band matrix A

cpbtrf - cpbtrf - compute the Cholesky factorization of a complex Hermitian positive definite band matrix A

cpbtrs - cpbtrs - solve a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the
Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF

cpocon - cpocon - estimate the reciproca of the condition number (in the 1-norm) of a complex Hermitian positive definite
matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF

cpoequ - cpoequ - compute row and column scalings intended to equilibrate a Hermitian positive definite matrix A and
reduce its condition number (with respect to the two-norm)

Page 12 of 4153

cporfs - cporfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite,

Cposv - cposv - compute the solution to a complex system of linear equations A * X = B,

CPOosvX - cposvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X =B,

cpotf2 - cpotf2 - compute the Cholesky factorization of acomplex Hermitian positive definite matrix A

cpotrf - cpotrf - compute the Cholesky factorization of acomplex Hermitian positive definite matrix A

cpotri - cpotri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A
=U**H*U or A = L*L**H computed by CPOTRF

cpotrs - cpotrs - solve a system of linear equations A* X = B with a Hermitian positive definite matrix A using the
Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF

cppcon - cppcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite
packed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF

cppequ - cppegu - compute row and column scalings intended to equilibrate a Hermitian positive definite matrix A in
packed storage and reduce its condition number (with respect to the two-norm)

cpprfs - cpprfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite and packed, and provides error bounds and backward error estimates for the solution

cppsv - cppsv - compute the solution to a complex system of linear equations A * X = B,

CppSvx - cppsvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X =B,

cpptrf - cpptrf - compute the Cholesky factorization of acomplex Hermitian positive definite matrix A stored in packed
format

cpptri - cpptri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A
=U**H*U or A = L*L**H computed by CPPTRF

Ccpptrs - cpptrs - solve a system of linear equations A*X = B with a Hermitian positive definite matrix A in packed storage
using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF

cptcon - cptcon - compute the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite
tridiagonal matrix using the factorization A = L*D*L**H or A = U**H*D*U computed by CPTTRF

cpteqr - cptegr - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix

Page 13 of 4153

by first factoring the matrix using SPTTRF and then calling CBDSQR to compute the singular values of the bidiagonal
factor

cptrfs - cptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution

cptsv - cptsv - compute the solution to a complex system of linear equations A* X = B, where A isan N-by-N Hermitian
positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices.

Cptsvx - cptsvx - use the factorization A = L*D*L**H to compute the solution to a complex system of linear equations
A*X =B, where A isan N-by-N Hermitian positive definite tridiagonal matrix and X and B are N-by-NRHS matrices

cpttrf - cpttrf - compute the L*D* L' factorization of a complex Hermitian positive definite tridiagonal matrix A

cpttrs - cpttrs - solve atridiagonal system of the form A * X = B using the factorization A = U*D*U or A = L*D*L'
computed by CPTTRF

Cptts? - cptts2 - solve atridiagonal system of the form A * X = B using the factorization A = U*D*U or A = L*D*L'
computed by CPTTRF

crot - crot - apply a plane rotation, where the cos (C) isreal and the sin (S) is complex, and the vectors X and Y are
complex

crotqg - crotg - Construct a Given's plane rotation

cscal - cscal - Computey :=dpha* y

Csctr - csctr - Scatters elements from x into y.

cskymm - cskymm - Skyline format matrix-matrix multiply

cskysm - cskysm - Skyline format triangular solve

cspcon - cspeon - estimate the reciprocal of the condition number (in the 1-norm) of a complex symmetric packed matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF

csprfs - csprfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite and packed, and provides error bounds and backward error estimates for the solution

CSpsv - cspsv - compute the solution to a complex system of linear equations A * X = B,

CSpsvX - cspsvx - use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a

complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices

Page 14 of 4153

csptrf - csptrf - compute the factorization of a complex symmetric matrix A stored in packed format using the Bunch-
Kaufman diagonal pivoting method

csptri - csptri - compute the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization
A =U*D*U**T or A = L*D*L**T computed by CSPTRF

Csptrs - csptrs - solve a system of linear equations A* X = B with acomplex symmetric matrix A stored in packed format
using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF

csrot - csrot - Apply a plane rotation.

csscal - cssca - Computey = dpha* y

cstedc - cstede - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagona matrix using the divide
and conquer method

cstegr - cstegr - Compute T-sigma i =L_i D_i L_i*T, suchthat L_i D_i L_i"T isarelatively robust representation

cstein - cstein - compute the eigenvectors of areal symmetric tridiagonal matrix T corresponding to specified eigenvalues,
using inverse iteration

csteqr - cstegr - compute al eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit
QL or QR method

cstsv - cstsv - compute the solution to a complex system of linear equations A * X = B where A isasymmetric tridiagonal
matrix

csttrf - csttrf - compute the factorization of acomplex symmetric tridiagonal matrix A using the Bunch-Kaufman diagonal
pivoting method

csttrs - csttrs - computes the solution to a complex system of linear equationsA * X =B

cswap - cswap - Exchange vectors x and y.

csycon - csycon - estimate the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A using
the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF

csymm - csymm - perform one of the matrix-matrix operations C := alpha* A*B + beta* C or C := alpha*B* A + beta*C

csyr2k - csyr2k - perform one of the symmetric rank 2k operations C := apha* A*B' + alpha*B*A’ + beta*C or C :=
apha*A*B + alpha*B™* A + beta*C

csyrfs - csyrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite, and provides error bounds and backward error estimates for the solution

Page 15 of 4153

csyrk - csyrk - perform one of the symmetric rank k operations C := alpha*A*A' + beta* C or C := alpha*A™* A + beta*C

Csysv - csysv - compute the solution to a complex system of linear equations A * X = B,

CSysvx - csysvx - use the diagonal pivoting factorization to compute the solution to a complex system of linear equations A
* X =B,

csytf2 - csytf2 - compute the factorization of acomplex symmetric matrix A using the Bunch-Kaufman diagonal pivoting
method

csytrf - csytrf - compute the factorization of acomplex symmetric matrix A using the Bunch-Kaufman diagonal pivoting
method

csytri - csytri - compute the inverse of acomplex symmetric indefinite matrix A using the factorization A = U*D*U**T or
A =L*D*L**T computed by CSYTRF

Csytrs - csytrs - solve a system of linear equations A*X = B with acomplex symmetric matrix A using the factorization A
=U*D*U**T or A = L*D*L**T computed by CSY TRF

ctbcon - ctbcon - estimate the reciprocal of the condition number of atriangular band matrix A, in either the 1-norm or the
infinity-norm

ctbmv - ctbmv - perform one of the matrix-vector operations x := A*x, or x := A™*x, or X := conjg(A")*x

ctbrfs - ctbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular band coefficient matrix

ctbsv - ctbsv - solve one of the systems of equations A*x = b, or A*x = b, or conjg(A')*x =b

ctbtrs - ctbtrs - solve atriangular system of theform A * X =B, A**T* X =B, or A**H * X =B,

ctgevc - ctgeve - compute some or al of the right and/or left generalized eigenvectors of a pair of complex upper triangular
matrices (A,B)

ctgexc - ctgexc - reorder the generalized Schur decomposition of acomplex matrix pair (A,B), using an unitary

equivalence transformation (A, B) :=Q* (A, B) * Z', so that the diagonal block of (A, B) with row index IFST is moved
torow ILST

ctgsen - ctgsen - reorder the generalized Schur decomposition of acomplex matrix pair (A, B) (in terms of an unitary

equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appearsin the leading diagonal
blocks of the pair (A,B)

ctgsia- ctgsja- compute the generalized singular value decomposition (GSV D) of two complex upper triangular (or
trapezoidal) matrices A and B

ctgsna - ctgsna - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of amatrix pair (A,

Page 16 of 4153

B)

ctgsyl - ctgsyl - solve the generalized Sylvester equation

ctpeon - ctpcon - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or
theinfinity-norm

ctpmv - ctpmv - perform one of the matrix-vector operations x := A*x, or x := A*x, or X := conjg(A")*x

ctprfs - ctprfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular packed coefficient matrix

ctpsv - ctpsv - solve one of the systems of equations A*x = b, or A*x =b, or conjg(A')*x=b

ctptri - ctptri - compute the inverse of a complex upper or lower triangular matrix A stored in packed format

ctptrs - ctptrs - solve atriangular system of theform A * X =B, A**T* X =B, or A**H* X =B,

ctrans - ctrans - transpose and scal e source matrix

ctrcon - ctrcon - estimate the reciprocal of the condition number of atriangular matrix A, in either the 1-norm or the
infinity-norm

ctrevc - ctreve - compute some or all of the right and/or left eigenvectors of a complex upper triangular matrix T

ctrexc - ctrexc - reorder the Schur factorization of a complex matrix A = Q*T*Q**H, so that the diagonal element of T
with row index IFST is moved to row ILST

ctrmm - ctrmm - perform one of the matrix-matrix operations B := alpha*op(A)*B, or B := alpha*B*op(A) where alpha
isascalar, B isan m by n matrix, A isaunit, or non-unit, upper or lower triangular matrix and op(A) isone of op(A) =
Aorop(A)=A'orop(A)=conjg(A'")

ctrmv - ctrmv - perform one of the matrix-vector operations x := A*x, or X := A*X, or x := conjg(A")*x

ctrrfs - ctrrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular coefficient matrix

ctrsen - ctrsen - reorder the Schur factorization of acomplex matrix A = Q* T*Q**H, so that a selected cluster of

eigenvalues appears in the leading positions on the diagonal of the upper triangular matrix T, and the leading columns of Q
form an orthonormal basis of the corresponding right invariant subspace

ctrsm - ctrsm - solve one of the matrix equations op(A)* X = alpha*B, or X*op(A) = apha*B

ctrsna - ctrsna - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex
upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary)

Page 17 of 4153

ctrsv - ctrsv - solve one of the systems of equations A*x = b, or A*x = b, or conjg(A")*x =b

ctrsyl - ctrsyl - solve the complex Sylvester matrix equation

ctrti2 - ctrti2 - compute the inverse of a complex upper or lower triangular matrix

ctrtri - ctrtri - compute the inverse of acomplex upper or lower triangular matrix A

ctrtrs - ctrtrs - solve atriangular system of theform A * X =B, A**T* X =B, or A**H* X =B,

ctzrdf - ctzrgf - routine is deprecated and has been replaced by routine CTZRZF

ctzrzf - ctzrzf - reduce the M-by-N (M<=N) complex upper trapezoidal matrix A to upper triangular form by means of
unitary transformations

cung2l - cung2l - generate an m by n complex matrix Q with orthonormal columns,

cungzr - cung2r - generate an m by n complex matrix Q with orthonormal columns,

cungbr - cungbr - generate one of the complex unitary matrices Q or P**H determined by CGEBRD when reducing a
complex matrix A to bidiagonal form

cunghr - cunghr - generate a complex unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of
order N, asreturned by CGEHRD

cungl2 - cungl2 - generate an m-by-n complex matrix Q with orthonormal rows,

cunglq - cunglq - generate an M-by-N complex matrix Q with orthonormal rows,

cungdl - cunggl - generate an M-by-N complex matrix Q with orthonormal columns,

cungar - cunggr - generate an M-by-N complex matrix Q with orthonormal columns,

cungr2 - cungr2 - generate an m by n complex matrix Q with orthonormal rows,

cungrg - cungrg - generate an M-by-N complex matrix Q with orthonormal rows,

cungtr - cungtr - generate a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors of order
N, as returned by CHETRD

cunmbr - cunmbr - VECT ='Q', CUNMBR overwrites the general complex M-by-N matrix C with SIDE ='L' SIDE ='R’'
TRANS='N'

Page 18 of 4153

cunmhr - cunmhr - overwrite the general complex M-by-N matrix C with SIDE="L"' SIDE ='R' TRANS ="'N'

cunml2 - cunml2 - overwrite the general complex m-by-n matrix C with Q * Cif SIDE ='L' and TRANS ='N’, or Q* Ciif
SIDE='L"and TRANS="'C',or C* Qif SSDE="R"and TRANS='N',or C* Q' if SIDE ='R' and TRANS="C/,

cunmlg - cunmiq - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS ="N'

cunmgl - cunmg| - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS ="'N'

cunmar - cunmgr - overwrite the general complex M-by-N matrix C with SIDE="L"' SIDE ='R' TRANS ="'N'

cunmr2 - cunmr2 - overwrite the general complex m-by-n matrix C with Q * Cif SIDE ='L' and TRANS ='N', or Q* Cif
SIDE="L"and TRANS="'C',or C* Qif SSDE="R"and TRANS='N',or C* Q' if SIDE ='R'and TRANS="C/,

cunmrg - cunmrg - overwrite the general complex M-by-N matrix C with SIDE="L"' SIDE ='R' TRANS ="'N'

cunmrz - cunmrz - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS ="'N'

cunmtr - cunmtr - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

cupgtr - cupgtr - generate a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors H(i) of
order n, asreturned by CHPTRD using packed storage

cupmtr - cupmtr - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

cvbrmm - cvbrmm - variable block sparse row format matrix-matrix multiply

cvbrsm - cvbrsm - variable block sparse row format triangular solve

cvmul - cvmul - compute the scaled product of complex vectors

dasum - dasum - Return the sum of the absolute values of a vector x.

daxpy - daxpy - computey :=apha* x +y

daxpyi - daxpyi - Computey :=adpha* x +y

dbcomm - dbcomm - block coordinate matrix-matrix multiply

dbdimm - dbdimm - block diagonal format matrix-matrix multiply

dbdism - dbdism - block diagonal format triangular solve

Page 19 of 4153

dbdsdc - dbdsdc - compute the singular value decomposition (SVD) of areal N-by-N (upper or lower) bidiagonal matrix B

dbdsar - dbdsgr - compute the singular value decomposition (SVD) of areal N-by-N (upper or lower) bidiagonal matrix B.

dbelmm - dbelmm - block Ellpack format matrix-matrix multiply

dbelsm - dbelsm - block Ellpack format triangular solve

dbscmm - dbscmm - block sparse column matrix-matrix multiply

dbscsm - dbscsm - block sparse column format triangular solve

dbsrmm - dbsrmm - block sparse row format matrix-matrix multiply

dbsrsm - dbsrsm - block sparse row format triangular solve

denvcor - denveor - compute the convolution or correlation of real vectors

denveor?2 - denveor2 - compute the convolution or correlation of real matrices

dcoomm - dcoomm - coordinate matrix-matrix multiply

dcopy - dcopy - Copy xtoy

dcosqgb - dcosgb - synthesize a Fourier sequence from its representation in terms of a cosine series with odd wave numbers.

The COSQ operations are unnormalized inverses of themselves, so a call to COSQF followed by acall to COSQB will
multiply the input sequence by 4 * N.

dcosqf - decosgf - compute the Fourier coefficientsin a cosine series representation with only odd wave numbers. The

COSQ operations are unnormalized inverses of themselves, so a call to COSQF followed by a call to COSQB will
multiply the input sequence by 4 * N.

dcosqi - dcosqi - initialize the array WSAVE, which is used in both COSQF and COSQB.

dcost - dcost - compute the discrete Fourier cosine transform of an even sequence. The COST transforms are unnormalized
inverses of themselves, so acall of COST followed by another call of COST will multiply the input sequence by 2 * (N-1).

dcosti - dcosti - initialize the array WSAVE, which isused in COST.

dcscmm - descmm - compressed sparse column format matrix-matrix multiply

dcscsm - descsm - compressed sparse column format triangular solve

Page 20 of 4153

dcsrmm - desrmm - compressed sparse row format matrix-matrix multiply

dcsrsm - desrsm - compressed sparse row format triangular solve

ddiamm - ddiamm - diagonal format matrix-matrix multiply

ddiasm - ddiasm - diagonal format triangular solve

ddisna - ddisna - compute the reciprocal condition numbers for the eigenvectors of areal symmetric or complex Hermitian
matrix or for the left or right singular vectors of a general m-by-n matrix

ddot - ddot - compute the dot product of two vectorsx and y.

ddoti - ddoti - Compute the indexed dot product.

dellmm - dellmm - Ellpack format matrix-matrix multiply

dellsm - dellsm - Ellpack format triangular solve

dezftb - dezftb - computes a periodic sequence from its Fourier coefficients. DEZFTB isasimplified but slower version of
DFFTB.

dezftf - dezftf - computes the Fourier coefficients of a periodic sequence. DEZFTF isasimplified but slower version of
DFFTF.

dezfti - dezfti - initializes the array WSAVE, which is used in both DEZFTF and DEZFTB.

dfft2b - dfft2b - compute a periodic sequence from its Fourier coefficients. The DFFT operations are unnormalized, so a
call of DFFT2F followed by acall of DFFT2B will multiply the input sequence by M*N.

dfft2f - dfft2f - compute the Fourier coefficients of a periodic sequence. The DFFT operations are unnormalized, so a call
of DFFT2F followed by acall of DFFT2B will multiply the input sequence by M*N.

dfft2i - dfft2i - initialize the array WSAVE, which is used in both the forward and backward transforms.

dfft3b - dfft3b - compute a periodic sequence from its Fourier coefficients. The DFFT operations are unnormalized, so a
call of DFFT3F followed by acall of DFFT3B will multiply the input sequence by M*N*K.

dfft3f - dfft3f - compute the Fourier coefficients of areal periodic sequence. The DFFT operations are unnormalized, so a
call of DFFT3F followed by acall of DFFT3B will multiply the input sequence by M*N*K.

dfft3i - dfft3i - initialize the array WSAVE, which is used in both DFFT3F and DFFT3B.

dfftb - dfftb - compute a periodic sequence from its Fourier coefficients. The DFFT operations are unnormalized, so a call

Page 21 of 4153

of DFFTF followed by acall of DFFTB will multiply the input sequence by N.

dfftf - dfftf - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so acall of
DFFTF followed by acall of DFFTB will multiply the input sequence by N.

dffti - dffti - initialize the array WSAVE, which is used in both DFFTF and DFFTB.

dfftopt - dfftopt - compute the length of the closest fast FFT

dfftz - dfftz - initialize the trigonometric weight and factor tables or compute the forward Fast Fourier Transform of a
double precision sequence.

dfftz2 - dfftz2 - initialize the trigonometric weight and factor tables or compute the two-dimensional forward Fast Fourier
Transform of atwo-dimensional double precision array.

dfftz3 - dfftz3 - initialize the trigonometric weight and factor tables or compute the three-dimensional forward Fast Fourier
Transform of athree-dimensional double complex array.

dfftzm - dfftzm - initialize the trigonometric weight and factor tables or compute the one-dimensional forward Fast Fourier
Transform of a set of double precision data sequences stored in atwo-dimensional array.

dgbbrd - dgbbrd - reduce areal general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation

dgbcon - dgbcon - estimate the reciprocal of the condition number of areal general band matrix A, in either the 1-norm or
theinfinity-norm,

dgbequ - dgbequ - compute row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its
condition number

dgbmv - dgbmv - perform one of the matrix-vector operationsy := alpha*A*x + beta*y or y := apha*A"*x + beta*y

dgbrfs - dgbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is banded, and
provides error bounds and backward error estimates for the solution

dgbsv - dgbsv - compute the solution to areal system of linear equations A * X = B, where A isaband matrix of order N
with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices

dgbsvx - dgbsvx - usethe LU factorization to compute the solution to areal system of linear equations A * X =B, A**T *
X =B,or A**H* X =B,

dgbtf2 - dgbtf2 - compute an LU factorization of areal m-by-n band matrix A using partial pivoting with row interchanges

dabtrf - dgbtrf - compute an LU factorization of areal m-by-n band matrix A using partial pivoting with row interchanges

dgbtrs - dgbtrs - solve a system of linear equations A * X =B or A'* X = B with agenera band matrix A usingthe LU

Page 22 of 4153

factorization computed by DGBTRF

dgebak - dgebak - form the right or left eigenvectors of areal general matrix by backward transformation on the computed
eigenvectors of the balanced matrix output by DGEBAL

dgebal - dgebal - balance a general real matrix A

dgebrd - dgebrd - reduce a general real M-by-N matrix A to upper or lower bidiagonal form B by an orthogonal
transformation

dgecon - dgecon - estimate the reciprocal of the condition number of ageneral real matrix A, in either the 1-norm or the
infinity-norm, using the LU factorization computed by DGETRF

dgeequ - dgeequ - compute row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition
number

dgees - dgees - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and,
optionally, the matrix of Schur vectors Z

dgeesx - dgeesx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and,
optionally, the matrix of Schur vectors Z

dgeev - dgeev - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right
eigenvectors

dgeevx - dgeevx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the |eft and/or
right eigenvectors

dgegs - dgegs - routine is deprecated and has been replaced by routine SGGES

dgeqv - dgegv - routine is deprecated and has been replaced by routine SGGEV

dgehrd - dgehrd - reduce area general matrix A to upper Hessenberg form H by an orthogonal similarity transformation

dgeldf - dgelqf - compute an LQ factorization of areal M-by-N matrix A

dgels - dgels - solve overdetermined or underdetermined real linear systemsinvolving an M-by-N matrix A, or its
transpose, using a QR or LQ factorization of A

dgelsd - dgelsd - compute the minimum-norm solution to areal linear least squares problem

dgelss - dgelss - compute the minimum norm solution to areal linear least squares problem

dgelsx - dgelsx - routine is deprecated and has been replaced by routine DGELSY

Page 23 of 4153

dgelsy - dgelsy - compute the minimum-norm solution to areal linear least squares problem

dgemm - dgemm - perform one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C

dgemv - dgemv - perform one of the matrix-vector operationsy := alpha* A*x + beta*y or y := alpha* A*x + beta*y

dgedlf - dgeqlf - compute a QL factorization of areal M-by-N matrix A

dgeqp3 - dgegp3 - compute a QR factorization with column pivoting of a matrix A

dgeqpf - dgeqpf - routine is deprecated and has been replaced by routine DGEQP3

daeqrf - dgeqrf - compute a QR factorization of areal M-by-N matrix A

dger - dger - perform the rank 1 operation A := apha*x*y' + A

dgerfs - dgerfs - improve the computed solution to a system of linear equations and provides error bounds and backward
error estimates for the solution

dgerdf - dgergf - compute an RQ factorization of areal M-by-N matrix A

dgesdd - dgesdd - compute the singular value decomposition (SVD) of areal M-by-N matrix A, optionally computing the
left and right singular vectors

dgesv - dgesv - compute the solution to areal system of linear equations A * X =B,

dgesvd - dgesvd - compute the singular value decomposition (SVD) of areal M-by-N matrix A, optionally computing the
left and/or right singular vectors

dgesvx - dgesvx - use the LU factorization to compute the solution to areal system of linear equationsA * X = B,

dagetf2 - dgetf2 - compute an LU factorization of ageneral m-by-n matrix A using partial pivoting with row interchanges

dgetrf - dgetrf - compute an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges

daetri - dgetri - compute the inverse of amatrix using the LU factorization computed by DGETRF

dgetrs - dgetrs - solve a system of linear equations A * X =B or A'* X = B with ageneral N-by-N matrix A using the LU
factorization computed by DGETRF

dagbak - dggbak - form the right or left eigenvectors of areal generalized eigenvalue problem A*x = lambda* B*x, by
backward transformation on the computed eigenvectors of the balanced pair of matrices output by DGGBAL

Page 24 of 4153

dggbal - dggbal - balance a pair of general real matrices (A,B)

dgges - dgges - compute for apair of N-by-N real nonsymmetric matrices (A,B),

dggesx - dggesx - compute for apair of N-by-N real nonsymmetric matrices (A,B), the generalized eigenvalues, the real
Schur form (S,T), and,

dggev - dggev - compute for apair of N-by-N real nonsymmetric matrices (A,B)

dggevx - dggevx - compute for apair of N-by-N real nonsymmetric matrices (A,B)

dggalm - dggglm - solve a general Gauss-Markov linear model (GLM) problem

daghrd - dgghrd - reduce a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal
transformations, where A is ageneral matrix and B is upper triangular

dgglse - dgglse - solve the linear equality-constrained least squares (L SE) problem

dagarf - dggarf - compute a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B.

daardf - dggrgf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B

dagsvd - dggsvd - compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N
real matrix B

dgagsvp - dggsvp - compute orthogonal matrices U, V and Q such that N-K-L K L U*A*Q =K (0A12 A13) if M-K-L >=
0

dgssco - dgssco - General sparse solver condition number estimate.

dgssda - dgssda - Deallocate working storage for the general sparse solver.

dgssfa - dgssfa - General sparse solver numeric factorization.

dgssfs - dgssfs - Genera sparse solver one call interface.

dgssin - dgssin - Initialize the general sparse solver.

dgssor - dgssor - General sparse solver ordering and symbolic factorization.

dgssps - dgssps - Print general sparse solver statics.

dgssrp - dgssrp - Return permutation used by the general sparse solver.

Page 25 of 4153

dgssdl - dgsssl - Solve routine for the general sparse solver.

dgssuo - dgssuo - User supplied permutation for ordering used in the general sparse solver.

dgtcon - dgtcon - estimate the reciprocal of the condition number of areal tridiagonal matrix A using the LU factorization
as computed by DGTTRF

dgthr - dgthr - Gathers specified elements fromy into x.

dagthrz - dgthrz - Gather and zero.

dgtrfs - dgtrfs - improve the computed solution to a system of linear equations when the coefficient matrix is tridiagonal,
and provides error bounds and backward error estimates for the solution

dgtsv - dgtsv - solve the equation A*X = B,

dgtsvx - dgtsvx - use the LU factorization to compute the solution to areal system of linear equations A * X =B or A**T
* X =B,

dattrf - dgttrf - compute an LU factorization of areal tridiagonal matrix A using elimination with partial pivoting and row
interchanges

dgttrs - dgttrs - solve one of the systems of equations A*X =B or A*X =B,

dhgegz - dhgegz - implement a single-/double-shift version of the QZ method for finding the generalized eigenvalues w(j)=
(ALPHAR(j) +i* ALPHAI(j))/BETAR(j) of the equation det(A-w(i) B) = 0 In addition, the pair A,B may be reduced to
generalized Schur form

dhsein - dhsein - use inverse iteration to find specified right and/or left eigenvectors of area upper Hessenberg matrix H

dhseqr - dhsegr - compute the eigenvalues of areal upper Hessenberg matrix H and, optionally, the matrices T and Z from

the Schur decompositionH =Z T Z**T, where T is an upper quasi-triangular matrix (the Schur form), and Z isthe
orthogonal matrix of Schur vectors

diadmm - djadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)

diadrp - djadrp - right permutation of ajagged diagonal matrix

diadsm - djadsm - Jagged-diagonal format triangular solve

diagtf - dlagtf - factorize the matrix (T-lambda* 1), where T isan n by n tridiagonal matrix and lambdaisascaar, as T-
lambda*| = PLU

dlamrg - dlamrg - will create a permutation list which will merge the elements of A (which is composed of two

Page 26 of 4153

independently sorted sets) into asingle set which is sorted in ascending order

dlarz - dlarz - applies areal elementary reflector H to areal M-by-N matrix C, from either the left or the right

dlarzb - dlarzb - applies areal block reflector H or itstranspose H** T to areal distributed M-by-N C from the |eft or the
right

dlarzt - diarzt - form the triangular factor T of areal block reflector H of order > n, which is defined as a product of k
elementary reflectors

dlasrt - dlasrt - the numbersin D in increasing order (if ID ='I") or in decreasing order (if ID ='D")

diatzm - dlatzm - routine is deprecated and has been replaced by routine SORMRZ

dnrm2 - dnrm2 - Return the Euclidian norm of a vector.

dopgtr - dopgtr - generate areal orthogonal matrix Q which is defined as the product of n-1 elementary reflectors H(i) of
order n, asreturned by SSPTRD using packed storage

dopmitr - dopmtr - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS ="N'

dorg2l - dorg2l - generate an m by n real matrix Q with orthonormal columns,

dorg2r - dorg2r - generate an m by n real matrix Q with orthonormal columns,

dorgbr - dorgbr - generate one of the real orthogonal matrices Q or P** T determined by SGEBRD when reducing areal
matrix A to bidiagona form

dorghr - dorghr - generate areal orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of
order N, asreturned by SGEHRD

dorgl2 - dorgl2 - generate an m by n real matrix Q with orthonormal rows,

dorglq - dorglq - generate an M-by-N real matrix Q with orthonormal rows,

dorgql - dorgql - generate an M-by-N real matrix Q with orthonormal columns,

dorgar - dorggr - generate an M-by-N real matrix Q with orthonormal columns,

dorgr2 - dorgr2 - generate an m by n real matrix Q with orthonormal rows,

dorgrg - dorgrq - generate an M-by-N real matrix Q with orthonormal rows,

Page 27 of 4153

dorgtr - dorgtr - generate area orthogona matrix Q which is defined as the product of n-1 elementary reflectors of order
N, asreturned by SSYTRD

dormbr - dormbr - VECT ='Q’', DORMBR overwrites the general real M-by-N matrix C with SIDE ='L' SIDE = 'R’
TRANS="N'

dormhr - dormhr - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE = 'R' TRANS ="N'

dormlq - dormlq - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

dormdl - dormg| - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

dormar - dormgr - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

dormrg - dormrq - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE = 'R' TRANS="N'

dormrz - dormrz - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

dormtr - dormtr - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

dpbcon - dpbcon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric positive definite
band matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF

dpbequ - dpbequ - compute row and column scalings intended to equilibrate a symmetric positive definite band matrix A
and reduce its condition number (with respect to the two-norm)

dpbrfs - dpbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite and banded, and provides error bounds and backward error estimates for the solution

dpbstf - dpbstf - compute a split Cholesky factorization of areal symmetric positive definite band matrix A

dpbsv - dpbsv - compute the solution to areal system of linear equations A * X =B,

dpbsvx - dpbsvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to areal system of
linear equations A * X =B,

dpbtf2 - dpbtf2 - compute the Cholesky factorization of areal symmetric positive definite band matrix A

dpbtrf - dpbtrf - compute the Cholesky factorization of areal symmetric positive definite band matrix A

dpbtrs - dpbtrs - solve a system of linear equations A*X = B with a symmetric positive definite band matrix A using the
Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF

dpocon - dpocon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric positive definite

Page 28 of 4153

matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF

dpoequ - dpoequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A and
reduce its condition number (with respect to the two-norm)

dporfs - dporfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite,

dposv - dposv - compute the solution to area system of linear equations A * X =B,

dposvx - dposvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to areal system of
linear equations A * X =B,

dpotf2 - dpotf2 - compute the Cholesky factorization of areal symmetric positive definite matrix A

dpotrf - dpotrf - compute the Cholesky factorization of areal symmetric positive definite matrix A

dpotri - dpotri - compute the inverse of areal symmetric positive definite matrix A using the Cholesky factorization A =
U**T*U or A = L*L**T computed by DPOTRF

dpotrs - dpotrs - solve a system of linear equations A* X = B with a symmetric positive definite matrix A using the
Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF

dppcon - dppcon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric positive definite
packed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPPTRF

dppequ - dppequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A in
packed storage and reduce its condition number (with respect to the two-norm)

dpprfs - dpprfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite and packed, and provides error bounds and backward error estimates for the solution

dppsv - dppsv - compute the solution to areal system of linear equationsA * X =B,

dppsvx - dppsvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to areal system of
linear equations A * X =B,

dpptrf - dpptrf - compute the Cholesky factorization of areal symmetric positive definite matrix A stored in packed format

dpptri - dpptri - compute the inverse of areal symmetric positive definite matrix A using the Cholesky factorization A =
U**T*U or A = L*L**T computed by DPPTRF

dpptrs - dpptrs - solve asystem of linear equations A* X = B with a symmetric positive definite matrix A in packed storage
using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPPTRF

Page 29 of 4153

dptcon - dptcon - compute the reciprocal of the condition number (in the 1-norm) of areal symmetric positive definite
tridiagona matrix using the factorization A = L*D*L**T or A = U**T*D*U computed by DPTTRF

dptegr - dpteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix

by first factoring the matrix using DPTTRF, and then calling DBDSQR to compute the singular values of the bidiagonal
factor

dptrfs - dptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution

dptsv - dptsv - compute the solution to areal system of linear equations A*X = B, where A isan N-by-N symmetric
positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices.

dptsvx - dptsvx - use the factorization A = L*D*L**T to compute the solution to areal system of linear equations A*X =
B, where A isan N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices

dpttrf - dpttrf - compute the L* D*L' factorization of areal symmetric positive definite tridiagonal matrix A

dpttrs - dpttrs - solve atridiagonal system of theform A * X = B using the L*D*L' factorization of A computed by
DPTTRF

dptts? - dptts2 - solve atridiagona system of the form A * X = B using the L*D* L' factorization of A computed by
DPTTRF

dqdota - dgdota - compute a double precision constant plus an extended precision constant plus the extended precision dot
product of two double precision vectorsx and y.

dqgdoti - dgdoti - compute a constant plus the extended precision dot product of two double precision vectors x and y.

drot - drot - Apply a Given's rotation constructed by SROTG.

drotg - drotg - Construct a Given's plane rotation

droti - droti - Apply an indexed Givens rotation.

drotm - drotm - Apply a Gentleman's modified Given's rotation constructed by SROTMG.

drotmg - drotmg - Construct a Gentleman's modified Given's plane rotation

dsbev - dsbev - compute al the eigenvalues and, optionally, eigenvectors of areal symmetric band matrix A

dsbevd - dsbevd - compute all the eigenvalues and, optionally, eigenvectors of areal symmetric band matrix A

dsbevx - dsbevx - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric band matrix A

Page 30 of 4153

dsbgst - dsbgst - reduce areal symmetric-definite banded generalized eigenproblem A*x = lambda* B*x to standard form
C*y = lambda*y,

dsbgv - dsbgv - compute all the eigenvalues, and optionally, the eigenvectors of areal generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)* B* x

dsbgvd - dshgvd - compute all the eigenvalues, and optionally, the eigenvectors of areal generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)* B* x

dsbgvx - dshgvx - compute selected eigenvalues, and optionally, eigenvectors of areal generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)* B* x

dsbmv - dsbmv - perform the matrix-vector operation y := alpha* A*x + beta*y

dsbtrd - dsbtrd - reduce areal symmetric band matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation

dscal - dscal - Computey := apha* y

dsctr - dsctr - Scatters elementsfrom x into y.

dsdot - dsdot - compute the double precision dot product of two single precision vectorsx and y.

dsecnd - dsecnd - return the user time for a process in seconds

dsingb - dsingb - synthesize a Fourier sequence from its representation in terms of a sine series with odd wave numbers.

The SINQ operations are unnormalized inverses of themselves, so a call to SINQF followed by acall to SINQB will
multiply the input sequence by 4 * N.

dsingf - dsingf - compute the Fourier coefficients in a sine series representation with only odd wave numbers. The SINQ

operations are unnormalized inverses of themselves, so acall to SINQF followed by acall to SINQB will multiply the
input sequence by 4 * N.

dsingi - dsingi - initialize the array X\WSAVE, which is used in both SINQF and SINQB.

dsint - dsint - compute the discrete Fourier sine transform of an odd sequence. The SINT transforms are unnormalized
inverses of themselves, so acall of SINT followed by another call of SINT will multiply the input sequence by 2 * (N+1).

dsinti - dsinti - initialize the array WSAVE, which is used in subroutine SINT.

dskymm - dskymm - Skyline format matrix-matrix multiply

dskysm - dskysm - Skyline format triangular solve

dspcon - dspeon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric packed matrix A

Page 31 of 4153

using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF

dspev - dspev - compute all the eigenvalues and, optionally, eigenvectors of areal symmetric matrix A in packed storage

dspevd - dspevd - compute all the eigenvalues and, optionally, eigenvectors of areal symmetric matrix A in packed storage

dspevx - dspevx - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric matrix A in packed
storage

dspgst - dspgst - reduce areal symmetric-definite generalized eigenproblem to standard form, using packed storage

dspgv - dspgv - compute al the eigenvalues and, optionally, the eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)* x

dspgvd - dspgvd - compute all the eigenvalues, and optionally, the eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)*x

dspgvx - dspgvx - compute selected eigenvalues, and optionally, eigenvectors of area generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)* x

dspmv - dspmv - perform the matrix-vector operation y := alpha* A*x + beta*y

dspr - dspr - perform the symmetric rank 1 operation A := apha*x*x' + A

dspr2 - dspr2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A

dsprfs - dsprfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite and packed, and provides error bounds and backward error estimates for the solution

dspsv - dspsv - compute the solution to areal system of linear equations A * X =B,

dspsvx - dspsvx - use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a

real system of linear equations A * X = B, where A isan N-by-N symmetric matrix stored in packed format and X and B
are N-by-NRHS matrices

dsptrd - dsptrd - reduce areal symmetric matrix A stored in packed form to symmetric tridiagonal form T by an orthogonal
similarity transformation

dsptrf - dsptrf - compute the factorization of areal symmetric matrix A stored in packed format using the Bunch-Kaufman
diagonal pivoting method

dsptri - dsptri - compute the inverse of areal symmetric indefinite matrix A in packed storage using the factorization A =
U*D*U**T or A = L*D*L**T computed by DSPTRF

dsptrs - dsptrs - solve a system of linear equations A*X = B with areal symmetric matrix A stored in packed format using

Page 32 of 4153

the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF

dstebz - dstebz - compute the eigenvalues of a symmetric tridiagonal matrix T

dstedc - dstedc - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide
and conquer method

dstegr - dstegr - () Compute T-sigma_i=L_i D_i L_i*T, suchthat L_i D_i L_i*T isarelatively robust representation

dstein - dstein - compute the eigenvectors of areal symmetric tridiagonal matrix T corresponding to specified eigenvalues,
using inverse iteration

dstegr - dsteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit
QL or QR method

dsterf - dsterf - compute all eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL
or QR algorithm

dstev - dstev - compute all eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix A

dstevd - dstevd - compute all eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix

dstevr - dstevr - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix T

dstevx - dstevx - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix A

dstsv - dstsv - compute the solution to a system of linear equations A * X = B where A is a symmetric tridiagonal matrix

dsttrf - dsttrf - compute the factorization of a symmetric tridiagonal matrix A using the Bunch-Kaufman diagonal pivoting
method

dsttrs - dsttrs - computes the solution to areal system of linear equations A * X =B

dswap - dswap - Exchange vectorsx and y.

dsycon - dsycon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric matrix A using the
factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF

dsyev - dsyev - compute all eigenvalues and, optionally, eigenvectors of areal symmetric matrix A

dsyevd - dsyevd - compute all eigenvalues and, optionally, eigenvectors of areal symmetric matrix A

dsyevr - dsyevr - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix T

Page 33 of 4153

dsyevx - dsyevx - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric matrix A

dsygs? - dsygs? - reduce areal symmetric-definite generalized eigenproblem to standard form

dsygst - dsygst - reduce areal symmetric-definite generalized eigenproblem to standard form

dsygv - dsygv - compute all the eigenvalues, and optionally, the eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A*Bx=(lambda)*x, or B* A*x=(lambda)*x

dsygvd - dsygvd - compute all the eigenvalues, and optionally, the eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)* x

dsygvx - dsygvx - compute selected eigenvalues, and optionally, eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)*x

dsymm - dsymm - perform one of the matrix-matrix operations C := alpha* A*B + beta* C or C := alpha*B*A + beta*C

dsymv - dsymv - perform the matrix-vector operation y := alpha* A*x + beta*y

dsyr - dsyr - perform the symmetric rank 1 operation A := apha*x*x' + A

dsyr2 - dsyr2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A

dsyr2k - dsyr2k - perform one of the symmetric rank 2k operations C := alpha* A*B' + alpha*B*A' + beta*C or C :=
apha*A*B + alpha*B™* A + beta*C

dsyrfs - dsyrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite, and provides error bounds and backward error estimates for the solution

dsyrk - dsyrk - perform one of the symmetric rank k operations C := alpha* A*A' + beta* C or C := alpha*A™ A + beta*C

dsysv - dsysv - compute the solution to areal system of linear equations A * X =B,

dsysvx - dsysvx - use the diagonal pivoting factorization to compute the solution to area system of linear equations A * X
= B’

dsytd2 - dsytd2 - reduce areal symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation

dsytf2 - dsytf2 - compute the factorization of areal symmetric matrix A using the Bunch-Kaufman diagonal pivoting
method

dsytrd - dsytrd - reduce areal symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity
transformation

Page 34 of 4153

dsytrf - dsytrf - compute the factorization of areal symmetric matrix A using the Bunch-Kaufman diagona pivoting
method

dsytri - dsytri - compute the inverse of areal symmetric indefinite matrix A using the factorization A = U*D*U**T or A =
L*D*L**T computed by DSYTRF

dsytrs - dsytrs - solve a system of linear equations A*X = B with areal symmetric matrix A using the factorization A =
U*D*U**T or A = L*D*L**T computed by DSY TRF

dtbcon - dtbcon - estimate the reciprocal of the condition number of atriangular band matrix A, in either the 1-norm or the
infinity-norm

dtbmv - dtbmv - perform one of the matrix-vector operations x := A*x, or X := A"*X

dtbrfs - dtbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular band coefficient matrix

dtbsv - dthsv - solve one of the systems of equations A*x = b, or A*x =b

dtbtrs - dtbtrs - solve atriangular system of theform A * X =B or A**T * X =B,

dtgevc - dtgevc - compute some or all of the right and/or |eft generalized eigenvectors of a pair of real upper triangular
matrices (A,B)

dtgexc - dtgexc - reorder the generalized real Schur decomposition of areal matrix pair (A,B) using an orthogonal
equivalence transformation (A, B) =Q* (A, B) * Z',

dtgsen - dtgsen - reorder the generalized real Schur decomposition of areal matrix pair (A, B) (in terms of an orthonormal

equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appearsin the leading diagonal
blocks of the upper quasi-triangular matrix A and the upper triangular B

dtgsja - dtgsia - compute the generalized singular value decomposition (GSVD) of two real upper triangular (or
trapezoidal) matrices A and B

dtgsna - dtgsna - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of amatrix pair (A,

B) in generalized real Schur canonical form (or of any matrix pair (Q*A*Z', Q*B*Z'") with orthogonal matrices Q and Z,
where Z' denotes the transpose of Z

dtgsyl - dtgsy! - solve the generalized Sylvester equation

dtpcon - dtpcon - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or
theinfinity-norm

dtpmv - dtpmv - perform one of the matrix-vector operations x := A*x, or X := A*X

dtprfs - dtprfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a

Page 35 of 4153

triangular packed coefficient matrix

dtpsv - dtpsv - solve one of the systems of equations A*x = b, or A*x =b

dtptri - dtptri - compute the inverse of area upper or lower triangular matrix A stored in packed format

dtptrs - dtptrs - solve atriangular system of theform A * X =B or A**T * X =B,

dtrans - dtrans - transpose and scale source matrix

dtrcon - dtrcon - estimate the reciprocal of the condition number of atriangular matrix A, in either the 1-norm or the
infinity-norm

dtrevc - dtrevc - compute some or al of the right and/or left eigenvectors of areal upper quasi-triangular matrix T

dtrexc - dtrexc - reorder the real Schur factorization of areal matrix A = Q*T*Q** T, so that the diagonal block of T with
row index IFST is moved to row ILST

dtrmm - dtrmm - perform one of the matrix-matrix operations B := apha*op(A)*B, or B := alpha*B*op(A)

dtrmv - dtrmv - perform one of the matrix-vector operations x := A*x, or X := A" x

dtrrfs - dtrrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular coefficient matrix

dtrsen - dtrsen - reorder the real Schur factorization of areal matrix A = Q*T*Q** T, so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T,

dtrsm - dtrsm - solve one of the matrix equations op(A)*X = apha*B, or X*op(A) = alpha*B

dtrsna - dtrsna - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of areal upper
quasi-triangular matrix T (or of any matrix Q* T*Q** T with Q orthogonal)

dtrsv - dtrsv - solve one of the systems of equations A*x = b, or A*x=b

dtrsyl - dtrsyl - solve the real Sylvester matrix equation

dtrti2 - dtrti2 - compute the inverse of areal upper or lower triangular matrix

dtrtri - dtrtri - compute the inverse of areal upper or lower triangular matrix A

dtrtrs - dtrtrs - solve atriangular system of theform A * X =B or A**T * X =B,

Page 36 of 4153

dtzrgf - dtzrgf - routineis deprecated and has been replaced by routine STZRZF

dtzrzf - dtzrzf - reduce the M-by-N (M<=N) real upper trapezoidal matrix A to upper triangular form by means of
orthogonal transformations

dvbrmm - dvbrmm - variable block sparse row format matrix-matrix multiply

dvbrsm - dvbrsm - variable block sparse row format triangular solve

dwiener - dwiener - perform Wiener deconvolution of two signals

dzasum - dzasum - Return the sum of the absolute values of a vector x.

dznrm2 - dznrm2 - Return the Euclidian norm of a vector.

ezfftb - ezfftb - computes a periodic sequence from its Fourier coefficients. EZFFTB is asimplified but slower version of
RFFTB.

ezfftf - ezfftf - computes the Fourier coefficients of a periodic sequence. EZFFTF isasimplified but slower version of
RFFTF.

ezffti - ezffti - initializes the array WSAVE, which isused in both EZFFTF and EZFFTB.

fft - fft - Fast Fourier transform subroutines

icamax - icamax - return the index of the element with largest absolute value.

idamax - idamax - return the index of the element with largest absolute value.

ilaenv - ilaenv - The name of the calling subroutine, in either upper case or lower case.

isamax - isamax - return the index of the element with largest absolute value.

izamax - izamax - return the index of the element with largest absolute value.

Isame - Isame - returns .TRUE. if CA isthe same letter as CB regardless of case

rfft2b - rfft2b - compute a periodic sequence from its Fourier coefficients. The RFFT operations are unnormalized, so a
call of RFFT2F followed by acall of RFFT2B will multiply the input sequence by M*N.

rfft2f - rfft2f - compute the Fourier coefficients of a periodic sequence. The RFFT operations are unnormalized, so a call
of RFFT2F followed by acall of RFFT2B will multiply the input sequence by M*N.

Page 37 of 4153

rfft2i - rfft2i - initialize the array WSAVE, which is used in both the forward and backward transforms.

rfft3b - rfft3b - compute a periodic sequence from its Fourier coefficients. The RFFT operations are unnormalized, so a
call of RFFT3F followed by acall of RFFT3B will multiply the input sequence by M*N*K.

rfft3f - rfft3f - compute the Fourier coefficients of areal periodic sequence. The RFFT operations are unnormalized, so a
call of RFFT3F followed by acall of RFFT3B will multiply the input sequence by M*N*K.

rfft3i - rfft3i - initialize the array WSAVE, which is used in both RFFT3F and RFFT3B.

rfftb - rfftb - compute a periodic sequence from its Fourier coefficients. The RFFT operations are unnormalized, so acall
of RFFTF followed by acall of RFFTB will multiply the input sequence by N.

rfftf - rfftf - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so acall of
RFFTF followed by a call of RFFTB will multiply the input sequence by N.

rffti - rffti - initialize the array WSAVE, which isused in both RFFTF and RFFTB.

rfftopt - rfftopt - compute the length of the closest fast FFT

sasum - sasum - Return the sum of the absolute values of avector x.

saxpy - saxpy - computey := apha* x +y

saxpyi - saxpyi - Computey :=apha* x +y

shcomm - shcomm - block coordinate matrix-matrix multiply

shdimm - sbdimm - block diagonal format matrix-matrix multiply

shdism - shdism - block diagonal format triangular solve

shdsdc - shdsdc - compute the singular value decomposition (SVD) of areal N-by-N (upper or lower) bidiagonal matrix B

shdsqr - shdsqr - compute the singular value decomposition (SVD) of areal N-by-N (upper or lower) bidiagonal matrix B.

shelmm - shelmm - block Ellpack format matrix-matrix multiply

sbelsm - shelsm - block Ellpack format triangular solve

shscmm - shscmm - block sparse column matrix-matrix multiply

shscsm - shscsm - block sparse column format triangular solve

Page 38 of 4153

shsrmm - shsrmm - block sparse row format matrix-matrix multiply

shsrsm - shsrsm - block sparse row format triangular solve

scasum - scasum - Return the sum of the absolute values of a vector x.

scnrm2 - scnrm2 - Return the Euclidian norm of a vector.

scnveor - scnveor - compute the convolution or correlation of real vectors

scnvcor? - scnveor? - compute the convolution or correlation of real matrices

scoomm - scoomm - coordinate matrix-matrix multiply

scopy - scopy - Copy xtoy

scscmm - scscmm - compressed sparse column format matrix-matrix multiply

scscsm - scsecsm - compressed sparse column format triangular solve

scsrmm - scsrmm - compressed sparse row format matrix-matrix multiply

scsrsm - scsrsm - compressed sparse row format triangular solve

sdiamm - sdiamm - diagonal format matrix-matrix multiply

sdiasm - sdiasm - diagonal format triangular solve

sdisna - sdisna - compute the reciproca condition numbers for the eigenvectors of areal symmetric or complex Hermitian
matrix or for the left or right singular vectors of a general m-by-n matrix

sdot - sdot - compute the dot product of two vectors x and y.

sdoti - sdoti - Compute the indexed dot product.

sdsdot - sdsdot - compute a constant plus the double precision dot product of two single precision vectors x and y

second - second - return the user time for a process in seconds

sellmm - sellmm - Ellpack format matrix-matrix multiply

Page 39 of 4153

sellsm - sellsm - Ellpack format triangular solve

sfftc - sfftc - initialize the trigonometric weight and factor tables or compute the forward Fast Fourier Transform of areal
sequence.

sfftc2 - sfftc2 - initialize the trigonometric weight and factor tables or compute the two-dimensional forward Fast Fourier
Transform of atwo-dimensional real array.

sfftc3 - sfftc3 - initialize the trigonometric weight and factor tables or compute the three-dimensional forward Fast Fourier
Transform of athree-dimensional complex array.

sfftem - sfftem - initialize the trigonometric weight and factor tables or compute the one-dimensional forward Fast Fourier
Transform of aset of real data sequences stored in atwo-dimensional array.

sgbbrd - sghbrd - reduce areal general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation

sgbcon - sgbcon - estimate the reciprocal of the condition number of area general band matrix A, in either the 1-norm or
the infinity-norm,

sgbequ - sgbequ - compute row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its
condition number

sgbmv - sgbmv - perform one of the matrix-vector operationsy := alpha* A*x + beta*y or y := apha*A™*x + beta*y

sgbrfs - sgbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is banded, and
provides error bounds and backward error estimates for the solution

sgbsv - sghsv - compute the solution to areal system of linear equations A * X = B, where A is aband matrix of order N
with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices

sgbsvx - sghsvx - use the LU factorization to compute the solution to areal system of linear equations A * X = B, A**T *
X =B,or A**H* X =B,

sgbtf2 - sgbtf2 - compute an LU factorization of areal m-by-n band matrix A using partial pivoting with row interchanges

sgbtrf - sghtrf - compute an LU factorization of areal m-by-n band matrix A using partial pivoting with row interchanges

sgbtrs - sgbtrs - solve asystem of linear equations A * X =B or A'* X = B with ageneral band matrix A using the LU
factorization computed by SGBTRF

sgebak - sgebak - form the right or left eigenvectors of areal general matrix by backward transformation on the computed
eigenvectors of the balanced matrix output by SGEBAL

sgebal - sgebal - balance a general real matrix A

Page 40 of 4153

sgebrd - sgebrd - reduce a general real M-by-N matrix A to upper or lower bidiagonal form B by an orthogonal
transformation

sgecon - sgecon - estimate the reciprocal of the condition number of ageneral real matrix A, in either the 1-norm or the
infinity-norm, using the LU factorization computed by SGETRF

sgeequ - sgeequ - compute row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition
number

sgees - sgees - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and,
optionally, the matrix of Schur vectors Z

sgeesx - sgeesx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and,
optionally, the matrix of Schur vectors Z

sgeev - sgeev - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right
eigenvectors

sgeevx - sgeevx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or
right eigenvectors

Sgegs - sgegs - routine is deprecated and has been replaced by routine SGGES

SgeqV - sgegv - routine is deprecated and has been replaced by routine SGGEV

sgehrd - sgehrd - reduce areal general matrix A to upper Hessenberg form H by an orthogonal similarity transformation

sgeldf - sgelqf - compute an LQ factorization of areal M-by-N matrix A

sgels - sgels - solve overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its
transpose, using a QR or LQ factorization of A

sgelsd - sgelsd - compute the minimum-norm solution to areal linear least squares problem

sgelss - sgelss - compute the minimum norm solution to areal linear least squares problem

sgelsx - sgelsx - routine is deprecated and has been replaced by routine SGELSY

sgelsy - sgelsy - compute the minimum-norm solution to areal linear least squares problem

sgemm - sgemm - perform one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C

sgemv - sgemv - perform one of the matrix-vector operationsy := alpha* A*x + beta*y or y := alpha* A* x + beta*y

Page 41 of 4153

sgeglf - sgeglf - compute a QL factorization of areal M-by-N matrix A

sgegp3 - sgeqp3 - compute a QR factorization with column pivoting of a matrix A

sgeqpf - sgegpf - routine is deprecated and has been replaced by routine SGEQP3

sgearf - sgegrf - compute a QR factorization of areal M-by-N matrix A

sger - sger - perform the rank 1 operation A := apha*x*y' + A

sgerfs - sgerfs - improve the computed solution to a system of linear equations and provides error bounds and backward
error estimates for the solution

sgerdf - sgergf - compute an RQ factorization of area M-by-N matrix A

sgesdd - sgesdd - compute the singular value decomposition (SVD) of areal M-by-N matrix A, optionally computing the
left and right singular vectors

sgesv - sgesv - compute the solution to areal system of linear equations A * X = B,

sgesvd - sgesvd - compute the singular value decomposition (SVD) of areal M-by-N matrix A, optionally computing the
left and/or right singular vectors

sgesvx - sgesvx - use the LU factorization to compute the solution to areal system of linear equations A * X = B,

sgetf2 - sgetf2 - compute an LU factorization of ageneral m-by-n matrix A using partial pivoting with row interchanges

sgetrf - sgetrf - compute an LU factorization of a general M-by-N matrix A using partia pivoting with row interchanges

Sgetri - sgetri - compute the inverse of a matrix using the LU factorization computed by SGETRF

sgetrs - sgetrs - solve a system of linear equations A * X =B or A'* X = B with ageneral N-by-N matrix A usingthe LU
factorization computed by SGETRF

sggbak - sggbak - form the right or |eft eigenvectors of areal generalized eigenvalue problem A*x = lambda* B*x, by
backward transformation on the computed eigenvectors of the balanced pair of matrices output by SGGBAL

sggbal - sggbal - balance a pair of general real matrices (A,B)

sgges - sgges - compute for apair of N-by-N real nonsymmetric matrices (A,B),

sggesx - sggesx - compute for a pair of N-by-N real nonsymmetric matrices (A,B), the generalized eigenval ues, the real
Schur form (S,T), and,

Page 42 of 4153

sggev - sggev - compute for apair of N-by-N real nonsymmetric matrices (A,B)

sggevx - sggevx - compute for apair of N-by-N real nonsymmetric matrices (A,B)

sgaglm - sggglm - solve a general Gauss-Markov linear model (GLM) problem

sgghrd - sgghrd - reduce a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal
transformations, where A is ageneral matrix and B is upper triangular

sgalse - sgglse - solve the linear equality-constrained least squares (L SE) problem

sgaarf - sggarf - compute a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B.

sgardf - sggrqf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B

sggsvd - sggsvd - compute the generalized singular value decomposition (GSV D) of an M-by-N real matrix A and P-by-N
real matrix B

Sgasvp - sggsvp - compute orthogonal matrices U, V and Q such that N-K-L K L U*A*Q=K (0A12 A13) if M-K-L >=
0

SQSSCO - Sgssco - General sparse solver condition number estimate.

sgssda - sgssda - Deallocate working storage for the general sparse solver.

sgssfa - sgssfa - General sparse solver numeric factorization.

sgssfs - sgssfs - General sparse solver one call interface.

sgssin - sgssin - Initialize the general sparse solver.

SQSSOr - sgssor - General sparse solver ordering and symbolic factorization.

SOSSPS - SPSPS - Print general sparse solver statics.

SUSSIP - Sgssrp - Return permutation used by the general sparse solver.

sgsssl - sgsssl - Solve routine for the general sparse solver.

SQSSUO - sgssuo - User supplied permutation for ordering used in the general sparse solver.

sgtcon - sgtcon - estimate the reciprocal of the condition number of aredl tridiagonal matrix A using the LU factorization
as computed by SGTTRF

Page 43 of 4153

sgthr - sgthr - Gathers specified elements from y into x.

sgthrz - sgthrz - Gather and zero.

sgtrfs - sgtrfs - improve the computed solution to a system of linear equations when the coefficient matrix is tridiagonal,
and provides error bounds and backward error estimates for the solution

sgtsv - sgtsv - solve the equation A*X = B,

sgtsvx - sgtsvx - use the LU factorization to compute the solution to areal system of linear equations A * X =B or A**T *
X =B,

sattrf - sgttrf - compute an LU factorization of areal tridiagonal matrix A using elimination with partial pivoting and row
interchanges

sgttrs - sgttrs - solve one of the systems of equations A*X =B or A*X =B,

shgegz - shgegz - implement a single-/double-shift version of the QZ method for finding the generalized eigenvalues w(j)=
(ALPHAR(j) +i* ALPHAI(j))/BETAR(j) of the equation det(A-w(i) B) = 0 In addition, the pair A,B may be reduced to
generalized Schur form

shsein - shsein - useinverseiteration to find specified right and/or |eft eigenvectors of areal upper Hessenberg matrix H

shseqr - shsegr - compute the eigenvalues of areal upper Hessenberg matrix H and, optionally, the matrices T and Z from

the Schur decompositionH =Z T Z**T, where T is an upper quasi-triangular matrix (the Schur form), and Z isthe
orthogonal matrix of Schur vectors

singb - singb - synthesize a Fourier sequence from its representation in terms of a sine series with odd wave numbers. The

SINQ operations are unnormalized inverses of themselves, so acall to SINQF followed by a call to SINQB will multiply
the input sequence by 4 * N.

singf - singf - compute the Fourier coefficientsin a sine series representation with only odd wave numbers. The SINQ

operations are unnormalized inverses of themselves, so acall to SINQF followed by acall to SINQB will multiply the
input sequence by 4 * N.

singi - singi - initialize the array XWSAVE, which isused in both SINQF and SINQB.

sint - sint - compute the discrete Fourier sine transform of an odd sequence. The SINT transforms are unnormalized
inverses of themselves, so acall of SINT followed by another call of SINT will multiply the input sequence by 2 * (N+1).

sinti - sinti - initialize the array WSAVE, which is used in subroutine SINT.

siadmm - siadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)

siadrp - iadrp - right permutation of ajagged diagonal matrix

Page 44 of 4153

siadsm - adsm - Jagged-diagonal format triangular solve

slagtf - slagtf - factorize the matrix (T-lambda*1), where T isan n by n tridiagonal matrix and lambdaisascaar, as T-
lambda*1 = PLU

slamrg - slamrg - will create a permutation list which will merge the elements of A (which is composed of two
independently sorted sets) into asingle set which is sorted in ascending order

darz - slarz - applies area elementary reflector H to areal M-by-N matrix C, from either the left or the right

dlarzb - slarzb - applies area block reflector H or itstranspose H** T to area distributed M-by-N C from the left or the
right

slarzt - dlarzt - form the triangular factor T of areal block reflector H of order > n, which is defined as a product of k
elementary reflectors

slasrt - slasrt - the numbersin D inincreasing order (if ID ='1") or in decreasing order (if ID ='D")

slatzm - slatzm - routine is deprecated and has been replaced by routine SORMRZ

snrm2 - snrm2 - Return the Euclidian norm of a vector.

sopgtr - sopgtr - generate areal orthogona matrix Q which is defined as the product of n-1 elementary reflectors H(i) of
order n, asreturned by SSPTRD using packed storage

sopmtr - sopmtr - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

sorg2l - sorg2l - generate an m by n real matrix Q with orthonormal columns,

sorg2r - sorg2r - generate an m by nreal matrix Q with orthonormal columns,

sorgbr - sorgbr - generate one of the real orthogonal matrices Q or P**T determined by SGEBRD when reducing areal
matrix A to bidiagonal form

sorghr - sorghr - generate areal orthogona matrix Q which is defined as the product of IHI-ILO elementary reflectors of
order N, as returned by SGEHRD

sorgl2 - sorgl2 - generate an m by n real matrix Q with orthonormal rows,

sorglg - sorglq - generate an M-by-N real matrix Q with orthonormal rows,

sorgdl - sorggl - generate an M-by-N real matrix Q with orthonormal columns,

Page 45 of 4153

sorgar - sorgqr - generate an M-by-N real matrix Q with orthonormal columns,

sorgr2 - sorgr2 - generate an m by n real matrix Q with orthonormal rows,

sorgrg - sorgrq - generate an M-by-N real matrix Q with orthonormal rows,

sorgtr - sorgtr - generate areal orthogonal matrix Q which is defined as the product of n-1 elementary reflectors of order
N, asreturned by SSYTRD

sormbr - sormbr - VECT ='Q’, SORMBR overwrites the general real M-by-N matrix C with SIDE ='L' SIDE ='R’
TRANS="'N'

sormhr - sormhr - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

sormlq - sormlq - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

sormgl - sormgl - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

sormar - sormgr - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

sormrg - sormrq - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

sormrz - sormrz - overwrite the general real M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

sormtr - sormtr - overwrite the general real M-by-N matrix C with SIDE="L"' SIDE='R' TRANS ="'N’

spbcon - spbcon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric positive definite
band matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF

spbequ - spbequ - compute row and column scalings intended to equilibrate a symmetric positive definite band matrix A
and reduce its condition number (with respect to the two-norm)

spbrfs - spbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite and banded, and provides error bounds and backward error estimates for the solution

spbstf - spbstf - compute a split Cholesky factorization of areal symmetric positive definite band matrix A

spbsv - sphsv - compute the solution to areal system of linear equationsA * X =B,

spbsvx - spbsvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to areal system of
linear equations A * X =B,

spbitf2 - spbtf2 - compute the Cholesky factorization of area symmetric positive definite band matrix A

Page 46 of 4153

spbtrf - spbtrf - compute the Cholesky factorization of areal symmetric positive definite band matrix A

spbtrs - sphtrs - solve asystem of linear equations A* X = B with a symmetric positive definite band matrix A using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF

spocon - spocon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric positive definite
matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF

spoequ - spoequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A and
reduce its condition number (with respect to the two-norm)

sporfs - sporfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite,

SPosV - sposv - compute the solution to areal system of linear equations A * X =B,

SPosvx - sposvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to areal system of
linear equations A * X =B,

spotf2 - spotf2 - compute the Cholesky factorization of areal symmetric positive definite matrix A

spotrf - spotrf - compute the Cholesky factorization of areal symmetric positive definite matrix A

spotri - spotri - compute the inverse of areal symmetric positive definite matrix A using the Cholesky factorization A =
U**T*U or A = L*L**T computed by SPOTRF

spotrs - spotrs - solve a system of linear equations A* X = B with a symmetric positive definite matrix A using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF

sppcon - sppcon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric positive definite
packed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF

sppegu - sppequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A in
packed storage and reduce its condition number (with respect to the two-norm)

spprfs - spprfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite and packed, and provides error bounds and backward error estimates for the solution

Sppsv - sppsv - compute the solution to areal system of linear equations A * X =B,

SPPSVX - sppsvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to areal system of
linear equations A * X =B,

spptrf - spptrf - compute the Cholesky factorization of areal symmetric positive definite matrix A stored in packed format

Page 47 of 4153

spptri - spptri - compute the inverse of areal symmetric positive definite matrix A using the Cholesky factorization A =
U**T*U or A = L*L**T computed by SPPTRF

Spptrs - spptrs - solve a system of linear equations A*X = B with a symmetric positive definite matrix A in packed storage
using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF

sptcon - sptcon - compute the reciprocal of the condition number (in the 1-norm) of areal symmetric positive definite
tridiagona matrix using the factorization A = L*D*L**T or A = U**T*D*U computed by SPTTRF

sptear - spteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagona matrix

by first factoring the matrix using SPTTRF, and then calling SBDSQR to compute the singular values of the bidiagonal
factor

sptrfs - sptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution

sptsv - sptsv - compute the solution to areal system of linear equations A*X = B, where A isan N-by-N symmetric
positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices.

sptsvx - sptsvx - use the factorization A = L*D*L**T to compute the solution to areal system of linear equations A*X =
B, where A isan N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices

spttrf - spttrf - compute the L* D* L' factorization of areal symmetric positive definite tridiagonal matrix A

spttrs - spttrs - solve atridiagonal system of theform A * X = B using the L*D* L' factorization of A computed by SPTTRF

Sptts2 - sptts? - solve atridiagona system of the form A * X = B using the L*D* L' factorization of A computed by
SPTTRF

srot - srot - Apply a Given's rotation constructed by SROTG.

srotg - srotg - Construct a Given's plane rotation

sroti - sroti - Apply an indexed Givens rotation.

srotm - srotm - Apply a Gentleman's modified Given's rotation constructed by SROTMG.

srotmg - srotmg - Construct a Gentleman's modified Given's plane rotation

ssbev - sshev - compute al the eigenvalues and, optionally, eigenvectors of areal symmetric band matrix A

sshevd - sshevd - compute al the eigenvalues and, optionally, eigenvectors of areal symmetric band matrix A

ssbevx - sshevx - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric band matrix A

Page 48 of 4153

sshgst - sshgst - reduce areal symmetric-definite banded generalized eigenproblem A*x = lambda* B* x to standard form
C*y = lambda*y,

ssbgv - sshgv - compute al the eigenvalues, and optionally, the elgenvectors of areal generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)* B* x

sshgvd - sshgvd - compute al the eigenvalues, and optionally, the eigenvectors of areal generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)* B* x

ssbgvx - sshgvx - compute selected eigenvalues, and optionally, eigenvectors of areal generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)* B* x

ssbmv - sshmv - perform the matrix-vector operation y := alpha*A*x + beta*y

ssbtrd - ssbtrd - reduce areal symmetric band matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation

sscal - sscal - Computey :=adpha* y

SScir - ssctr - Scatters elements from x into y.

sskymm - sskymm - Skyline format matrix-matrix multiply

sskysm - sskysm - Skyline format triangular solve

sspcon - sspeon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric packed matrix A
using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF

sspev - sspev - compute al the eigenvalues and, optionally, eigenvectors of areal symmetric matrix A in packed storage

sspevd - sspevd - compute all the eigenvalues and, optionally, eigenvectors of areal symmetric matrix A in packed storage

Sspevx - sspevx - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric matrix A in packed
storage

sspast - sspgst - reduce areal symmetric-definite generalized eigenproblem to standard form, using packed storage

sspav - sspgv - compute all the eigenvalues and, optionally, the eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

sspavd - sspgvd - compute al the eigenvalues, and optionaly, the eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

SSpavx - sspgvx - compute selected eigenvalues, and optionally, eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

Page 49 of 4153

sspmv - sspmv - perform the matrix-vector operation y := alpha* A*x + beta*y

sspr - sspr - perform the symmetric rank 1 operation A := apha*x*x' + A

SSpr2 - sspr2 - perform the symmetric rank 2 operation A := alpha*x*y' + apha*y*x' + A

ssprfs - ssprfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite and packed, and provides error bounds and backward error estimates for the solution

SSpSV - sspsv - compute the solution to areal system of linear equations A * X = B,

SSPSVX - sspsvx - use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a

real system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B
are N-by-NRHS matrices

ssptrd - ssptrd - reduce areal symmetric matrix A stored in packed form to symmetric tridiagonal form T by an orthogonal
similarity transformation

ssptrf - ssptrf - compute the factorization of areal symmetric matrix A stored in packed format using the Bunch-Kaufman
diagonal pivoting method

ssptri - ssptri - compute the inverse of areal symmetric indefinite matrix A in packed storage using the factorization A =
U*D*U**T or A = L*D*L**T computed by SSPTRF

ssptrs - ssptrs - solve a system of linear equations A*X = B with areal symmetric matrix A stored in packed format using
the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF

sstebz - sstebz - compute the eigenvalues of a symmetric tridiagonal matrix T

sstedc - sstedc - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide
and conguer method

sstegr - sstegr - (a) Compute T-sigma i =L_i D_i L_i~T, suchthat L_i D_i L_i"T isarelatively robust representation

sstein - sstein - compute the eigenvectors of areal symmetric tridiagonal matrix T corresponding to specified eigenval ues,
using inverse iteration

ssteqr - sstegr - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit
QL or QR method

ssterf - ssterf - compute all eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or
QR agorithm

sstev - sstev - compute all eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix A

Page 50 of 4153

sstevd - sstevd - compute all eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix

sstevr - sstevr - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix T

sstevx - sstevx - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric tridiagonal matrix A

sstsv - sstsv - compute the solution to a system of linear equations A * X = B where A is a symmetric tridiagonal matrix

ssttrf - ssttrf - compute the factorization of a symmetric tridiagonal matrix A using the Bunch-Kaufman diagonal pivoting
method

ssttrs - ssttrs - computes the solution to areal system of linear equationsA * X =B

sswap - sswap - Exchange vectors x and y.

ssycon - ssycon - estimate the reciprocal of the condition number (in the 1-norm) of areal symmetric matrix A using the
factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF

ssyev - ssyev - compute al eigenvalues and, optionally, eigenvectors of areal symmetric matrix A

ssyevd - ssyevd - compute all eigenvalues and, optionally, eigenvectors of areal symmetric matrix A

ssyevr - ssyevr - compute selected eigenval ues and, optionally, eigenvectors of areal symmetric tridiagona matrix T

Sssyevx - ssyevx - compute selected eigenvalues and, optionally, eigenvectors of areal symmetric matrix A

ssygs? - ssygs2 - reduce areal symmetric-definite generalized eigenproblem to standard form

Ssygst - ssygst - reduce areal symmetric-definite generalized eigenproblem to standard form

ssyqv - ssygv - compute all the eigenvalues, and optionally, the eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

ssyagvd - ssygvd - compute al the eigenvalues, and optionaly, the eigenvectors of areal generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

SSygvx - ssygvx - compute selected eigenvalues, and optionally, eigenvectors of area generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

ssymm - ssymm - perform one of the matrix-matrix operations C := alpha* A*B + beta* C or C := alpha*B*A + beta*C

ssymv - ssymv - perform the matrix-vector operation y := alpha* A*x + beta*y

Page 51 of 4153

SSyr - ssyr - perform the symmetric rank 1 operation A := alpha*x*x' + A

ssyr2 - ssyr2 - perform the symmetric rank 2 operation A := alpha*x*y' + apha*y*x' + A

ssyr2k - ssyr2k - perform one of the symmetric rank 2k operations C := apha* A*B' + alpha*B*A' + beta*C or C :=
apha*A*B + alpha*B™* A + beta*C

ssyrfs - ssyrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite, and provides error bounds and backward error estimates for the solution

ssyrk - ssyrk - perform one of the symmetric rank k operations C := alpha* A*A' + beta* C or C := alpha* A" A + beta*C

SSysv - ssysv - compute the solution to areal system of linear equations A * X = B,

SSysSvx - ssysvx - use the diagonal pivoting factorization to compute the solution to areal system of linear equations A * X
= Bl

ssytd2 - ssytd? - reduce areal symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation

ssytf2 - ssytf2 - compute the factorization of areal symmetric matrix A using the Bunch-Kaufman diagona pivoting
method

ssytrd - ssytrd - reduce areal symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity
transformation

ssytrf - ssytrf - compute the factorization of areal symmetric matrix A using the Bunch-Kaufman diagonal pivoting method

ssytri - ssytri - compute the inverse of areal symmetric indefinite matrix A using the factorization A = U*D*U**T or A =
L*D*L**T computed by SSY TRF

Ssytrs - ssytrs - solve a system of linear equations A*X = B with areal symmetric matrix A using the factorization A =
U*D*U**T or A = L*D*L**T computed by SSY TRF

stbcon - stbeon - estimate the reciprocal of the condition number of atriangular band matrix A, in either the 1-norm or the
infinity-norm

stbmv - stbmv - perform one of the matrix-vector operations x := A*x, or X := A*x

stbrfs - stbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular band coefficient matrix

stbsv - sthsv - solve one of the systems of equations A*x = b, or A*x =b

stbtrs - sthtrs - solve atriangular system of theform A * X =B or A**T * X =B,

Page 52 of 4153

stgevc - stgevc - compute some or all of the right and/or left generalized eigenvectors of a pair of real upper triangular
matrices (A,B)

stgexc - stgexc - reorder the generalized real Schur decomposition of areal matrix pair (A,B) using an orthogonal
equivalence transformation (A, B) =Q* (A, B) * Z',

stgsen - stgsen - reorder the generalized real Schur decomposition of areal matrix pair (A, B) (in terms of an orthonormal

equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appearsin the leading diagonal
blocks of the upper quasi-triangular matrix A and the upper triangular B

stgsia - stgga - compute the generalized singular value decomposition (GSV D) of two real upper triangular (or
trapezoidal) matrices A and B

stgsna - stgsna - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of amatrix pair (A,

B) in generalized real Schur canonical form (or of any matrix pair (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z,
where Z' denotes the transpose of Z

stgsy! - stgsyl - solve the generalized Sylvester equation

stpcon - stpcon - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or
the infinity-norm

stpmv - stpmv - perform one of the matrix-vector operations x := A*x, or X := A*x

stprfs - stprfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular packed coefficient matrix

stpsv - stpsv - solve one of the systems of equations A*x = b, or A*x =b

stptri - stptri - compute the inverse of areal upper or lower triangular matrix A stored in packed format

stptrs - stptrs - solve atriangular system of theform A * X =B or A**T * X =B,

strans - strans - transpose and scal e source matrix

strcon - strcon - estimate the reciprocal of the condition number of atriangular matrix A, in either the 1-norm or the
infinity-norm

strevc - streve - compute some or all of the right and/or |eft eigenvectors of areal upper quasi-triangular matrix T

strexc - strexc - reorder the real Schur factorization of areal matrix A = Q*T*Q**T, so that the diagonal block of T with
row index IFST is moved to row ILST

strmm - strmm - perform one of the matrix-matrix operations B := alpha*op(A)*B, or B := apha*B*op(A)

Page 53 of 4153

strmv - strmv - perform one of the matrix-vector operations x := A*x, or X := A"*x

strrfs - strrfs - provide error bounds and backward error estimates for the solution to a system of linear equationswith a
triangular coefficient matrix

strsen - strsen - reorder the real Schur factorization of areal matrix A = Q*T*Q** T, so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T,

strsm - strsm - solve one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B

strsna - strsna - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of areal upper
quasi-triangular matrix T (or of any matrix Q* T*Q** T with Q orthogonal)

strsv - strsv - solve one of the systems of equations A*x = b, or A*x =b

strsyl - strsyl - solve the real Sylvester matrix equation

strti2 - strti2 - compute the inverse of areal upper or lower triangular matrix

strtri - strtri - compute the inverse of areal upper or lower triangular matrix A

strirs - strtrs - solve atriangular system of theform A * X =B or A**T * X =B,

stzrdf - stzrqf - routine is deprecated and has been replaced by routine STZRZF

stzrzf - stzrzf - reduce the M-by-N (M<=N) real upper trapezoidal matrix A to upper triangular form by means of
orthogonal transformations

sunperf_version - sunperf_version - gets library information 1i SUBROUTINE SUNPERF_VERSION(VERSION,
PATCH, UPDATE) 1i INTEGER VERSION, PATCH, UPDATE 1i

svbrmm - svbrmm - variable block sparse row format matrix-matrix multiply

svbrsm - svbrsm - variable block sparse row format triangular solve

swiener - swiener - perform Wiener deconvolution of two signals

use threads - use_threads - Sets the number of threads to use for subsequent parallel regions

using_threads - using_threads - In a parallel environment, if called from a seria region of the master thread it returns the

number of threads available for execution (determined by function OMP_GET_NUM_THREADS). Elsg, if it iscalled
from athread in the team executing the parallel region it returnsa 1. USING_THREADS subroutine

Page 54 of 4153

vcfftb - vefftb - compute a periodic sequence from its Fourier coefficients. The VCFFT operations are normalized, so a
call of VCFFTF followed by acall of VCFFTB will return the original sequence.

vcfftf - vfftf - compute the Fourier coefficients of a periodic sequence. The VCFFT operations are normalized, so acall of
VCFFTF followed by acall of VCFFTB will return the original sequence.

vcffti - vcffti - initialize the array WSAVE, which is used in both VCFFTF and VCFFTB.

veosgb - veosgb - synthesize a Fourier sequence from its representation in terms of a cosine series with odd wave numbers.

The VCOSQ operations are normalized, so acall of VCOSQF followed by acall of VCOSQB will return the original
sequence.

veosf - veosgf - compute the Fourier coefficients in a cosine series representation with only odd wave numbers. The
V COSQ operations are normalized, so acall of VCOSQF followed by acall of VCOSQB will return the original sequence.

vCosgi - veosyi - initialize the array WSAVE, which is used in both VCOSQF and VCOSQB.

vcost - veost - compute the discrete Fourier cosine transform of an even sequence. The VCOST transform is normalized,
so acall of VCOST followed by acall of VCOST will return the original sequence.

vcosti - veosti - initialize the array WSAVE, whichisused in VCOST.

vdcosgb - vdcosgb - synthesize a Fourier sequence from its representation in terms of a cosine series with odd wave

numbers. The VCOSQ operations are normalized, so a call of VCOSQF followed by a call of VCOSQB will return the
original sequence.

vdcosgf - vdcosgf - compute the Fourier coefficients in a cosine series representation with only odd wave numbers. The
VVCOSQ operations are normalized, so acall of VCOSQF followed by a call of VCOSQB will return the original sequence.

vdcosqi - vdcosqi - initialize the array WSAVE, which is used in both VCOSQF and VCOSQB.

vdcost - vdcost - compute the discrete Fourier cosine transform of an even sequence. The VCOST transform is normalized,
so acall of VCOST followed by acall of VCOST will return the original sequence.

vdcosti - vdcosti - initialize the array WSAVE, which is used in VCOST.

vdfftb - vdfftb - compute a periodic sequence from its Fourier coefficients. The VRFFT operations are normalized, so a
call of VRFFTF followed by acall of VRFFTB will return the original sequence.

vdfftf - vdfftf - compute the Fourier coefficients of a periodic sequence. The VRFFT operations are normalized, so acall
of VRFFTF followed by acall of VRFFTB will return the original sequence.

vdffti - vdffti - initialize the array WSAVE, which is used in both VRFFTF and VRFFTB.

vdsingb - vdsingb - synthesize a Fourier sequence from its representation in terms of a sine series with odd wave numbers.
The VSINQ operations are normalized, so acall of VSINQF followed by acall of VSINQB will return the origina

Page 55 of 4153

sequence.

vdsingf - vdsingf - compute the Fourier coefficientsin a sine series representation with only odd wave numbers. The
VSINQ operations are normalized, so a call of VSINQF followed by acall of VSINQB will return the original sequence.

vdsingi - vdsingi - initialize the array WSAVE, which isused in both VSINQF and VSINQB.

vdsint - vdsint - compute the discrete Fourier sine transform of an odd sequence. The VSINT transforms are unnormalized

inverses of themselves, so acall of VSINT followed by another call of VSINT will multiply the input sequence by 2* (N
+1). The VSINT transforms are normalized, so acall of VSINT followed by acall of VSINT will return the origina
sequence.

vdsinti - vdsinti - initialize the array WSAVE, which is used in subroutine VSINT.

vrfftb - vrfftb - compute a periodic sequence from its Fourier coefficients. The VRFFT operations are normalized, so acall
of VRFFTF followed by acall of VRFFTB will return the original sequence.

vrfftf - vrfftf - compute the Fourier coefficients of a periodic sequence. The VRFFT operations are normalized, so a call of
VRFFTF followed by acall of VRFFTB will return the original sequence.

vrffti - vrffti - initialize the array WSAVE, which is used in both VRFFTF and VRFFTB.

vsingb - vsingb - synthesize a Fourier sequence from its representation in terms of a sine series with odd wave numbers.

The VSINQ operations are normalized, so acall of VSINQF followed by acall of VSINQB will return the origina
sequence.

vsingf - vsingf - compute the Fourier coefficients in a sine series representation with only odd wave numbers. The VSINQ
operations are normalized, so a call of VSINQF followed by acall of VSINQB will return the original sequence.

vsingi - vsingi - initialize the array WSAVE, which is used in both VSINQF and VSINQB.

vsint - vsint - compute the discrete Fourier sine transform of an odd sequence. The VSINT transforms are unnormalized

inverses of themselves, so acall of VSINT followed by another call of VSINT will multiply the input sequence by 2* (N
+1). The VSINT transforms are normalized, so acall of VSINT followed by acall of VSINT will return the origina
sequence.

vsinti - vsinti - initialize the array WSAVE, which is used in subroutine VSINT.

vzfftb - vzfftb - compute a periodic sequence from its Fourier coefficients. The VZFFT operations are normalized, so acall
of VZFFTF followed by acall of VZFFTB will return the origina sequence.

vzfftf - vzfftf - compute the Fourier coefficients of a periodic sequence. The VZFFT operations are normalized, so acall of
VZFFTF followed by acall of VZFFTB will return the origina sequence.

vZzffti - vzffti - initialize the array WSAVE, which is used in both VZFFTF and VZFFTB.

Page 56 of 4153

Zaxpy - zaxpy - computey :=apha* x +y

zaxpyi - zaxpyi - Computey := apha* x +y

Zbcomm - zbcomm - block coordinate matrix-matrix multiply

zbdimm - zbdimm - block diagonal format matrix-matrix multiply

zbdism - zbdism - block diagonal format triangular solve

zbdsar - zbdsgr - compute the singular value decomposition (SVD) of areal N-by-N (upper or lower) bidiagonal matrix B.

zbelmm - zbelmm - block Ellpack format matrix-matrix multiply

zbelsm - zbelsm - block Ellpack format triangular solve

Zbscmm - zbscmm - block sparse column matrix-matrix multiply

zbscsm - zbscsm - block sparse column format triangular solve

Zbsrmm - zbsrmm - block sparse row format matrix-matrix multiply

zbsrsm - zbsrsm - block sparse row format triangular solve

Zcnveor - zenveor - compute the convolution or correlation of complex vectors

zcnveor? - zenveor2 - compute the convolution or correlation of complex matrices

zcoomm - zcoomm - coordinate matrix-matrix multiply

zZcopy - zcopy - Copy xtoy

zcscmm - zescmm - compressed sparse column format matrix-matrix multiply

zcscsm - zesesm - compressed sparse column format triangular solve

zcsrmm - zesrmm - compressed sparse row format matrix-matrix multiply

zcsrsm - zesrsm - compressed sparse row format triangular solve

zdiamm - zdiamm - diagonal format matrix-matrix multiply.

Page 57 of 4153

zdiasm - zdiasm - diagonal format triangular solve

zdotc - zdotc - compute the dot product of two vectors conjg(x) and y.

zdotci - zdotci - Compute the complex conjugated indexed dot product.

zdotu - zdotu - compute the dot product of two vectorsx and y.

zdotui - zdotui - Compute the complex unconjugated indexed dot product.

zdrot - zdrot - Apply aplane rotation.

zdscdl - zdsca - Computey := alpha* y

zellmm - zellmm - Ellpack format matrix-matrix multiply

zellsm - zellsm - Ellpack format triangular solve

zfft2b - zfft2b - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a call
of ZFFT2F followed by acall of ZFFT2B will multiply the input sequence by M*N.

Zfft2f - zfft2f - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call of
ZFFT2F followed by acall of ZFFT2B will multiply the input sequence by M* N.

Zfft2i - Zfft2i - initialize the array WSAVE, which is used in both the forward and backward transforms.

Zfft3b - zfft3b - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a call
of ZFFT3F followed by acall of ZFFT3B will multiply the input sequence by M*N*K.

zfft3f - zfft3f - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call of
ZFFT3F followed by acall of ZFFT3B will multiply the input sequence by M*N*K.

Zfft3i - Zfft3i - initialize the array WSAVE, which is used in both ZFFT3F and ZFFT3B.

zfftb - zfftb - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a call of
ZFFTF followed by acall of ZFFTB will multiply the input sequence by N.

Zfftd - zfftd - initialize the trigonometric weight and factor tables or compute the inverse Fast Fourier Transform of a
double complex sequence.

zfftd2 - zfftd2 - initialize the trigonometric weight and factor tables or compute the two-dimensional inverse Fast Fourier
Transform of atwo-dimensional double complex array.

Zfftd3 - zfftd3 - initialize the trigonometric weight and factor tables or compute the three-dimensional inverse Fast Fourier

Page 58 of 4153

Transform of athree-dimensional double complex array.

zfftdm - zfftdm - initialize the trigonometric weight and factor tables or compute the one-dimensional inverse Fast Fourier
Transform of a set of double complex data sequences stored in a two-dimensional array.

zfftf - zfftf - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so acall of
ZFFTF followed by acall of ZFFTB will multiply the input sequence by N.

Zffti - Zffti - initialize the array WSAVE, which isused in both ZFFTF and ZFFTB.

zfftopt - zfftopt - compute the length of the closest fast FFT

zfftz - zfftz - initialize the trigonometric weight and factor tables or compute the Fast Fourier transform (forward or
inverse) of a double complex sequence.

zfftz2 - zfftz2 - initialize the trigonometric weight and factor tables or compute the two-dimensional Fast Fourier
Transform (forward or inverse) of atwo-dimensional double complex array.

Zfftz3 - zfftz3 - initiaize the trigonometric weight and factor tables or compute the three-dimensional Fast Fourier
Transform (forward or inverse) of athree-dimensional double complex array.

zfftzm - zfftzm - initialize the trigonometric weight and factor tables or compute the one-dimensional Fast Fourier
Transform (forward or inverse) of a set of data sequences stored in atwo-dimensional double complex array.

zgbbrd - zgbbrd - reduce a complex general m-by-n band matrix A to real upper bidiagonal form B by a unitary
transformation

zgbcon - zgbcon - estimate the reciprocal of the condition number of a complex general band matrix A, in either the 1-
norm or the infinity-norm,

zgbequ - zgbequ - compute row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its
condition number

zgbmv - zgbmv - perform one of the matrix-vector operationsy := alpha* A*x + beta*y, or y := alpha* A"™*x + beta*y, or y :
= alpha*conjg(A")*x + beta*y

zgbrfs - zgbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is banded, and
provides error bounds and backward error estimates for the solution

zgbsv - zghsv - compute the solution to a complex system of linear equations A * X = B, where A isaband matrix of
order N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices

zghsvx - zgbsvx - use the LU factorization to compute the solution to a complex system of linear equations A * X =B,
A**T* X=B,or A**H* X =B,

zghtf2 - zgbtf2 - compute an LU factorization of a complex m-by-n band matrix A using partial pivoting with row

Page 59 of 4153

interchanges

zgbtrf - zgbtrf - compute an LU factorization of a complex m-by-n band matrix A using partial pivoting with row
interchanges

zgbtrs - zgbtrs - solve a system of linear equations A * X =B, A**T * X =B, or A**H * X = B with ageneral band matrix
A using the LU factorization computed by ZGBTRF

zgebak - zgebak - form the right or left eigenvectors of a complex general matrix by backward transformation on the
computed eigenvectors of the balanced matrix output by ZGEBAL

zgebal - zgebal - balance a general complex matrix A

zgebrd - zgebrd - reduce a general complex M-by-N matrix A to upper or lower bidiagonal form B by a unitary
transformation

Zgecon - zgecon - estimate the reciprocal of the condition number of a general complex matrix A, in either the 1-norm or
theinfinity-norm, using the LU factorization computed by ZGETRF

Zgeequ - zgeequ - compute row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition
number

Zgees - zgees - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and,
optionally, the matrix of Schur vectors Z

Zgeesx - zgeesx - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and,
optionally, the matrix of Schur vectors Z

Zgeev - zgeev - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or
right eigenvectors

Zgeevx - zgeevx - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or
right eigenvectors

Zgegs - zgegs - routine is deprecated and has been replaced by routine CGGES

zgeqv - zgegv - routine is deprecated and has been replaced by routine CGGEV

zgehrd - zgehrd - reduce a complex general matrix A to upper Hessenberg form H by a unitary similarity transformation

zgeldf - zgelgf - compute an LQ factorization of acomplex M-by-N matrix A

Zgels - zgels - solve overdetermined or underdetermined complex linear systemsinvolving an M-by-N matrix A, or its
conjugate-transpose, using a QR or LQ factorization of A

Page 60 of 4153

zgelsd - zgelsd - compute the minimum-norm solution to areal linear least squares problem

Zgelss - zgelss - compute the minimum norm solution to a complex linear least squares problem

zgelsx - zgelsx - routine is deprecated and has been replaced by routine ZGEL SY

zgelsy - zgelsy - compute the minimum-norm solution to a complex linear least squares problem

zgemm - zgemm - perform one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C

zgemv - zgemv - perform one of the matrix-vector operationsy := alpha* A*x + beta*y, or y := alpha* A" x + beta*y, or y :
= adpha*conjg(A")*x + beta*y

zgeqlf - zgeglf - compute a QL factorization of a complex M-by-N matrix A

zgeqp3 - zgeqp3 - compute a QR factorization with column pivoting of amatrix A

zgeqpf - zgegpf - routine is deprecated and has been replaced by routine ZGEQP3

zgeqrf - zgeqgrf - compute a QR factorization of acomplex M-by-N matrix A

zgerc - zgerc - perform the rank 1 operation A := apha*x*conjg(y') + A

zgerfs - zgerfs - improve the computed solution to a system of linear equations and provides error bounds and backward
error estimates for the solution

zgerdf - zgerqf - compute an RQ factorization of a complex M-by-N matrix A

zgeru - zgeru - perform the rank 1 operation A := alpha*x*y' + A

zgesdd - zgesdd - compute the singular value decomposition (SVD) of acomplex M-by-N matrix A, optionally computing
the left and/or right singular vectors, by using divide-and-conquer method

zgesv - zgesv - compute the solution to a complex system of linear equations A * X = B,

zgesvd - zgesvd - compute the singular value decomposition (SVD) of acomplex M-by-N matrix A, optionally computing
the left and/or right singular vectors

Zgesvx - zgesvx - use the LU factorization to compute the solution to a complex system of linear equations A * X =B,

Zgetf2 - zgetf2 - compute an LU factorization of ageneral m-by-n matrix A using partial pivoting with row interchanges

zgetrf - zgetrf - compute an LU factorization of ageneral M-by-N matrix A using partial pivoting with row interchanges

Page 61 of 4153

Zgetri - zgetri - compute the inverse of amatrix using the LU factorization computed by ZGETRF

Zgetrs - zgetrs - solve a system of linear equations A * X =B, A**T * X =B, or A**H * X = B with ageneral N-by-N
matrix A using the LU factorization computed by ZGETRF

zggbak - zggbak - form the right or left eigenvectors of acomplex generalized eigenvalue problem A*x = lambda* B*x, by
backward transformation on the computed eigenvectors of the balanced pair of matrices output by ZGGBAL

zggbal - zggbal - balance a pair of general complex matrices (A,B)

zgges - zgges - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the
generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR)

zggesx - zggesx - compute for apair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the
complex Schur form (S,T),

Zggev - zggev - compute for apair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and
optionally, the left and/or right generalized eigenvectors

zggevx - zggevx - compute for apair of N-by-N complex nonsymmetric matrices (A,B) the generalized eigenvalues, and
optionally, the left and/or right generalized eigenvectors

zggalm - zggglm - solve a general Gauss-Markov linear model (GLM) problem

zgghrd - zgghrd - reduce a pair of complex matrices (A,B) to generalized upper Hessenberg form using unitary
transformations, where A is ageneral matrix and B is upper triangular

zaglse - zgglse - solve the linear equality-constrained least squares (L SE) problem

zggarf - zggarf - compute a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B.

zgardf - zggrgf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B

zggsvd - zggsvd - compute the generalized singular value decomposition (GSVD) of an M-by-N complex matrix A and P-
by-N complex matrix B

Zggsvp - zggsvp - compute unitary matrices U, V and Q such that N-K-L K L U*A*Q =K (0A12 A13) if M-K-L >=0

ZQSSCo - Zgssco - General sparse solver condition number estimate.

zgssda - zgssda - Deallocate working storage for the general sparse solver.

zgssfa - zgssfa - General sparse solver numeric factorization.

Page 62 of 4153

zgssfs - zgssfs - General sparse solver one call interface.

Zgssin - zgssin - Initialize the general sparse solver.

ZQgssor - zgssor - General sparse solver ordering and symbolic factorization.

ZgSsps - zgssps - Print general sparse solver statics.

Zgssrp - zgssrp - Return permutation used by the general sparse solver.

zgsssl - zgssdl - Solve routine for the general sparse solver.

ZQgssuo - zgssuo - User supplied permutation for ordering used in the general sparse solver.

zgtcon - zgtcon - estimate the reciprocal of the condition number of a complex tridiagonal matrix A using the LU
factorization as computed by ZGTTRF

zgthr - zgthr - Gathers specified elements from y into x.

zgthrz - zgthrz - Gather and zero.

zgtrfs - zgtrfs - improve the computed solution to a system of linear equations when the coefficient matrix is tridiagonal,
and provides error bounds and backward error estimates for the solution

zgtsv - zgtsv - solve the equation A*X = B,

Zgtsvx - zgtsvx - use the LU factorization to compute the solution to a complex system of linear equations A * X =B,
A**T* X =B,or A*x*H* X =B,

zgttrf - zgttrf - compute an LU factorization of a complex tridiagonal matrix A using elimination with partial pivoting and
row interchanges

zattrs - zgttrs - solve one of the systems of equations A * X =B, A**T* X =B, or A**H * X =B,

zhbev - zhbev - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

zhbevd - zhbevd - compute al the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

zhbevx - zhbevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

zhbgst - zhbgst - reduce a complex Hermitian-definite banded generalized eigenproblem A*x = lambda* B*x to standard
form C*y = lambda*y,

Page 63 of 4153

zhbgv - zhbgv - compute al the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite
banded eigenproblem, of the form A*x=(lambda)* B* x

zhbgvd - zhbgvd - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-
definite banded eigenproblem, of the form A*x=(lambda)* B* x

zhbgvx - zhbgvx - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-
definite banded eigenproblem, of the form A*x=(lambda)* B* x

zhbmv - zhbmv - perform the matrix-vector operation y := apha*A*x + beta*y

zhbtrd - zhbtrd - reduce a complex Hermitian band matrix A to real symmetric tridiagona form T by aunitary similarity
transformation

zhecon - zhecon - estimate the reciprocal of the condition number of acomplex Hermitian matrix A using the factorization
A =U*D*U**H or A = L*D*L**H computed by ZHETRF

zheev - zheev - compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

zheevd - zheevd - compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

zheevr - zheevr - compute selected eigenval ues and, optionally, eigenvectors of a complex Hermitian tridiagonal matrix T

zheevx - zheevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

zhegs? - zhegs? - reduce a complex Hermitian-definite generalized eigenproblem to standard form

zhegst - zhegst - reduce a complex Hermitian-definite generalized eigenproblem to standard form

zhegv - zhegv - compute al the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

zhegvd - zhegvd - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-
definite eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)* x

zhegvx - zhegvx - compute sel ected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

zhemm - zhemm - perform one of the matrix-matrix operations C := alpha* A*B + beta*C or C := alpha*B*A + beta*C

zhemv - zhemv - perform the matrix-vector operation y := alpha* A*x + beta*y

zher - zher - perform the hermitian rank 1 operation A := alpha*x*conjg(x') + A

Page 64 of 4153

zher2 - zher2 - perform the hermitian rank 2 operation A := apha*x*conjg(y') + conjg(apha)*y*conjg(x') + A

zher2k - zher2k - perform one of the Hermitian rank 2k operations C := alpha* A*conjg(B') + conjg(apha)* B*conjg
(A') + beta*C or C := alpha*conjg(A')*B + conjg(apha)*conjg(B')*A + beta*C

zherfs - zherfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
indefinite, and provides error bounds and backward error estimates for the solution

zherk - zherk - perform one of the Hermitian rank k operations C := apha*A*conjg(A") + beta* C or C := apha*conjg
(A")*A + beta*C

zhesv - zhesv - compute the solution to a complex system of linear equationsA * X =B,

zhesvx - zhesvx - use the diagonal pivoting factorization to compute the solution to a complex system of linear equations
A* X =B,

zhetf2 - zhetf2 - compute the factorization of acomplex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting
method

zhetrd - zhetrd - reduce a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation

zhetrf - zhetrf - compute the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting
method

zhetri - zhetri - compute the inverse of acomplex Hermitian indefinite matrix A using the factorization A = U*D*U**H or
A =L*D*L**H computed by ZHETRF

zhetrs - zhetrs - solve a system of linear equations A*X = B with acomplex Hermitian matrix A using the factorization A
=U*D*U**H or A = L*D*L**H computed by ZHETRF

zhgegz - zhgegz - implement a single-shift version of the QZ method for finding the generalized eigenvalues w(i)=ALPHA
(i)Y/BETAC(i) of the equation det(A-w(i) B) = 0 If JOB='S, then the pair (A,B) is simultaneously reduced to Schur form (i.
e., A and B are both upper triangular) by applying one unitary tranformation (usually called Q) on the left and another
(usually called Z) on theright

zhpcon - zhpcon - estimate the reciproca of the condition number of a complex Hermitian packed matrix A using the
factorization A = U*D*U**H or A = L*D*L**H computed by ZHPTRF

zhpev - zhpev - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed storage

zhpevd - zhpevd - compute al the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed
storage

zhpevx - zhpevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed
storage

Page 65 of 4153

zhpgst - zhpgst - reduce a complex Hermitian-definite generalized eigenproblem to standard form, using packed storage

zhpgv - zhpgv - compute all the elgenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

zhpagvd - zhpgvd - compute all the eigenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-
definite eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)*x, or B* A*x=(lambda)* x

zhpgvx - zhpgvx - compute selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian-definite
eigenproblem, of the form A*x=(lambda)* B*x, A* Bx=(lambda)* x, or B* A*x=(lambda)* x

zhpmv - zhpmv - perform the matrix-vector operation y := alpha* A*x + beta*y

zhpr - zhpr - perform the hermitian rank 1 operation A := alpha*x*conjg(x') + A

zhpr2 - zhpr2 - perform the Hermitian rank 2 operation A := alpha*x*conjg(y') + conjg(apha)*y*conjg(x') + A

zhprfs - zhprfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
indefinite and packed, and provides error bounds and backward error estimates for the solution

zhpsv - zhpsv - compute the solution to a complex system of linear equations A * X = B,

zhpsvx - zhpsvx - use the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution to a

complex system of linear equations A * X = B, where A isan N-by-N Hermitian matrix stored in packed format and X and
B are N-by-NRHS matrices

zhptrd - zhptrd - reduce a complex Hermitian matrix A stored in packed form to real symmetric tridiagonal form T by a
unitary similarity transformation

zhptrf - zhptrf - compute the factorization of a complex Hermitian packed matrix A using the Bunch-Kaufman diagonal
pivoting method

zhptri - zhptri - compute the inverse of a complex Hermitian indefinite matrix A in packed storage using the factorization
A =U*D*U**H or A = L*D*L**H computed by ZHPTRF

zhptrs - zhptrs - solve a system of linear equations A*X = B with a complex Hermitian matrix A stored in packed format
using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHPTRF

zhsein - zhsein - use inverseiteration to find specified right and/or left eigenvectors of acomplex upper Hessenberg matrix
H

zhseqr - zhseqr - compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and Z

from the Schur decomposition H =Z T Z**H, where T is an upper triangular matrix (the Schur form), and Z isthe unitary
matrix of Schur vectors

zjadmm - zjadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)

Page 66 of 4153

Zjadrp - zjadrp - right permutation of ajagged diagonal matrix

zjadsm - zjadsm - Jagged-diagonal format triangular solve

Zlarz - zlarz - applie acomplex elementary reflector H to a complex M-by-N matrix C, from either the left or the right

Zlarzb - zlarzb - applie acomplex block reflector H or its transpose H**H to a complex distributed M-by-N C from the left
or theright

zZlarzt - Zlarzt - form the triangular factor T of acomplex block reflector H of order > n, which is defined as a product of k
elementary reflectors

Zlatzm - zlatzm - routine is deprecated and has been replaced by routine CUNMRZ

zpbcon - zpbcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite
band matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPBTRF

zpbequ - zpbequ - compute row and column scalings intended to equilibrate a Hermitian positive definite band matrix A
and reduce its condition number (with respect to the two-norm)

zpbrfs - zpbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite and banded, and provides error bounds and backward error estimates for the solution

zpbstf - zpbstf - compute a split Cholesky factorization of a complex Hermitian positive definite band matrix A

zpbsv - zpbsv - compute the solution to a complex system of linear equations A * X = B,

zpbsvx - zpbsvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X =B,

Zpbtf2 - zpbtf2 - compute the Cholesky factorization of acomplex Hermitian positive definite band matrix A

zpbtrf - zpbtrf - compute the Cholesky factorization of a complex Hermitian positive definite band matrix A

zpbitrs - zpbtrs - solve a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the
Cholesky factorization A = U**H*U or A = L*L**H computed by ZPBTRF

Zpocon - zpocon - estimate the reciproca of the condition number (in the 1-norm) of a complex Hermitian positive definite
matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF

Zpoequ - zpoequ - compute row and column scalings intended to equilibrate a Hermitian positive definite matrix A and
reduce its condition number (with respect to the two-norm)

Page 67 of 4153

zporfs - zporfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite,

Zposv - zposv - compute the solution to a complex system of linear equations A * X = B,

ZposvX - zposvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X =B,

Zpotf2 - zpotf2 - compute the Cholesky factorization of acomplex Hermitian positive definite matrix A

zpotrf - zpotrf - compute the Cholesky factorization of acomplex Hermitian positive definite matrix A

Zpotri - zpotri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A
=U**H*U or A = L*L**H computed by ZPOTRF

Zpotrs - zpotrs - solve a system of linear equations A* X = B with a Hermitian positive definite matrix A using the
Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF

Zppcon - zppcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite
packed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPPTRF

Zppequ - zppegu - compute row and column scalings intended to equilibrate a Hermitian positive definite matrix A in
packed storage and reduce its condition number (with respect to the two-norm)

zpprfs - zpprfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite and packed, and provides error bounds and backward error estimates for the solution

Zppsv - zppsv - compute the solution to a complex system of linear equations A * X = B,

Zppsvx - zppsvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X =B,

zpptrf - zpptrf - compute the Cholesky factorization of acomplex Hermitian positive definite matrix A stored in packed
format

Zpptri - zpptri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A
=U**H*U or A = L*L**H computed by ZPPTRF

Zpptrs - zpptrs - solve a system of linear equations A*X = B with a Hermitian positive definite matrix A in packed storage
using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPPTRF

Zptcon - zptcon - compute the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite
tridiagonal matrix using the factorization A = L*D*L**H or A = U**H*D*U computed by ZPTTRF

zpteqr - zptegr - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix
by first factoring the matrix using SPTTRF and then calling CBDSQR to compute the singular values of the bidiagonal

Page 68 of 4153

factor

zptrfs - zptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution

Zptsv - zptsv - compute the solution to a complex system of linear equations A* X = B, where A isan N-by-N Hermitian
positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices.

Zptsvx - zptsvx - use the factorization A = L*D*L**H to compute the solution to a complex system of linear equations
A*X =B, where A is an N-by-N Hermitian positive definite tridiagonal matrix and X and B are N-by-NRHS matrices

zpttrf - zpttrf - compute the L*D* L' factorization of a complex Hermitian positive definite tridiagonal matrix A

Zpttrs - zpttrs - solve atridiagonal system of the form A * X = B using the factorization A = U*D*U or A = L*D*L'
computed by ZPTTRF

Zptts2 - zptts2 - solve atridiagonal system of the form A * X = B using the factorization A = U*D*U or A = L*D*L'
computed by ZPTTRF

zrot - zrot - apply a plane rotation, where the cos (C) isreal and the sin (S) is complex, and the vectors X and Y are
complex

zrotqg - zrotg - Construct a Given's plane rotation

zscal - zscal - Computey :=dpha* y

Zsctr - zsctr - Scatters elements from x into y.

zskymm - zskymm - Skyline format matrix-matrix multiply

zskysm - zskysm - Skyline format triangular solve

Zspcon - zspeon - estimate the reciprocal of the condition number (in the 1-norm) of a complex symmetric packed matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF

zsprfs - zsprfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite and packed, and provides error bounds and backward error estimates for the solution

ZSpsv - zspsv - compute the solution to a complex system of linear equations A * X = B,

ZSpsvX - zspsvx - use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a

complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices

zsptrf - zsptrf - compute the factorization of a complex symmetric matrix A stored in packed format using the Bunch-

Page 69 of 4153

Kaufman diagonal pivoting method

Zsptri - zsptri - compute the inverse of acomplex symmetric indefinite matrix A in packed storage using the factorization
A =U*D*U**T or A = L*D*L**T computed by ZSPTRF

Zsptrs - zsptrs - solve a system of linear equations A* X = B with a complex symmetric matrix A stored in packed format
using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF

zstedc - zstedc - compute al eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide
and conquer method

zsteqgr - zstegr - Compute T-sigma i =L_i D_i L_i"T, suchthat L_i D_i L_i"T isarelatively robust representation

zstein - zstein - compute the eigenvectors of areal symmetric tridiagonal matrix T corresponding to specified eigenvalues,
using inverse iteration

zsteqr - zstegr - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit
QL or QR method

Zstsv - zstsv - compute the solution to a complex system of linear equations A * X = B where A is a symmetric tridiagonal
matrix

zsttrf - zsttrf - compute the factorization of a complex symmetric tridiagonal matrix A using the Bunch-Kaufman diagonal
pivoting method

Zsttrs - zsttrs - computes the solution to a complex system of linear equations A * X =B

Zswap - zswap - Exchange vectors x and y.

Zsycon - zsycon - estimate the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A using
the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF

zsymm - zsymm - perform one of the matrix-matrix operations C := alpha*A*B + beta* C or C := alpha*B* A + beta*C

zsyr2k - zsyr2k - perform one of the symmetric rank 2k operations C := alpha* A*B' + alpha*B*A' + beta*C or C :=
apha*A*B + alpha*B* A + beta*C

zsyrfs - zsyrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite, and provides error bounds and backward error estimates for the solution

zsyrk - zsyrk - perform one of the symmetric rank k operations C := alpha*A*A' + beta* C or C := apha*A™* A + beta*C

ZSysv - zsysv - compute the solution to a complex system of linear equations A * X =B,

ZSysvx - zsysvx - use the diagonal pivoting factorization to compute the solution to a complex system of linear equations A

Page 70 of 4153

Zsytf2 - zsytf2 - compute the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting
method

zsytrf - zsytrf - compute the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting
method

Zsytri - zsytri - compute the inverse of acomplex symmetric indefinite matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by ZSYTRF

Zsytrs - zsytrs - solve a system of linear equations A* X = B with a complex symmetric matrix A using the factorization A
=U*D*U**T or A = L*D*L**T computed by ZSYTRF

zthcon - ztbcon - estimate the reciprocal of the condition number of atriangular band matrix A, in either the 1-norm or the
infinity-norm

ztbmv - ztbmv - perform one of the matrix-vector operations x := A*x, or x := A*x, or X := conjg(A')*x

ztbrfs - ztbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular band coefficient matrix

ztbsv - ztbsv - solve one of the systems of equations A*x = b, or A*x = b, or conjg(A")*x=b

ztbtrs - zthtrs - solve atriangular system of theform A * X =B, A**T* X =B, or A**H* X =B,

Ztgevc - ztgevc - compute some or all of the right and/or left generalized eigenvectors of a pair of complex upper triangular
matrices (A,B)

ztgexc - ztgexc - reorder the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary

equivalence transformation (A, B) := Q* (A, B) * Z', so that the diagonal block of (A, B) with row index IFST is moved
torow ILST

ztgsen - ztgsen - reorder the generalized Schur decomposition of acomplex matrix pair (A, B) (in terms of an unitary

equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appearsin the leading diagonal
blocks of the pair (A,B)

ztgsa - ztgga - compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or
trapezoidal) matrices A and B

Ztgsna - ztgsna - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of amatrix pair (A,
B)

ztgsyl - ztgsyl - solve the generalized Sylvester equation

Ztpcon - ztpcon - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or

Page 71 of 4153

theinfinity-norm

ztpmv - ztpmv - perform one of the matrix-vector operations x := A*x, or x := A*x, or X := conjg(A")*x

ztprfs - ztprfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular packed coefficient matrix

Ztpsv - ztpsv - solve one of the systems of equations A*x = b, or A*x =b, or conjg(A')*x =b

Ztptri - ztptri - compute the inverse of a complex upper or lower triangular matrix A stored in packed format

Ztptrs - ztptrs - solve atriangular system of theform A * X =B, A**T* X =B, or A**H* X =B,

Ztrans - ztrans - transpose and scal e source matrix

ztrcon - ztrcon - estimate the reciprocal of the condition number of atriangular matrix A, in either the 1-norm or the
infinity-norm

Ztrevc - ztrevc - compute some or all of the right and/or left eigenvectors of a complex upper triangular matrix T

ztrexc - ztrexc - reorder the Schur factorization of acomplex matrix A = Q* T*Q**H, so that the diagonal element of T
with row index IFST is moved to row ILST

Ztrmm - ztrmm - perform one of the matrix-matrix operations B := alpha*op(A)*B, or B := alpha*B*op(A) where alpha
isascalar, B isan m by n matrix, A isaunit, or non-unit, upper or lower triangular matrix and op(A) isone of op(A) =
Aorop(A)=A'orop(A)=conjg(A")

ztrmv - ztrmv - perform one of the matrix-vector operations x := A*x, or X := A™X, or x := conjg(A')*x

ztrrfs - ztrrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular coefficient matrix

zZtrsen - ztrsen - reorder the Schur factorization of acomplex matrix A = Q* T*Q**H, so that a selected cluster of

eigenvalues appears in the leading positions on the diagonal of the upper triangular matrix T, and the leading columns of Q
form an orthonormal basis of the corresponding right invariant subspace

ztrsm - ztrsm - solve one of the matrix equations op(A)* X = alpha*B, or X*op(A) = apha*B

ztrsna - ztrsna - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex
upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary)

ztrsv - ztrsv - solve one of the systems of equations A*x = b, or A*x = b, or conjg(A")*x =b

ztrsyl - ztrsyl - solve the complex Sylvester matrix equation

Page 72 of 4153

Ztrti2 - ztrti2 - compute the inverse of a complex upper or lower triangular matrix

ztrtri - ztrtri - compute the inverse of acomplex upper or lower triangular matrix A

ztrtrs - ztrtrs - solve atriangular system of theform A * X =B, A**T* X =B, or A**H* X =B,

ztzrdf - ztzrgf - routine is deprecated and has been replaced by routine CTZRZF

ztzrzf - ztzrzf - reduce the M-by-N (M<=N) complex upper trapezoidal matrix A to upper triangular form by means of
unitary transformations

zung?2l - zung?2| - generate an m by n complex matrix Q with orthonormal columns,

Zung2r - zung2r - generate an m by n complex matrix Q with orthonormal columns,

zungbr - zungbr - generate one of the complex unitary matrices Q or P**H determined by CGEBRD when reducing a
complex matrix A to bidiagonal form

zunghr - zunghr - generate a complex unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of
order N, asreturned by CGEHRD

zungl2 - zungl2 - generate an m-by-n complex matrix Q with orthonormal rows,

zunglq - zunglq - generate an M-by-N complex matrix Q with orthonormal rows,

zunggl - zunggl - generate an M-by-N complex matrix Q with orthonormal columns,

zungar - zunggr - generate an M-by-N complex matrix Q with orthonormal columns,

zungr2 - zungr2 - generate an m by n complex matrix Q with orthonormal rows,

zungrg - zungrg - generate an M-by-N complex matrix Q with orthonormal rows,

zungtr - zungtr - generate a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors of order
N, as returned by CHETRD

zunmbr - zunmbr - VECT ='Q', ZUNMBR overwrites the general complex M-by-N matrix C with SIDE="L' SIDE ='R’
TRANS='N'

zunmhr - zunmhr - overwrite the general complex M-by-N matrix C with SIDE="L"' SIDE ='R' TRANS ="'N'
zunml2 - zunml2 - overwrite the general complex m-by-n matrix C with Q * Cif SIDE ='L' and TRANS ='N’, or Q* Ciif

SIDE="L"and TRANS="'C',or C* Qif SIDE="'R'and TRANS="N', or C* Q'if SIDE='R and TRANS="C,,

Page 73 of 4153

zunmlg - zunmiq - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS ="N'

zunmgl - zunmg| - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS ="'N'

zunmar - zunmar - overwrite the general complex M-by-N matrix C with SIDE="L' SIDE ='R' TRANS ="'N'

zunmr2 - zunmr2 - overwrite the general complex m-by-n matrix C with Q * Cif SIDE ='L' and TRANS ='N', or Q* Ciif
SIDE='"L"and TRANS="C',or C* Qif SSDE="R"and TRANS='N',or C* Q' if SIDE ='R'and TRANS="C/,

zunmrg - zunmrg - overwrite the general complex M-by-N matrix C with SIDE="L"' SIDE ='R' TRANS ="'N'

zZunmrz - zunmrz - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS ="'N'

zunmtr - zunmtr - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

Zupgtr - zupgtr - generate a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors H(i) of
order n, asreturned by CHPTRD using packed storage

zupmtr - zupmtr - overwrite the general complex M-by-N matrix C with SIDE ='L' SIDE ='R' TRANS="N'

zvbrmm - zvbrmm - variable block sparse row format matrix-matrix multiply

zvbrsm - zvbrsm - variable block sparse row format triangular solve

zvmul - zvmul - compute the scaled product of complex vectors

Page 74 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

avail abl e_threads - returns information about current thread
usage

SYNOPSIS

SUBROUTI NE AVAI LABLE_THREADS(TOTAL, USI NG

I NTEGER TOTAL, USI NG

SUBROUTI NE AVAI LABLE_THREADS_64(TOTAL, USI NG
I NTEGER*8 TOTAL, USI NG

F95 | NTERFACE
SUBROUTI NE AVAI LABLE_THREADS(TOTAL, USI NG

I NTEGER :: TOTAL, USI NG
SUBROUTI NE AVAI LABLE_THREADS 64(TOTAL, USI NG

I NTEGER(8) :: TOTAL, USING

C | NTERFACE
#i ncl ude <sunperf.h>
voi d avail abl e_threads(int *total, int *using);
voi d avail abl e_t hreads_64(long *total, |ong *using);
PURPOSE

AVAI LABLE_THREADS calls library routine OW_GET_MAX_ THREADS
to obtain the maxi num val ue that can be returned by calls to
OW_CET_NUM THREADS. This value is stored in TOTAL. | f

OW_SET NUM THREADS is wused to changed the nunber of
t hreads, subsequent calls to AVAI LABLE THREADS, whether cal -

ling from a serial region or parallel region, will return

Page 75 of 4153

the new value in TOTAL. Also, in a parallel environnment, if
avail able_threads is called froma serial region of the nas-
ter thread, it returns the nunber of threads available for
execution (determined by function OW_GET_NUM THREADS) in
argument USING Else, if it is called froma thread in the
team executing the parallel region it returns a 1 in USING
For nor e informati on on OVP_CET_MAX_THREADS,
OVP_CET_NUM _THREADS, and OWP_SET_NUM_THREADS, see the
OpenMP Fortran Application Program Interface docunent at
http://ww. opennp. org.

ARGUMENTS

TOTAL (out put)

Maxi mum val ue that can be returned by calls to
US| NG_THREADS

USI NG (out put)
I f AVAILABLE THREADS is called from a parallel
region, USING = 1. |If AVAILABLE THREADS is called
froma serial region, USING contains the nunber of
threads avail able for execution in parallel.

Page 76 of 4153

http://www.openmp.org./

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO

NAME

bl as_dpernmute - pernutes a real (double precision) array in
terms of the permutation vector P, output by dsortv

SYNOPSIS

SUBROUTI NE BLAS_DPERMUTE (N, P, |INCP, X, |NCX)

| NTEGER N

| NTEGER P(*)

| NTEGER | NCP
REAL*8 X(*)

| NTEGER | NCX
SUBROUTI NE BLAS DPERMUTE 64 (N, P, INCP, X, |NCX)
| NTEGER*8 N

| NTEGER*8 P(*)

| NTEGER*8 | NCP
REAL*8 X(*)

| NTEGER*8 | NCX

F95 | NTERFACE
SUBROUTI NE PERMUTE (X, P)

USE SUNPERF
SUBROUTI NE PERMUTE_64 (X, P)

USE SUNPERF

ARGUMENTS

N (input) INTEGER, the nunber of elenents to be permuted in X
If N <=1, the subroutine returns w thout trying
to permute X

P (input) INTEGER((N-1)*|1NCP|+1), the pernutation (index)
vector defined follows the sane conventions as
that for DITYPE SORTV. It records the details of

Page 77 of 4153

the interchanges of the elements of X during sort-
ing. That is X = P*X. In current inplementation, P
contains the index of sorted X

INCP (input) INTEGER, increnent for P
I NCP nust not be zero. INCP could be negative. |If
INCP < 0, the pernutation is applied in the oppo-
site direction. That is
If INCP > O,
if INCX > 0,
sorted X((i-1)*INCX+1l) = X(P((i-1)*INCP+1)),
if INCX < O,
sorted X((N-i)*|INCX +1) = X(P((i-21)*INCP+1));
If INCP < O,
if INCX > 0,
sorted X((i-21)*INCX+1) = X(P((N-i)*|INCP|l +1)).
if INCX < 0,
sorted X((N-i)*|INCX +1)
= X(P((N-i)*] I NCP| +1)) .

X (input/output) REAL*8(KIND)((N1)*|1NCX| +1), the array to
be pernmuted. M ninmum size (N-1)*| I NCX| +1 is
required

INCX (input) INTEGER, increnent for X
I NCX nmust not be zero. INCX could be negative. |If

INCX < 0, Xwill be pernuted in a reverse way (see
the description for | NCP above).

SEE ALSO

bl as_dsortv(3P), blas_dsort(3P)

Page 78 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO

NAME

bl as_dsort - sorts a real (double precision) vector X in
i ncreasi ng or decreasing order using quick sort algorithm

SYNOPSIS

SUBROUTI NE BLAS DSORT (SORT, N, X, |NCX)

| NTEGER SORT

| NTEGER N

REAL*8 X(*)

| NTEGER | NCX

SUBROUTI NE BLAS DSORT 64 (SORT, N, X, |NCX)
| NTEGER*8 SORT

| NTEGER*8 N

REAL*8 X(*)

| NTEGER*8 | NCX

F95 | NTERFACE
SUBROUTI NE SORT (X [, SORT])

USE SUNPERF
SUBROUTI NE SORT 64 (X [, SORT])
USE SUNPERF

The functionality of SORT is covered by SORTV

ARGUMENTS

SORT (input) INTEGER, indicating sort directions

SORT = 0, descending
SORT = 1, ascending
SORT = ot her val ue, error

SORT is default to 1 for F95 | NTERFACE

N (input) INTEGER, the nunber of elenents to be sorted in X

Page 79 of 4153

If N<= 1, the subroutine returns wthout trying
to sort X

X (input/output) REAL*8((N-1)*|INCX| +1), the array to be
sorted
M ni mum size (N-1)*]INCX| +1 is required

INCX (input) INTEGER, increnment for X
I NCX nmust not be zero. INCX could be negative. |If
INCX < 0, change the sorting direction defined by
SORT. That is
If SORT = 0, let SORT
If SORT = 1, let SORT

1, INCX
0, INCX

| I NCX] ;
| I NCX] .

SEE ALSO

bl as_dsortv(3P), blas_dpernute(3P)

Page 80 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO

NAME

bl as_dsortv - sorts a real (double precision) vector X in
increasing or decreasing order using quick sort algorithm
and overwite P with the pernmutation vector

SYNOPSIS

SUBROUTI NE BLAS _DSORTV (SORT, N, X, INCX, P, |NCP)

| NTEGER SORT
| NTEGER N
REAL*8 X(*)

| NTEGER | NCX
| NTEGER P(*)
| NTEGER | NCP

SUBROUTI NE BLAS DSORTV_64 (SORT, N, X, INCX, P, |NCP)
| NTEGER*8 SORT

| NTEGER*8 N

REAL*8 X(*)

| NTEGER*8 | NCX

| NTEGER*8 P(*)

| NTEGER*8 | NCP

F95 | NTERFACE
SUBROUTI NE SORTV (X [, SORT] [, P])

USE SUNPERF
SUBRQUTI NE SORTV_64 (X [, SORT] [, P])
USE SUNPERF

SORTV covers the functionality of SORT

ARGUMENTS

SORT (input) INTEGER, indicating sort directions

SORT = 0, descending

Page 81 of 4153

SORT = 1, ascending
SORT = ot her val ue, error
SORT is default to 1 for F95 | NTERFACE

N (input) INTEGER, the nunber of elenents to be sorted in X
If N<= 1, the subroutine returns wthout trying
to sort X

X (input/output) REAL*8((N-1)*|INCX| +1), the array to be
sorted
M ni mum size (N-1)*]INCX| +1 is required

INCX (input) INTEGER, increnment for X
I NCX nmust not be zero. INCX could be negative. |If
INCX < 0, change the sorting direction defined by
SORT. That is
If SORT = 0, let SORT
If SORT = 1, let SORT

1, INCX
0, INCX

| I NCX] ;
| I NCX] .

P (output) INTEGER((N-1)*|INCP|+1), the pernutation (index)
vector recording the details of the interchanges
of the elenents of X during sorting. That is X =
P*X. In this inplementation, P contains the index
of sorted X

INCP (input) INTEGER, increment fpr P

I NCP nust not be zero. INCP could be negative. |If
INCP < 0, store P(i) in reverse order. That is
If INCP > O,
if INCX > 0,
sorted X((i-1)*INCX+1l) = X(P((i-1)*INCP+1)),
if INCX < 0,
sorted X((N-i)*|INCX +1) = X(P((i-21)*INCP+1));
If INCP < O,
if INCX > 0,
sorted X((i-21)*INCX+1) = X(P((N-i)*|INCP|l +1)),
if INCX < 0,

sorted X((N-i)*|INCX +1)
= X(P((N-i)*|INCP] +1)).

SEE ALSO

bl as_dsort (3P), bl as_dpernute(3P)

Page 82 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO

NAME

blas_ipermute - pernmutes an integer array in terns of the
pernutati on vector P, output by dsortv

SYNOPSIS

SUBROQUTI NE BLAS | PERMUTE (N, P, |INCP, X, |NCX)

| NTEGER N

| NTEGER P(*)
| NTEGER | NCP
| NTEGER X(*)
| NTEGER | NCX

SUBROUTI NE BLAS | PERVUTE 64 (N, P, INCP, X, |NCX)
| NTEGER*8 N

| NTEGER*8 P(*)

| NTEGER*8 | NCP

| NTEGER*8 X(*)

| NTEGER*8 | NCX

F95 | NTERFACE
SUBROUTI NE PERMUTE (X, P)

USE SUNPERF
SUBROUTI NE PERMUTE_64 (X, P)

USE SUNPERF

ARGUMENTS

N (input) INTEGER, the nunber of elenents to be permuted in X
If N <=1, the subroutine returns w thout trying
to permute X

P (input) INTEGER((N-1)*|1NCP|+1), the pernutation (index)
vector defined follows the sane conventions as
that for DITYPE SORTV. It records the details of

Page 83 of 4153

the interchanges of the elements of X during sort-
ing. That is X = P*X. In current inplementation, P
contains the index of sorted X

INCP (input) INTEGER, increnent for P
I NCP nust not be zero. INCP could be negative. |If
INCP < 0, the pernutation is applied in the oppo-
site direction. That is
If INCP > O,
if INCX > 0,
sorted X((i-1)*INCX+1l) = X(P((i-1)*INCP+1)),
if INCX < O,
sorted X((N-i)*|INCX +1) = X(P((i-21)*INCP+1));
If INCP < O,
if INCX > 0,
sorted X((i-21)*INCX+1) = X(P((N-i)*|INCP|l +1)).
if INCX < 0,
sorted X((N-i)*|INCX +1)
= X(P((N-i)*] I NCP| +1)) .

X (input/output) INTEGER(KIND)((N1)*|INCX +1), the array
to be pernuted. Mninmum size (N1)*|[INCX +1 is
required

INCX (input) INTEGER, increnent for X
I NCX nmust not be zero. INCX could be negative. |If

INCX < 0, Xwill be pernuted in a reverse way (see
the description for | NCP above).

SEE ALSO

blas_isortv(3P), blas_isort(3P)

Page 84 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO

NAME

blas_isort - sorts an integer vector X in increasing

decreasi ng order using quick sort algorithm

SYNOPSIS

SUBROUTI NE BLAS | SORT (SORT, N, X, |NCX)

| NTEGER SORT

| NTEGER N

| NTEGER X(*)

| NTEGER | NCX

SUBROUTI NE BLAS | SORT 64 (SORT, N, X, |NCX)
| NTEGER*8 SORT

| NTEGER*8 N

| NTEGER*8 X(*)

| NTEGER*8 | NCX

F95 | NTERFACE
SUBROUTI NE SORT (X [, SORT])

USE SUNPERF
SUBROUTI NE SORT 64 (X [, SORT])
USE SUNPERF

The functionality of SORT is covered by SORTV

ARGUMENTS

SORT (input) INTEGER, indicating sort directions

SORT = 0, descending
SORT = 1, ascending
SORT = ot her val ue, error

SORT is default to 1 for F95 | NTERFACE

N (input) INTEGER, the nunber of elenents to be sorted in X

Page 85 of 4153

If N<= 1, the subroutine returns wthout trying
to sort X

X (input/output) INTEGER((N-1)*|INCX| +1), the array to be
sorted
M ni mum size (N-1)*]INCX| +1 is required

INCX (input) INTEGER, increnment for X
I NCX nmust not be zero. INCX could be negative. |If
INCX < 0, change the sorting direction defined by
SORT. That is
If SORT = 0, let SORT
If SORT = 1, let SORT

1, INCX
0, INCX

| I NCX] ;
| I NCX] .

SEE ALSO

bl as_isortv(3P), blas_ipernute(3P)

Page 86 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO
NAME
blas_isortv - sorts a real vector X in increasing or

decreasing order using quick sort algorithmand overwite P
with the pernutation vector

SYNOPSIS

SUBROUTI NE BLAS | SORTV (SORT, N, X, INCX, P, |NCP)

| NTEGER SORT
| NTEGER N

| NTEGER X(*)
| NTEGER | NCX
| NTEGER P(*)
| NTEGER | NCP

SUBROUTI NE BLAS | SORTV_64 (SORT, N, X, INCX, P, |NCP)
| NTEGER*8 SORT

I NTEGER*8 N

| NTECER*8 X(*)

I NTEGER*8 | NCX

| NTECER*8 P(*)

| NTEGER*8 | NCP

F95 | NTERFACE
SUBROUTI NE SORTV (X [, SORT] [, P])

USE SUNPERF
SUBRQUTI NE SORTV_64 (X [, SORT] [, P])
USE SUNPERF

SORTV covers the functionality of SORT

ARGUMENTS

SORT (input) INTEGER, indicating sort directions

SORT = 0, descending

Page 87 of 4153

SORT = 1, ascending
SORT = ot her val ue, error
SORT is default to 1 for F95 | NTERFACE

N (input) INTEGER, the nunber of elenents to be sorted in X
If N<= 1, the subroutine returns wthout trying
to sort X

X (input/output) INTEGER((N-1)*|INCX| +1), the array to be
sorted
M ni mum size (N-1)*]INCX| +1 is required

INCX (input) INTEGER, increnment for X
I NCX nmust not be zero. INCX could be negative. |If
INCX < 0, change the sorting direction defined by
SORT. That is
If SORT = 0, let SORT
If SORT = 1, let SORT

1, INCX
0, INCX

| I NCX] ;
| I NCX] .

P (output) INTEGER((N-1)*|INCP|+1), the pernutation (index)
vector recording the details of the interchanges
of the elenents of X during sorting. That is X =
P*X. In this inplementation, P contains the index
of sorted X

INCP (input) INTEGER, increment fpr P

I NCP nust not be zero. INCP could be negative. |If
INCP < 0, store P(i) in reverse order. That is
If INCP > O,
if INCX > 0,
sorted X((i-1)*INCX+1l) = X(P((i-1)*INCP+1)),
if INCX < 0,
sorted X((N-i)*|INCX +1) = X(P((i-21)*INCP+1));
If INCP < O,
if INCX > 0,
sorted X((i-21)*INCX+1) = X(P((N-i)*|INCP|l +1)),
if INCX < 0,

sorted X((N-i)*|INCX +1)
= X(P((N-i)*|INCP] +1)).

SEE ALSO

bl as_isort(3P), blas_ipernute(3P)

Page 88 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO

NAME

bl as_spermute - pernutes a real array in terns of the pernu-
tation vector P, output by dsortv

SYNOPSIS

SUBROUTI NE BLAS_SPERMUTE (N, P, |INCP, X, |NCX)

| NTEGER N

| NTEGER P(*)
| NTEGER | NCP
REAL X(*)

| NTEGER | NCX

SUBROUTI NE BLAS SPERMUTE 64 (N, P, INCP, X, |NCX)
| NTEGER*8 N

| NTEGER*8 P(*)

| NTEGER*8 | NCP

REAL X(*)

| NTEGER*8 | NCX

F95 | NTERFACE
SUBROUTI NE PERMUTE (X, P)

USE SUNPERF
SUBROUTI NE PERMUTE_64 (X, P)

USE SUNPERF

ARGUMENTS

N (input) INTEGER, the nunber of elenents to be permuted in X
If N <=1, the subroutine returns w thout trying
to permute X

P (input) INTEGER((N-1)*|1NCP|+1), the pernutation (index)
vector defined follows the sane conventions as
that for DITYPE SORTV. It records the details of

Page 89 of 4153

the interchanges of the elements of X during sort-
ing. That is X = P*X. In current inplementation, P
contains the index of sorted X

INCP (input) INTEGER, increnent for P
I NCP nust not be zero. INCP could be negative. |If
INCP < 0, the pernutation is applied in the oppo-
site direction. That is
If INCP > O,
if INCX > 0,
sorted X((i-1)*INCX+1l) = X(P((i-1)*INCP+1)),
if INCX < O,
sorted X((N-i)*|INCX +1) = X(P((i-21)*INCP+1));
If INCP < O,
if INCX > 0,
sorted X((i-21)*INCX+1) = X(P((N-i)*|INCP|l +1)).
if INCX < 0,
sorted X((N-i)*|INCX +1)
= X(P((N-i)*] I NCP| +1)) .

X (input/output) REAL(KIND) ((N-1)*|1NCX| +1), the array to be
perrmuted. M ninmum size (N-1)*| I NCX| +1 i s required

INCX (input) INTEGER, increnent for X
I NCX nmust not be zero. INCX could be negative. |If

INCX < 0, Xwill be pernuted in a reverse way (see
the description for | NCP above).

SEE ALSO

bl as_ssortv(3P), blas_ssort(3P)

Page 90 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO

NAME

bl as_ssort - sorts a real vector X in increasing or decreas-
ing order using quick sort algorithm

SYNOPSIS

SUBROUTI NE BLAS SSORT (SORT, N, X, INCX)

| NTEGER SORT

| NTEGER N

REAL X(*)

| NTEGER | NCX

SUBROUTI NE BLAS _SSORT 64 (SORT, N, X, |NCX)
| NTEGER*8 SORT

| NTEGER*8 N

REAL X(*)

| NTEGER*8 | NCX

F95 | NTERFACE
SUBROUTI NE SORT (X [, SORT])

USE SUNPERF
SUBROUTI NE SORT 64 (X [, SORT])
USE SUNPERF

The functionality of SORT is covered by SORTV

ARGUMENTS

SORT (input) INTEGER, indicating sort directions

SORT = 0, descending
SORT = 1, ascending
SORT = ot her val ue, error

SORT is default to 1 for F95 | NTERFACE

N (input) INTEGER, the nunber of elenents to be sorted in X

Page 91 of 4153

If N<= 1, the subroutine returns wthout trying
to sort X

X (input/output) REAL((N-1)*|1NCX| +1), the array to be
sorted
M ni mum size (N-1)*]INCX| +1 is required

INCX (input) INTEGER, increnment for X
I NCX nmust not be zero. INCX could be negative. |If
INCX < 0, change the sorting direction defined by
SORT. That is
If SORT = 0, let SORT
If SORT = 1, let SORT

1, INCX
0, INCX

| I NCX] ;
| I NCX] .

SEE ALSO

bl as_ssortv(3P), blas_spernute(3P)

Page 92 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
. ARGUMENTS
. SEEALSO

NAME

blas_ssortv - sorts a real vector X in increasing or
decreasing order using quick sort algorithmand overwite P
with the pernutation vector

SYNOPSIS

SUBROUTI NE BLAS_SSORTV (SORT, N, X, INCX, P, |NCP)

| NTEGER SORT
| NTEGER N
REAL X(*)

| NTEGER | NCX
| NTEGER P(*)
| NTEGER | NCP

SUBROUTI NE BLAS_SSORTV_ 64 (SORT, N, X, INCX, P, INCP)
| NTEGER*8 SORT

| NTEGER*8 N

REAL X(*)

| NTEGER*8 | NCX

| NTEGER*8 P(*)

| NTEGER*8 | NCP

F95 | NTERFACE
SUBROUTI NE SORTV (X [, SORT] [, P])

USE SUNPERF
SUBRQUTI NE SORTV_64 (X [, SORT] [, P])
USE SUNPERF

SORTV covers the functionality of SORT

ARGUMENTS

SORT (input) INTEGER, indicating sort directions

SORT = 0, descending

Page 93 of 4153

SORT = 1, ascending
SORT = ot her val ue, error
SORT is default to 1 for F95 | NTERFACE

N (input) INTEGER, the nunber of elenents to be sorted in X
If N<= 1, the subroutine returns wthout trying
to sort X

X (input/output) REAL((N-1)*|1NCX| +1), the array to be
sorted
M nimum size (N-1)*|INCX| +1 i s required

INCX (input) INTEGER, increnment for X
I NCX nmust not be zero. INCX could be negative. |If
INCX < 0, change the sorting direction defined by
SORT. That is
If SORT = 0, let SORT
If SORT = 1, let SORT

1, INCX
0, INCX

| I NCX] ;
| I NCX] .

P (output) INTEGER((N-1)*|INCP|+1), the pernutation (index)
vector recording the details of the interchanges
of the elenents of X during sorting. That is X =
P*X. In this inplementation, P contains the index
of sorted X

INCP (input) INTEGER, increment fpr P

I NCP nust not be zero. INCP could be negative. |If
INCP < 0, store P(i) in reverse order. That is
If INCP > O,
if INCX > 0,
sorted X((i-1)*INCX+1l) = X(P((i-1)*INCP+1)),
if INCX < 0,
sorted X((N-i)*|INCX +1) = X(P((i-21)*INCP+1));
If INCP < O,
if INCX > 0,
sorted X((i-21)*INCX+1) = X(P((N-i)*|INCP|l +1)),
if INCX < 0,

sorted X((N-i)*|INCX +1)
= X(P((N-i)*|INCP] +1)).

SEE ALSO

bl as_ssort (3P), blas_spernute(3P)

Page 94 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

caxpy - conpute y := alpha * x + vy

SYNOPSIS

SUBROUTI NE CAXPY(N, ALPHA, X, INCX, Y, INCY)

COWPLEX ALPHA
COWPLEX X(*), Y(*)
INTEGER N, INCX, |NCY

SUBROUTI NE CAXPY 64(N, ALPHA, X, INCX, Y, INCY)
COWPLEX ALPHA

COWPLEX X(*), Y(*)

INTEGER*8 N, INCX, |NCY

F95 | NTERFACE
SUBROUTI NE AXPY([N], ALPHA, X, [INCX], Y, [INCY])

COWPLEX :: ALPHA
COWPLEX, DIMENSION(:) :: X, Y

INTEGER :: N, INCX, |NCY

SUBROUTI NE AXPY 64([N], ALPHA, X, [INCX], Y, [INCY])
COWPLEX :: ALPHA

COWPLEX, DIMENSION(:) :: X, Y

INTEGER(8) :: N, INCX, INCY

C | NTERFACE
#i ncl ude <sunperf.h>

voi d caxpy(int n, conplex *al pha, conplex *x, int incx, com
plex *y, int incy);

voi d caxpy_64(1ong n, conplex *al pha, conplex *x, |ong incx,
conplex *y, long incy);

Page 95 of 4153

PURPOSE

caxpy conpute y := alpha * x + y where alpha is a scalar and
X and y are n-vectors.

ARGUMENTS
N (i nput)
On entry, N specifies the nunber of elenents in
the vector. N nust be at |east one for the sub-
routine to have any visible effect. Unchanged on
exit.

ALPHA (i nput)
On entry, ALPHA specifies the scalar al pha.
Unchanged on exit.

X (i nput)
array of DIMENSION at least (1 + (n - 1)*abs(
INCX)). Before entry, the incremented array X
must contain the vector x. Unchanged on exit.

I NCX (i nput)

On entry, INCX specifies the increment for the
el enents of X Unchanged on exit.

Y (i nput/out put)
array of DIMENSION at least (1 + (n - 1)*abs(
INCY)). On entry, the increnented array Y nust
contain the vector y. On exit, Y is overwitten by
t he updated vector vy.

I NCY (i nput)
On entry, INCY specifies the increment for the
el enents of Y. Unchanged on exit.

Page 96 of 4153

Contents

. NAME

. SYNOPSIS

. PURPOSE

. ARGUMENTS

NAME

caxpyi - Conpute y := alpha * x + vy

SYNOPSIS

SUBROUTI NE CAXPYI (NZ, A, X, INDX, Y)

COWPLEX A

COWPLEX X(*), Y(*)
| NTEGER NZ

| NTEGER | NDX(*)

SUBROUTI NE CAXPYI _64(Nz, A, X, INDX, Y)

COWPLEX A

COWPLEX X(*), Y(*)
| NTEGER*8 NZ

| NTEGER*8 | NDX(*)

F95 | NTERFACE
SUBROUTI NE AXPYI ([NZ], [A], X, INDX, Y)

COWLEX :: A
COWPLEX, DIMENSION(:) :: X, Y
INTEGER :: Nz
I NTEGER, DI MENSI ON(:) :: | NDX

SUBROUTI NE AXPYlI _64([NZ], [A], X, INDX, Y)
COWPLEX :: A
COWPLEX, DIMENSION(:) :: X, Y

I NTEGER(8) :: NZ
I NTEGER(8), DI MENSION(:) :: I NDX

PURPOSE

CAXPYl Conpute y := alpha * x + y where alpha is a scalar, x
is a sparse vector, and y is a vector in full storage form

doi =1, n
y(indx(i)) = alpha * x(i) + y(indx(i))

Page 97 of 4153

enddo

ARGUMENTS

NZ (input) - |NTEGER
Nunber of elenents in the conpressed form
Unchanged on exit.

A (input)
On entry, A(LPHA) specifies the scaling val ue.
Unchanged on exit. Ais defaulted to (1.0EO, 0.O0EQ)
for F95 | NTERFACE

X (i nput)
Vector containing the values of the conpressed form
Unchanged on exit.

I NDX (input) - | NTEGER
Vector containing the indices of the conpressed
form It is assuned that the elements in I NDX are
di stinct and greater than zero. Unchanged on exit.

Y (out put)
Vector on input which contains the vector Y in ful
storage form On exit, only the el enents

corresponding to the indices in | NDX have been
nodi fi ed.

Page 98 of 4153

Contents

. NAME

SYNOPSIS

o F95 INTERFACE

o C

INTERFACE

. DESCRIPTION
. ARGUMENTS
. SEEALSO

NAME

cbcomm -

SYNOPSIS

bl ock coordinate matrix-matrix nmultiply

SUBROUTI NE CBCOVM TRANSA, MB, N, KB, ALPHA, DESCRA,
*

*

*

| NTEGER

| NTEGER
COWPLEX
COWPLEX

VAL, BINDX, BJNDX, BNNZ, LB,
B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,

LDB, LDC, LWORK

Bl NDX(BNNZ) , BINDX(BNNZ)

ALPHA, BETA

VAL(LB*LB*BNNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

SUBROUTI NE CBCOWM 64(TRANSA, MB, N, KB, ALPHA, DESCRA,
*

*

*

| NTEGER* 8

| NTEGER* 8
COWPLEX
COWPLEX

VAL, BINDX, BJNDX, BNNZ, LB,
B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,

LDB, LDC, LWORK

Bl NDX(BNNZ) , BINDX(BNNZ)

ALPHA, BETA

VAL(LB*LB*BNNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

FO95 | NTERFACE

*

*

SUBROUTI
BNNZ,
| NTEGER
| NTEGER,
COWPLEX
COWPLEX,
COWPLEX,

SUBROUTI
BNNZ,

| NTEGER* 8

| NTEGER* 8
COWPLEX
COWPLEX,
COWPLEX,

NE BCOMM TRANSA, MB, [N] , KB, ALPHA, DESCRA, VAL, BI NDX, BJNDX,
LB, B, [LDB], BETA, C [LDC, [WORK], [LWORK])
TRANSA, MB, N, KB, BNNZ, LB

DI MENSI ON(:) :: DESCRA, BI NDX, BJNDX
ALPHA, BETA

DI MENSI ON(:) :: VAL

DIMENSION(:, :) :: B, C

NE BCOVM 64(TRANSA, MB, [N] , KB, ALPHA, DESCRA, VAL, BI NDX, BJNDX,
LB, B, [LDB], BETA, C [LDC, [WORK], [LWORK])

TRANSA, MB, N, KB, BNNZ, LB
, DIMENSION(:) :: DESCRA, BI NDX, BJNDX
ALPHA, BETA
DI MENSI ON(:) :: VAL
DIMENSION(:, :) :: B, C

Page 99 of 4153

C | NTERFACE
#i ncl ude <sunperf. h>

void chcomm(int transa, int nmb, int n, int kb, conplex

*al pha, int *descra, conplex *val, int *bindx, int *bjndx,
int bnnz, int I'b, conplex *b, int |db, conplex *beta,
conplex *c, int ldc);

void cbhconm 64(long transa, long nmb, long n, long kb,

conpl ex *al pha, |ong *descra, conplex *val, |ong *bindx,

| ong *bjndx, long bnnz, long I b, conplex *b, long Idb
conpl ex *beta, conplex *c, long |dc);

DESCRIPTION

cbcomm perforns one of the matrix-matri x operations
C <- alpha op(A) B + beta C
where op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A)

(' indicates matrix transpose),
Ais an (nb*Ib) by (kb*Ib) sparse matrix represented in the bl ock
coordi nate format, al pha and beta are scalars, C and B are dense
matrices.

ARGUMENTS

TRANSA(i nput) On entry, integer TRANSA specifies the form
of op(A) to be used in the matrix
mul tiplication as foll ows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

MB(i nput) On entry, integer MB specifies the nunmber of block rows
in the matrix A Unchanged on exit.

N(i nput) On entry, integer N specifies the nunmber of colums in
the matrix C. Unchanged on exit.

KB(i nput) On entry, integer KB specifies the nunber of block
colums in the matrix A. Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scal ar al pha.
Unchanged on exit.

DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure

. general

symretric (A=A")

Herm tian (A= CONJG A))

Tri angul ar

Skew(Anti)-Symetric (A=-A")

A WNEFO

Page 100 of 4153

5 : Di agonal
6 : SkewHernmitian (A= -CONJG(A'))
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n bl ock di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a scalar array of length
LB*LB*BNNZ consi sting of the non-zero bl ock
entries of A in any order. Each bl ock
is stored in standard col um-nmaj or form
Unchanged on exit.

Bl NDX(i nput) On entry, BINDX is an integer array of |ength BNNZ
consi sting of the block row indices of the non-zero
bl ock entries of A Unchanged on exit.

BJINDX(i nput) On entry, BINDX is an integer array of |ength BNNZ
consi sting of the block colum indices of the non-zero
bl ock entries of A Unchanged on exit.

BNNZ (i nput) On entry, integer BNNZ specifies the number of nonzero
bl ock entries in A Unchanged on exit.

LB (i nput) On entry, integer LB specifies the dinmension of dense
bl ocks conposing A Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading kb*lIb by n
part of the array B nust contain the matrix B, otherw se
the leading nb*Ib by n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.
C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading nb*lb by n
part of the array C nust contain the matrix C, otherw se
the leading kb*Ib by n part of the array C nust contain the
matrix C. On exit, the array Cis overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

Page 101 of 4153

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Quide avail able at:

http://math. nist.gov/ncsd/ St af f/ KReni ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard”, University of Tennessee, Knoxville, Tennessee,
1996:

http://ww. netlib.org/utk/papers/sparse. ps

NOTES/ BUGS
The all sparse blas matrix-matrix multiply routines for
bl ock entry formats are designed so that if DESCRA(1)> O,
the routines check the validity of each sparse block entry
given in the sparse blas representation. Block entries with
incorrect indices are not used and no error nessage rel ated
to the entries is issued.

The feature also provides a possibility to use just one
sparse matrix representati on of a general block matrix A for
computing natrix-matrix nmultiply for another sparse matrix
conposed by block triangles and/or the main bl ock di agonal
of A .

Assume that there is the sparse matrix representati on of a
general conplex matrix A deconposed in the form
A=L+D+ U

where L is the strictly block |lower triangle of A, Uis the
strictly block upper triangle of A, Dis the block diagonal
matri x. Let's | denotes the identity matrix.

Then the correspondence between the first three val ues of
DESCRA and the result matrix for the sparse representation

of Ais
DESCRA(1) DESCRA(2) DESCRA(3) RESULT
1 1 0 al pha*op(L+D+L") *B+bet a*C
1 1 1 al pha*op(L+l +L") *B+bet a*C
1 2 0 al pha*op(U +D+U) * B+bet a*C
1 2 1 al pha*op(U +l +U) * B+bet a*C
2 1 0 al pha*op(L+D+conj g(L"')) *B+bet a*C

Page 102 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

2 1 1 al pha*op(L+l +conj g(L"')) *B+bet a*C

2 2 0 al pha*op(conj g(U) +D+U) *B+bet a*C
2 2 1 al pha*op(conj g(U)+l +U) *B+bet a*C
3 1 1 al pha*op(L+l)*B+bet a*C

3 1 0 al pha*op(L+D) * B+bet a*C

3 2 1 al pha*op(U+l) *B+bet a*C

3 2 0 al pha*op(U+D) * B+bet a*C

4 1 0or 1 al pha*op(L+D-L') *B+bet a*C

4 2 0or 1 al pha*op(U+D- U) *B+bet a*C

5 1or 2 0 al pha*op(D) *B+bet a*C

5 1or 2 1 al pha*B+bet a*C

6 1 0or 1 al pha*op(L+D-conj g(L')) *B+beta*C
6 2 0Oor 1 al pha*op(U+D-conj g(U)) *B+bet a*C

Remarks to the table:

1. the value of DESCRA(3) is sinply ignored , if DESCRA(1)=
4 or 6 but the diagonal blocks which are referenced in the
sparse matrix representati on are used;

2. the diagonal blocks which are referenced in the sparse
matri x representation are not used, if DESCRA(3)=1 and
DESCRA(1)is one of 1, 2, 3 or 5;

3. if DESCRA(3) is not 1 and DESCRA(1l) is one of 1,2, 4 or
6, the type of D should correspond to the choosen val ue of
DESCRA(1)

Page 103 of 4153

Contents

. NAME

NAME

SYNOPSIS
o F951

NTERFACE

o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

cbdi nm - bl oc

SYNOPSIS

*

*

*

*

*

*

SUBROUTI NE

| NTEGER
| NTEGER
COWPLEX
COWPLEX

SUBROUTI NE

| NTEGER* 8

| NTEGER* 8
COWPLEX
COWPLEX

k diagonal format matrix-matrix multiply

CBDI MM TRANSA, MB, N, KB, ALPHA, DESCRA,
VAL, BLDA, |BDIAG NBD AG LB,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDI AG LB,

LDB, LDC, LWORK

| BDI AG{ NBDI AG)

ALPHA, BETA

VAL(LB* LB* BLDA*NBDI AG), B(LDB,*), C(LDC,*), WORK(LWORK)

CBDI MM 64(TRANSA, MB, N, KB, ALPHA, DESCRA,
VAL, BLDA, |BDIAG NBD AG LB,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDI AG LB,

LDB, LDC, LWORK

| BDI AG{ NBDI AG)

ALPHA, BETA

VAL(LB* LB* BLDA* NBDI AG), B(LDB,*), C(LDC,*), WORK(LWORK)

FO95 | NTERFACE

*

*

SUBROUTI NE BDI MM TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,

| BDI AG
| NTEGER
| NTEGER, DI
COWPLEX
COWPLEX, DI
COWPLEX, DI

NBDI AG LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
TRANSA, MB, KB, BLDA, NBDI AG LB
MENSI ON(:) DESCRA, | BDI AG
ALPHA, BETA
MENSI ON(:) :: VAL
MENSION(:,) :: B, C

SUBROUTI NE BDI MM 64(TRANSA, MB, [N, KB, ALPHA, DESCRA, VAL, BLDA,

| BDI AG
| NTEGER* 8
| NTEGER* 8,
COWPLEX
COWPLEX, DI
COWPLEX, DI

NBDI AG LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
TRANSA, MB, KB, BLDA, NBDI AG LB
DI MENSI ON(:) :: DESCRA, | BDI AG
ALPHA, BETA
MENSI ON(:) :: VAL
MENSION(:, @) :: B, C

Page 104 of 4153

C | NTERFACE
#i ncl ude <sunperf. h>

void chdinmm (int transa, int nb, int n, int kb, conplex
*al pha,
int *descra, conplex *val, int blda, int *ibdiag, int
nbdiag, int Ib, complex *b, int Idb, conplex *beta, conplex
*c, int ldc);
voi d chdinm 64(long transa, long nmb, long n, long kb,
conpl ex *al pha, |ong *descra, conplex *val, |ong blda,
l ong *ibdiag, |ong nbdiag, long I b, conplex *b, |ong |db,
conpl ex *beta, conplex *c, |ong |dc)

DESCRIPTION

cbdi mm perforns one of the matrix-matri x operations
C <- alpha op(A) B + bheta C
where op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A)

(' indicates matrix transpose),
Ais an (nb*Ib) by (kb*Ib) sparse matrix represented in the bl ock
di agonal format, al pha and beta are scalars, C and B are dense
matrices.

ARGUMENTS

TRANSA(i nput) TRANSA specifies the formof op(A) to be used in
the matrix multiplication as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

MB(i nput) On entry, MB specifies the nunber of block rows
in the matrix A Unchanged on exit.

N(i nput) On entry, N specifies the nunber of colums in the matrix C.
Unchanged on exit.

KB(i nput) On entry, KB specifies the nunmber of block colums in
the matri x A. Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scal ar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure
. general
symretric (A=A")
Herm tian (A= CONJG A))
Tri angul ar
Skew(Anti)-Symetric (A=-A")
Di agonal

a b wNEFE O

Page 105 of 4153

6 : SkewHernmitian (A= -CONJG(A'))
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n bl ock di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, two-di mensional LB*LB*BLDA-by-NBDI AG scal ar array
consi sting of the NBDI AG nonzero bl ock diagonal in
any order. Each dense block is stored in standard
col um-maj or form Unchanged on exit.

BLDA(i nput) On entry, BLDA*LB*LB specifies the |eading bl ock dinension
of VAL(). Unchanged on exit.

| BDI AG(i nput) On entry, integer array of |ength NBD AG consisting of the
correspondi ng di agonal offsets of the non-zero
bl ock di agonals of Ain VAL. Lower triangular
bl ock di agonal s have negative offsets, the nmain
bl ock di agonal has of fset 0, and upper triangular
bl ock di agonal s have positive offset. Unchanged on exit.

NBDI AG(i nput) On entry, NBDI AG specifies the nunber of non-zero bl ock
di agonal s in A. Unchanged on exit.

LB (i nput) On entry, LB specifies the dimension of dense bl ocks
conposing A. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading kb*lIb by n
part of the array B nust contain the matrix B, otherw se
the leading nb*Ib by n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.
BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.

C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading nb*Ib by n
part of the array C nust contain the matrix C, otherw se
the leading kb*Ib by n part of the array C nust contain the
matrix C. On exit, the array Cis overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinension of C as decl ared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

Page 106 of 4153

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Quide avail able at:

http://math. nist.gov/ncsd/ St af f/ KReni ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard”, University of Tennessee, Knoxville, Tennessee,
1996:

http://ww. netlib.org/utk/papers/sparse. ps

The routine is designed so that it provides a possibility to
use just one sparse matrix representation of a general
conmplex matrix A for conmputing matrix-matrix multiply for
anot her sparse matrix conposed by bl ock triangles and/or the
mai n bl ock di agonal of A The full description of the
feature for block entry formats is given in section

NOTES/ BUGS for the cbconm manpage.

Page 107 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

- NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE

. DESCRIPTION

. ARGUMENTS

. SEEALSO

NAME
cbdi sm - Dbl ock diagonal format triangular solve
SYNOPSIS

SUBROUTI NE CBDI SM| TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,

* VAL, BLDA, |1BDI AG NBDI AG LB,

* B, LDB, BETA, C, LDC, WORK, LWORK)

| NTEGER TRANSA, MB, N, UNI TD, DESCRA(5), BLDA, NBDI AG LB,
* LDB, LDC, LWORK

| NTEGER | BDI AG(NBDI AG

COWPLEX ALPHA, BETA

COVPLEX Dv(MB*LB*LB), VAL(LB*LB*BLDA, NBDI AG, B(LDB,*), C(LDC, *),
* WORK(LWORK)

SUBROUTI NE CBDI SM 64(TRANSA, MB, N, UNI TD, DV, ALPHA, DESCRA,
* VAL, BLDA, |1BDI AG NBDI AG LB,

* B, LDB, BETA, C, LDC, WORK, LWORK)

| NTEGER*8 TRANSA, MB, N, UNI TD, DESCRA(5), BLDA, NBDI AG LB,
* LDB, LDC, LWORK

| NTEGER*8 | BDI AG NBDI AG

COVPLEX ALPHA, BETA

COWPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDI AG, B(LDB,*), C(LDC, *),

*

VVORK(L\VORK)

FO95 | NTERFACE

*

*

SUBROUTI NE
| BDI AG,

| NTEGER

| NTEGER, DI

COWPLEX

COWPLEX, DI

COWPLEX, DI

SUBROUTI NE
| BDI AG,

| NTEGER* 8

| NTEGER* 8,

COWPLEX

BDI SM TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
NBDI AG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
TRANSA, MB, N, UNITD, BLDA, NBDI AG LB

MENSI ON(:) DESCRA, | BDI AG
ALPHA, BETA

MENSI ON(:) :: VAL, DV

MENSI ON(:, @) = B, C

BDI SM 64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BLDA,

NBDI AG LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
TRANSA, MB, N, UNITD, BLDA, NBDIAG LB

DI MENSI ON(:) :: DESCRA, | BDI AG

ALPHA, BETA

Page 108 of 4153

COWPLEX, DI MENSION(:) :: VAL, DV
COWLEX, DIMENSION(:, :) :: B, C

C | NTERFACE
#i ncl ude <sunperf. h>

void chdism (int transa, int nb, int n, int unitd, conplex
*dv, conplex *al pha, int *descra, conplex *val, int blda
int *ibdiag, int nbdiag, int Ib, conplex *b, int |db,
conpl ex *beta, complex *c, int |dc);

voi d chdism 64(long transa, long nb, long n, |ong unitd,
conpl ex *dv, conplex *al pha, |ong *descra, conplex *val

| ong bl da, |Iong *ibdiag, |ong nbdiag, long I b, conplex *b
I ong | db, conplex *beta, conplex *c, |long Idc)

DESCRIPTION

cbdi sm perforns one of the matrix-matri x operations

C <- alpha op(A) B + beta C, C <-al pha D op(A) B + beta C,
C <- alpha op(A) DB + beta C,

where al pha and beta are scalars, C and B are nmb*lb by n dense matri ces,

Dis a block diagonal matrix, Ais a sparse nb*lb by nb*lb unit, or non-unit,
upper or lower triangular matrix represented in the bl ock diagonal fornat
and op(A) is one of

op(A) =inv(A or op(A) =inv(A) or op(A) =inv(conjg(A))
(inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

TRANSA(i nput) TRANSA specifies the formof op(A) to be used in
the sparse matrix inverse as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

MB(i nput) On entry, MB specifies the nunber of block rows
in the matrix A Unchanged on exit.

N(i nput) On entry, N specifies the nunmber of col ums
in the matrix C. Unchanged on exit.

UNI TD(i nput) On entry, UNTD specifies the type of scaling:
1: ldentity matrix (argunment DV[] is ignored)
2 : Scale on left (row scaling)
3 : Scale on right (columm scaling)
Unchanged on exit.

DV(i nput) On entry, DV is an array of |ength MB*LB*LB consi sting
of the elenents of the diagonal blocks of the matrix D.
The size of each square block is LB-by-LB and each
bl ock is stored in standard col um-maj or form

Page 109 of 4153

ALPHA(i nput)

DESCRA (i nput)

VAL(i nput)

BLDA(i nput)

| BDI AG(i nput)

LB (i nput)

B (input)

LDB (i nput)

BETA (i nput)
C(i nput/ out put)

Unchanged on exit.

On entry, ALPHA specifies the scal ar al pha.
Unchanged on exit.

Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure

0 : general
1: symetric (A=A")
2 : Hermtian (A= CONDG A'))
3 : Triangular
4 : Skew(Anti)-Symetric (A=-A")
5 : Di agonal
6 : SkewHernmitian (A= -CONJG(A'))
Note: For the routine, DESCRA(1)=3 is only supported.

DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-identity blocks on the main di agonal
1: identity diagonal bl ocks
2 : diagonal blocks are dense matrices
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

On entry, VAL is a two-dinmensional LB*LB*BLDA-by- NBDl AG
array consi sting of the NBDI AG non-zero bl ock di agonal .
Each dense block is stored in standard col um- naj or
form Unchanged on exit.

On entry, BLDA*LB*LB specifies the I eading bl ock di mension
of VAL(). Unchanged on exit.

On entry, IBDIAGis an integer array of |ength NBD AG
consi sting of correspondi ng di agonal offsets of the
non-zero bl ock diagonals of Ain VAL. Lower triangular
bl ock di agonal s have negative offsets, the nmain bl ock
di agonal has offset 0, and upper triangul ar bl ock

di agonal s have positive offset. Elenents of |BD AG
MJUST be sorted in increasing order. Unchanged on exit.

On entry, LB specifies the dimension of dense bl ocks
conposing A. Unchanged on exit.

Array of DIMENSION (LDB, N).
On entry, the leading nb*Ib by n part of the array B
must contain the matrix B. Unchanged on exit.

On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

On entry, BETA specifies the scalar beta. Unchanged on exit.
Array of DIMENSION (LDC, N).

On entry, the leading nb*Ib by n part of the array C

must contain the matrix C On exit, the array Cis
overwitten.

Page 110 of 4153

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK(wor kspace) Scratch array of |ength LWORK.
On exit, if LMORK= -1, WORK(1) returns the optinmm size
of LWORK.

LWORK (i nput) On entry, LWORK specifies the length of WORK array. LWORK
shoul d be at |east MB*LB.

For good performance, LWORK should generally be |arger.
For optimum perfornmance on multiple processors, LWORK
>=MB*LB*N_CPUS where N _CPUS is the maxi mum nunber of
processors available to the program

If LMWORK=0, the routine is to allocate workspace needed.
If LMORK = -1, then a workspace query is assuned; the
routine only cal cul ates the opti mum size of the WORK array,

returns this value as the first entry of the WORK array,
and no error nessage related to LWORK i s issued by XERBLA.

SEE ALSO

Li bsunperf SPARSE BLAS is parallelized with the help of OPENVP and it is
fully conpatible with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN Sparse Bl as.

Besi des several new features and routines are inpl enmented.

NI ST FORTRAN Sparse Bl as User's Guide avail able at:

http://math. ni st. gov/ ncsd/ St af f / KRem ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprogranms (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee, 1996:

http://ww. netlib. org/utk/papers/sparse. ps

NOTES/ BUGS
1. No test for singularity or near-singularity is included
inthis routine. Such tests nust be perforned before calling
this routine.
2. |If DESCRA(3)=0 , the |l ower or upper triangular part of
each di agonal block is used by the routine dependi ng on
DESCRA(2)

3. If DESCRA(3)=1 , the diagonal blocks in the bl ock

di agonal representation of A don't need to be the identity
matri ces because these block entries are not used by the
routine in this case.

4. |f DESCRA(3)=2 , diagonal blocks are considered as dense
matrices and the LU factorization with partial pivoting is
used by the routine.

WORK(1)=0 on return if the factorization for all diagonal

Page 111 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

bl ocks has been conpl eted successfully, otherwi se WORK(1) =
- i where i is the block nunber for which the LU
factorization could not be conputed

5. The routine is designed so that it checks the validity of
each sparse block entry given in the sparse bl as
representation. Block entries with incorrect indices are not
used and no error nmessage related to the entries is issued.

The feature also provides a possibility to use the sparse
matri x representation of a general matrix A for solving
triangul ar systens with the upper or |ower block triangle of
A. But DESCRA(1) MJST be equal to 3 even in this case

Assume that there is the sparse matrix representation a
general matrix A deconposed in the form

A=L+D+ U

where L is the strictly block |lower triangle of A, Uis the
strictly bl ock upper triangle of A, Dis the block diagona
matrix. Let's | denotes the identity matrix.

Then the correspondence between the first three val ues of
DESCRA and the result matrix for the sparse representation
of Ais

DESCRA(1) DESCRA(2) DESCRA(3) RESULT
3 1 1 al pha*op(L+l) *B+bet a*C
3 1 0 al pha*op(L+D) * B+bet a*C
3 2 1 al pha*op(U+l) * B+bet a*C
3 2 0 al pha*op(U+D) * B+bet a*C

Page 112 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cbdsqr - conpute the singular val ue deconposition (SVD) of a
real N-by-N (upper or |ower) bidiagonal matrix B.

SYNOPSIS

SUBROUTI NE CBDSQR(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
LDC, WORK, | NFO

CHARACTER * 1 UPLO

COWPLEX VT(LDVT, *), U(LDU, *), C(LDC, *)

INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, |INFO
REAL D(*), E(*), WORK(*)

SUBROUTI NE CBDSQR _64(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,
C, LDC, WORK, | NFO

CHARACTER * 1 UPLO

COWPLEX VT(LDVT, *), U(LDU, *), C(LDC, *)

INTEGER*8 N, NCVT, NRU, NCC, LDVT, LDU, LDC, |NFO
REAL D(*), E(*), WORK(*)

F95 | NTERFACE

SUBROUTI NE BDSQR(UPLO, [N], [NCVT], [NRU, [NCC], D, E, VT, [LDVT],
U [LDU, C [LDC, [WORK], [INFQ])

CHARACTER(LEN=1) :: UPLO

COWPLEX, DIMENSION(:,:) :: VT, U, C

INTEGER :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, |NFO
REAL, DIMENSION(:) :: D, E WORK

SUBROUTI NE BDSQR 64(UPLO, [N], [NCVT], [NRU, [NCC], D, E VT, [LDvVT],
U [LDU, C [LDC, [WORK], [INFQ])

CHARACTER(LEN=1) :: UPLO
COWLEX, DIMENSION(:,:) :: VI, U C

INTEGER(8) :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, |NFO
REAL, DIMENSION(:) :: D, E, WORK
C | NTERFACE

#i ncl ude <sunperf.h>

Page 113 of 4153

voi d chdsqgr(char uplo, int n, int ncvt, int nru, int ncc,
float *d, float *e, conplex *vt, int |dvt, conplex
*u, int Idu, conplex *c, int ldc, int *info);

voi d chdsqr_64(char uplo, long n, long ncvt, long nru, |ong
ncc, float *d, float *e, conmplex *vt, long |dvt,
conpl ex *u, long I du, complex *c, long Ildc, |ong
*info);
PURPOSE

cbdsqr conputes the singular val ue deconmposition (SVD) of a
real N-by-N (upper or |ower) bidiagonal matrix B B =Q* S
* P (P denotes the transpose of P), where Sis a diagonal
matrix wth non-negative diagonal elenments (the singular
val ues of B), and Q and P are orthogonal matri ces.

The routine conmputes S, and optionally conputes U* Q P *
VI, or Q * C for given conplex input matrices U, VT, and
C.

See "Conputing Small Singular Val ues of Bidiagonal Matrices
Wth Guaranteed H gh Rel ative Accuracy," by J. Demmel and W
Kahan, LAPACK Wirking Note #3 (or SIAMJ. Sci. Statist. Com
put. vol. 11, no. 5, pp. 873-912, Sept 1990) and

"Accurate singular values and differential qd algorithns,"
by B. Parlett and V. Fernando, Technical Report CPAM 554,
Mat hemati cs Departnent, University of California at Berke-
ley, July 1992 for a detailed description of the algorithm

ARGUMENTS

UPLO (i nput)
='U: B is upper bidiagonal;
"L': B is |ower bidiagonal.

N (i nput) The order of the matrix B. N >= 0.

NCVT (i nput)
The nunber of colums of the matrix VT. NCVT >= 0.

NRU (i nput)
The nunber of rows of the matrix U NRU >= 0.

NCC (i nput)
The nunber of colums of the matrix C. NCC >= 0.

D (i nput/out put)
On entry, the n diagonal elenments of the bidiago-
nal matrix B. On exit, if INFO=0, the singular
val ues of B in decreasing order.

E (i nput/out put)
On entry, the elements of E contain the offdiago-
nal el ements of of the bidiagonal matrix whose SVD
is desired. On normal exit (INFO=0), E is des-

Page 114 of 4153

troyed. If the al gorithm does not converge (I NFO
> 0), Dand Ewll contain the diagonal and super-
di agonal el enents of a bidiagonal matrix orthogo-
nally equivalent to the one given as input. E(N)
is used for workspace.

VT (i nput/output)
On entry, an N-by-NCVT matrix VI. On exit, VI is
overwitten by P * VI. VT is not referenced if
NCVT = 0.

LDVT (i nput)
The | eadi ng di mension of the array VT. LDVT >=
max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.

U (i nput/out put)
On entry, an NRU-by-N matrix U. On exit, U is
overwitten by U* Q Uis not referenced if NRU

= 0.

LDU (i nput)
The | eading di mension of the array U LDU >=
max(1, NRU) .

C (i nput/out put)
On entry, an N-by-NCC matrix C. On exit, C is
overwitten by Q * C Cis not referenced if NCC
= 0.

LDC (i nput)
The | eading dimension of the array C LDC >=
max(1,N) if NCC > 0; LDC >=1 if NCC = 0.

WORK (wor kspace)
di mensi on (4*N)

I NFO (out put)
= 0: successful exit
<0: If INFO=-i, the i-th argunent had an ille-
gal val ue
> 0: the algorithmdid not converge; D and E con-
tain the elenments of a bidiagonal matrix which is

orthogonally simlar to the input nmatrix B; i f
INFO = i, i elenents of E have not converged to
zero.

Page 115 of 4153

Contents

. NAME

NAME

SYNOPSIS
o F951

NTERFACE

o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

cbel nm - bl oc

SYNOPSIS

*

*

SUBR&JTI NE

| NTEGER

| NTEGER
COWPLEX
COWPLEX

SUBROUTI NE
*

*

*

| NTEGER* 8

| NTEGER* 8
COWPLEX
COWPLEX

k Ell pack format matrix-matrix nmultiply

CBELMM TRANSA, MB, N, KB, ALPHA, DESCRA,
VAL, BINDX, BLDA, MAXBNZ, LB,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,

LDB, LDC, LWORK

Bl NDX(BLDA, MAXBNZ)

ALPHA, BETA

VAL(LB* LB* BLDA* MAXBNZ) , B(LDB, *), C(LDC, *), WORK(LWORK)

CBELMM 64(TRANSA, MB, N, KB, ALPHA, DESCRA,
VAL, BINDX, BLDA, MAXBNZ, LB,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,

LDB, LDC, LWORK

Bl NDX(BLDA, MAXBNZ)

ALPHA, BETA

VAL(LB* LB* BLDA* MAXBNZ) , B(LDB, *), C(LDC, *), WORK(LWORK)

FO95 | NTERFACE

*

*

SUBROUTI NE

| NTEGER
| NTEGER, DI
COWPLEX
COWPLEX, DI
COWPLEX, DI

SUBROUTI NE

| NTEGER* 8

| NTEGER* 8,
COWPLEX
COWPLEX, DI
COWPLEX, DI

BELMM TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BI NDX,
BLDA, MAXBNZ, LB, B, [LDB], BETA G, [LDC], [WORK], [LWORK])
TRANSA, MB, KB, BLDA, MAXBNZ, LB

MENSI ON(:) DESCRA, BI NDX

ALPHA, BETA

MENSI ON(:) :: VAL

MENSION(:,) :: B, C

BELMM 64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BI NDX,

BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC, [WORK], [LWORK])
TRANSA, MB, KB, BLDA, MAXBNZ, LB

DI MENSI ON(:) :: DESCRA, BI NDX

ALPHA, BETA

MENSI ON(:) :: VAL

MENSION(:, @) :: B, C

Page 116 of 4153

C | NTERFACE

#i ncl ude <sunperf. h>

void chelm(int transa, int nmb, int n, int kb,

conpl ex *al pha,

int *descra, conplex *val,

int *bindx, int blda, int maxbnz, int |b, conplex *b,
int 1db, conplex *beta, conplex *c, int ldc);
void cbel nm 64(long transa, long nmb, long n, long kb,

conpl ex *al pha,

| ong *descra, conplex *val, |ong *bindx,

| ong bl da, |ong maxbnz, long I b, conplex *b, |ong |db,

conpl ex *bet a,

DESCRIPTION

conplex *c, long Idc);

cbel mm perforns one of the matrix-matri x operations

C <-

al pha op(A) B + beta C

where al pha and beta are scalars, C and B are dense matri ces,
Ais an (nb*Ib) by (kb*Ib) sparse matrix represented in the
bl ock Ell pack format and op(A) is one of

op(A) = A

ARGUMENTS

TRANSA(i nput)

MB(i nput)

N(i nput)

KB(i nput)

ALPHA(i nput)
DESCRA (i nput)

op(A) = A or op(A) =conjg(A).
(' indicates matri x transpose)

TRANSA specifies the formof op(A) to be used in
the matrix multiplication as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

On entry, MB specifies the nunber of block rows
in the matrix A Unchanged on exit.

On entry, N specifies the nunber of colums in the matrix C.
Unchanged on exit.

On entry, KB specifies the nunmber of block colums in
the matri x A. Unchanged on exit.

On entry, ALPHA specifies the scalar al pha. Unchanged on exit.
Descriptor argument. Five elenment integer array:
DESCRA(l) matrix structure

gener al

symretric (A=A")

Herm tian (A= CONJG A))

Tri angul ar

Skew(Anti)-Symetric (A=-A")

Di agonal

Skew Hermitian (A= -CONJG(A'))

DESCRA(2) upper/lower triangul ar indicator

OO WNEO

Page 117 of 4153

1: |ower
2 . upper
DESCRA(3) nmi n bl ock di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a two-dinmensional LB*LB*BLDA-by- MAXBNZ
array consisting of the non-zero bl ocks, stored
colum-maj or within each dense bl ock. Unchanged on exit.

Bl NDX(i nput) On entry, BINDX is an integer two-di mensional BLDA- MAXBNZ
array such BINDX(i,:) consists of the block colum indices
of the nonzero blocks in block row i, padded by the integer
value i if the nunmber of nonzero blocks is |ess than
MAXBNZ. Unchanged on exit.

BLDA(i nput) On entry, BLDA specifies the |eading dinmension of BINDX(:,:).
Unchanged on exit.

MAXBNZ (input) On entry, NBDI AG specifies the max nunber of nonzeros
bl ocks per row. Unchanged on exit.

LB (i nput) On entry, LB specifies the dimension of dense bl ocks
conposing A. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading kb*lIb by n
part of the array B nust contain the matrix B, otherw se
the leading nb*Ib by n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.
C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading nb*Ib by n
part of the array C nust contain the matrix C, otherw se
the leading kb*Ib by n part of the array C nust contain the
matrix C. On exit, the array Cis overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinmension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.

Page 118 of 4153

Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Qui de avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRemi ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee,
1996:

http://ww. netlib.org/utk/papers/sparse. ps

The routine is designed so that it provides a possibility to
use just one sparse natrix representation of a general
conplex matrix A for conputing matrix-matrix nultiply for
anot her sparse matrix conposed by bl ock triangles and/or the
mai n bl ock di agonal of A The full description of the
feature for block entry formats is given in section

NOTES/ BUGS for the cbcomm manpage.

Page 119 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

NAME

cbel sm - bl ock Ell pack format triangul ar solve

SYNOPSIS

SUBRQJTI NE CBELSM TRANSA, MB, N, UNI TD, DV, ALPHA, DESCRA,
VAL, BINDX, BLDA, MAXBNZ, LB,

* B, LDB, BETA, C, LDC, WORK, LWORK)
| NTEGER TRANSA, MB, N, UNI TD, DESCRA(5), BLDA, MAXBNZ, LB,
* LDB, LDC, LWORK

INTEGER Bl NDX(BLDA, MAXBNZ)

COWPLEX ALPHA, BETA

COWPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC, *),
* VVORK(L\VORK)

SUBROUTI NE CBELSM 64(TRANSA, MB, N, UNI TD, DV, ALPHA, DESCRA,
* VAL, BINDX, BLDA, MAXBNZ, LB,

* B, LDB, BETA, C, LDC, WORK, LWRK)
I NTECER*8 TRANSA, MB, N, UNI TD, DESCRA(5), BLDA, MAXBNZ, LB,
* LDB, LDC, LWORK

| NTEGER*8 Bl NDX(BLDA, MAXBNZ)

COWPLEX ALPHA, BETA

COWPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC, *),
* VVORK(L\VORK)

FO95 | NTERFACE

SUBROUTI NE BELSM TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BI NDX,
* BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC, [WORK], [LWORK])

INTEGER TRANSA, MB, UNITD, BLDA, MAXBNZ, LB

| NTEGER, DI MENSI ON(:) :: DESCRA, Bl NDX

COWPLEX ALPHA, BETA

COWPLEX, DIMENSION(:) :: VAL, DV

COWPLEX, DIMENSION(:, :) :: B, C

SUBROUTI NE BELSM 64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
* BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC, [WORK], [LWORK])

INTEGER*8 TRANSA, MB, UNITD, BLDA, MAXBNZ, LB

| NTEGER*8, DI MENSI ON(:) :: DESCRA, Bl NDX

COWPLEX ALPHA, BETA

Page 120 of 4153

COVPLEX, DI MENSI ON(:) VAL, DV

COWPLEX, DI MENSION(:, :) :: B, C
C | NTERFACE
#i ncl ude <sunperf. h>
void chel sn(int transa, int nb, int n, int unitd,

conpl ex *dv, conplex *al pha, int *descra, conplex *val,
int *bindx, int blda, int maxbnz, int |b, conplex *b,
int 1db, conplex *beta, conplex *c, int ldc);
void cbelsm64(long transa, long nmb, long n, long unitd,
conpl ex *dv, conplex *al pha, |ong *descra, conplex *val,
| ong *bi ndx, long blda, |ong maxbnz, long Ib, conplex *b,
| ong | db, conplex *beta, conplex *c, long |dc);

DESCRIPTION

cbel smperforns one of the matrix-matri x operations

C <-
C <-

al pha
al pha

op(A) B + beta C,
op(A) DB + beta C,

where al pha and beta are scal ars,

C <-al pha D op(A) B + beta C,

C and B are nmb*lIb by n dense matri ces,

Dis a block diagonal

matrix, A is a sparse nb*lb by nb*lb unit, or

non-unit, upper or lower triangular matrix represented in the block ell pack
format and op(A) is one of
op(A) =inv(A or op(A) =inv(A) or op(A) =inv(conjg(A))

(inv denotes matrix inverse, '

ARGUMENTS

TRANSA(i nput)

MB(i nput)

N(i nput)

UNI TD(i nput)

DV(i nput)

i ndicates matri x transpose).

I nt eger TRANSA specifies the formof op(A) to be
used in the sparse matrix inverse as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

On entry, MB specifies the nunber of block rows
in the matrix A Unchanged on exit.

On entry, N specifies the nunmber of col ums
in the matrix C. Unchanged on exit.

On entry, integer UN TD specifies the type of scaling:
1: ldentity matrix (argunment DV[] is ignored)
2 : Scale on left (row scaling)
3 : Scale on right (columm scaling)

Unchanged on exit.

On entry, DV is an array of |ength MB*LB*LB consi sting
of the elenents of the diagonal blocks of the matrix D.
The size of each square block is LB-by-LB and each

bl ock is stored in standard col um-maj or form

Page 121 of 4153

Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scalar al pha.
Unchanged on exit.

DESCRA (i nput) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure

0 : general
1: symetric (A=A")
2 : Hermtian (A= CONDG A'))
3 : Triangular
4 : Skew(Anti)-Symetric (A=-A")
5 : Di agonal
6 : SkewHernmitian (A= -CONJG(A'))
Note: For the routine, DESCRA(1)=3 is only supported.

DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-identity blocks on the main di agonal
1: identity diagonal bl ocks
2 : diagonal blocks are dense matrices
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a two-dinmensional LB*LB*BLDA-by- MAXBNZ
array consisting of the non-zero bl ocks, stored
colum-maj or within each dense bl ock. Unchanged on exit.

Bl NDX(i nput) On entry, BINDX is an integer two-di mensi onal BLDA- MAXBNZ
array such BINDX(i,:) consists of the block colum indices
of the nonzero blocks in block row i, padded by the integer
value i if the nunber of nonzero bl ocks is |ess than MAXBNZ.
The bl ock colum indices MJST be sorted in increasing order
for each block row Unchanged on exit.

BLDA(i nput) On entry, BLDA specifies the |eading dinmension of BINDX(:,:).
Unchanged on exit.

MAXBNZ (input) On entry, MAXBNZ specifies the max nunber of nonzeros
bl ocks per row. Unchanged on exit.

LB (i nput) On entry, LB specifies the dimension of dense bl ocks
conposing A. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
On entry, the leading nb*Ib by n part of the array B
must contain the matrix B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.
BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.

C(input/output) Array of DIMENSION (LDC, N).
On entry, the leading nb*Ib by n part of the array C
must contain the matrix C On exit, the array Cis
overwitten.

Page 122 of 4153

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK(wor kspace) Scratch array of |ength LWORK.
On exit, if LMORK= -1, WORK(1) returns the optinmm size
of LWORK.

LWORK (i nput) On entry, LWORK specifies the length of WORK array. LWORK
shoul d be at | east MB*LB.

For good performance, LWORK should generally be |arger.
For optimum perfornmance on multiple processors, LWRK
>=MB*LB*N_CPUS where N _CPUS is the maxi mum nunber of
processors available to the program

If LMWORK=0, the routine is to allocate workspace needed.
If LMORK = -1, then a workspace query is assuned; the
routine only cal cul ates the opti mum size of the WORK array,

returns this value as the first entry of the WORK array,
and no error nessage related to LWORK i s issued by XERBLA.

SEE ALSO

Li bsunperf SPARSE BLAS is parallelized with the help of OPENVP and it is
fully conpatible with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN Sparse Bl as.

Besi des several new features and routines are inpl enmented.

NI ST FORTRAN Sparse Bl as User's Guide avail able at:

http://math. ni st. gov/ ncsd/ St af f / KRem ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprogranms (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee, 1996:

http://ww. netlib.org/utk/papers/sparse. ps

NOTES/ BUGS
1. No test for singularity or near-singularity is included
inthis routine. Such tests nust be perforned before calling
this routine.
2. If DESCRA(3)=0 , the |l ower or upper triangular part of
each di agonal block is used by the routine dependi ng on
DESCRA(2)

3. If DESCRA(3)=1 , the diagonal blocks in the block ellpack
representation of A don't need to be the identity matrices
because these bl ock entries are not used by the routine in
this case.

4. |f DESCRA(3)=2 , diagonal blocks are considered as dense

matrices and the LU factorization with partial pivoting is
used by the routine.

Page 123 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

WORK(1)=0 on return if the factorization for all diagona

bl ocks has been conpl eted successfully, otherwi se WORK(1) =
- i where i is the block nunber for which the LU
factorization could not be conputed

5. The routine is designed so that it checks the validity of
each sparse block entry given in the sparse bl as
representation. Block entries with incorrect indices are not
used and no error nmessage related to the entries is issued.

The feature also provides a possibility to use the sparse
matri x representation of a general matrix A for solving
triangul ar systens with the upper or |ower block triangle of
A. But DESCRA(1) MJST be equal to 3 even in this case

Assume that there is the sparse matrix representation a
general matrix A deconposed in the form

A=L+D+ U

where L is the strictly block |lower triangle of A, Uis the
strictly block upper triangle of A, Dis the block diagona
matrix. Let's | denotes the identity matrix.

Then the correspondence between the first three val ues of
DESCRA and the result matrix for the sparse representation
of Ais

DESCRA(1) DESCRA(2) DESCRA(3) RESULT
3 1 1 al pha*op(L+l) *B+bet a*C
3 1 0 al pha*op(L+D) * B+bet a*C
3 2 1 al pha*op(U+l) * B+bet a*C
3 2 0 al pha*op(U+D) * B+bet a*C

Page 124 of 4153

Contents

. NAME

NAME

SYNOPSIS
o F951

NTERFACE

o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

cbscnm - bl oc

SYNOPSIS

*

*

SUBR&JTI NE

| NTEGER

| NTEGER
COWPLEX
COWPLEX

SUBROUTI NE
*

*

*

| NTEGER* 8

| NTEGER* 8
COWPLEX
COWPLEX

where BNNZ =

k sparse colum matrix-matrix multiply

CBSCMM TRANSA, MB, N, KB, ALPHA, DESCRA,
VAL, BINDX, BPNTRB, BPNTRE, LB,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), LB,

LDB, LDC, LWORK

BI NDX(BNNZ), BPNTRB(KB), BPNTRE(KB)

ALPHA, BETA

VAL(LB*LB*BNNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

CBSCWM 64(TRANSA, MB, N, KB, ALPHA, DESCRA,
VAL, BINDX, BPNTRB, BPNTRE, LB,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), LB,

LDB, LDC, LWORK

BI NDX(BNNZ), BPNTRB(KB), BPNTRE(KB)

ALPHA, BETA

VAL(LB*LB*BNNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

BPNTRE(KB) - BPNTRB(1) .

FO95 | NTERFACE

*

*

SUBROUTI NE

BSCMM TRANSA, MB, [N, KB, ALPHA, DESCRA, VAL, BI NDX,

BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

| NTEGER
| NTEGER, DI
COWVPLEX
COWPLEX, DI
COWPLEX, DI

SUBROUTI NE

TRANSA, MB, KB, LB

MENSI ON(:) :: DESCRA, BI NDX, BPNTRB, BPNTRE
ALPHA, BETA

MENSI ON(:) :: VAL

MENSION(:, :) :: B, C

BSCVMM 64(TRANSA, MB, [N, KB, ALPHA, DESCRA, VAL, BI NDX,

BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

| NTEGER* 8
| NTEGER* 8,
COWPLEX

TRANSA, MB, KB, LB
DI MENSION(:) :: DESCRA, BI NDX, BPNTRB, BPNTRE
ALPHA, BETA

Page 125 of 4153

COWPLEX, DI MENSI ON(:) :: VAL
COWLEX, DIMENSION(:, :) :: B, C

C | NTERFACE
#i ncl ude <sunperf. h>

voi d cbscmm(int transa, int nmb, int n, int kb,

conpl ex *al pha, int *descra, conplex *val,

int *bindx, int *bpntrb, int *bpntre, int Ib, conplex *b,
int 1db, conplex *beta, conplex* ¢, int ldc);

void cbscnm 64(long transa, long nmb, long n, long kb,
conpl ex *al pha, |ong *descra, conplex *val, |ong *bindx,

Il ong *bpntrb, long *bpntre, long Ib, complex *b, long |db,
conpl ex *beta, complex *c, long |ldc);

DESCRIPTION

cbscmm perforns one of the matrix-matri x operations
C <- alpha op(A) B + beta C

where al pha and beta are scalars, C and B are dense matri ces,
Ais an (nb*Ib) by (kb*Ib) sparse matrix represented in the
bl ock sparse columm format and op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A).
(' indicates matri x transpose)

ARGUMENTS

TRANSA(i nput) TRANSA specifies the formof op(A) to be used in
the matrix multiplication as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

MB(i nput) On entry, MB specifies the nunber of block rows
in the matrix A Unchanged on exit.

N(i nput) On entry, N specifies the nunber of colums in the matrix C.
Unchanged on exit.

KB(i nput) On entry, KB specifies the nunmber of block colums in
the matri x A. Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scal ar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure
. general
symretric (A=A")
Herm tian (A= CONJG A))
Tri angul ar
Skew(Anti)-Symetric (A=-A")
Di agonal

a b wNEFE O

Page 126 of 4153

6 : SkewHernmitian (A= -CONJG(A'))
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n bl ock di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a scalar array of length LB*LB*BNNZ
consi sting of the non-zero block entries stored
colum-maj or within each dense bl ock where
BNNZ = BPNTRE(KB) - BPNTRB(1). Unchanged on exit.

Bl NDX(i nput) On entry, BINDX is an integer array of |ength BNNZ consi sting
of the block row indices of the block entries of A where
BNNZ = BPNTRE(KB) - BPNTRB(1). Unchanged on exit.

BPNTRB(i nput) On entry, BPNTRB is an integer array of |ength KB such
t hat BPNTRB(J) - BPNTRB(1) +1 points to |ocation in Bl NDX
of the first block entry of the J-th block col um
of A. Unchanged on exit.

BPNTRE(i nput) On entry, BPNTRE is an integer array of |ength KB such
t hat BPNTRE(J) - BPNTRB(1) points to |ocation in Bl NDX
of the last block entry of the J-th bl ock col um
of A. Unchanged on exit.

LB (i nput) On entry, LB specifies the dimension of dense bl ocks
conposing A. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading kb*lIb by n
part of the array B nust contain the matrix B, otherw se
the leading nb*Ib by n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.
BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.

C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading nb*Ib by n
part of the array C nust contain the matrix C, otherw se
the leading kb*Ib by n part of the array C nust contain the
matrix C. On exit, the array Cis overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

Page 127 of 4153

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Qui de avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRemi ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee
1996:

http://ww. netlib.org/utk/papers/sparse. ps

The routine is designed so that it provides a possibility to
use just one sparse nmatrix representati on of a genera
conplex matrix A for conputing matrix-matrix multiply for
anot her sparse matri x conposed by bl ock triangles and/or the
mai n bl ock di agonal of A The full description of the
feature for block entry formats is given in section

NOTES/ BUGS for the cbcomm manpage.

NOTES/ BUGS
It is known that there exists another representation of the
bl ock sparse colum format (see for exanple Y. Saad,
"Iterative Methods for Sparse Linear Systens", WPS, 1996).
Its data structure consists of three array instead of the
four used in the current inplenentation. The main
difference is that only one array, |A, containing the
pointers to the begi nning of each block colum in the arrays
VAL and BINDX is used instead of two arrays BPNTRB and
BPNTRE. To use the routine with this kind of block sparse
colum format the followi ng calling sequence should be used

CALL SBSCMM TRANSA, MB, N, KB, ALPHA, DESCRA
*

VAL, BINDX, |A [|A(2), LB,
* B, LDB, BETA, C, LDC, WORK, LWORK)

Page 128 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

NAME

cbscsm - bl ock sparse colum format triangul ar sol ve

SYNOPSIS

SUBRQJTI NE CBSCSM TRANSA, MB, N, UNI TD, DV, ALPHA, DESCRA,
VAL, BI NDX, BPNTRB, BPNTRE, LB,

* B, LDB, BETA, C, LDC, WORK, LWORK)
| NTEGER TRANSA, MB, N, UNI TD, DESCRA(5), LB,
* LDB, LDC, LWORK

INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
COWPLEX ALPHA, BETA
COWPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC *), WORK(LWORK)

SUBROUTI NE CBSCSM 64(TRANSA, MB, N, UNI TD, DV, ALPHA, DESCRA,
* VAL, BI NDX, BPNTRB, BPNTRE, LB,

* B, LDB, BETA, C, LDC, WORK, LWORK)
I NTECER*8 TRANSA, MB, N, UNI TD, DESCRA(5), LB,
* LDB, LDC, LWORK

| NTEGER*8 Bl NDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
COWPLEX ALPHA, BETA
COWPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC *), WORK(LWORK)
where: BNNZ = BPNTRE(MB)- BPNTRB(1)
F95 | NTERFACE

SUBROUTI NE BSCSM TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BI NDX,

* BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
INTEGER TRANSA, MB, N, UNITD, LB
| NTEGER, DI MENSI ON(:) :: DESCRA, BI NDX, BPNTRB, BPNTRE

COWVPLEX ALPHA, BETA
COWPLEX, DI MENSION(:) :: VAL, DV

COWPLEX, DIMENSION(:, :) :: B, C
SUBROUTI NE BSCSM 64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BI NDX,
* BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
INTEGER*8 TRANSA, MB, N, UNITD, LB

| NTEGER*8, DI MENSI ON(:) :: DESCRA, BI NDX, BPNTRB, BPNTRE

COWPLEX ALPHA, BETA

Page 129 of 4153

COWPLEX, DIMENSION(:) :: VAL, DV
COWPLEX, DIMENSION(:, :) :: B, C

C | NTERFACE
#i ncl ude <sunperf. h>

voi d chscsn(int transa, int nb, int n, int unitd,
conpl ex *dv, conplex *al pha, int *descra, conplex *val,
int *bindx, int *bpntrb, int *bpntre, int Ib, conplex *b,
int 1db, conplex *beta, conplex* ¢, int ldc);
void cbscsm64(long transa, long nmb, long n, long unitd,
conpl ex *dv, conplex *al pha, |ong *descra, conplex *val,
| ong *bi ndx, long *bpntrb, long *bpntre, long |Ib, conplex
*b, long | db, conplex *beta, conplex *c, long |ldc);

DESCRIPTION

dbscsm perforns one of the matrix-matri x operations

C <- alpha op(A) B + beta C, C <-al pha D op(A) B + beta C,
C <- alpha op(A) DB + beta C,

where al pha and beta are scalars, C and B are nmb*lb by n dense matri ces,
Dis a block diagonal matrix, A is a sparse nb*lb by nb*Ib unit, or
non-unit, upper or lower triangular matrix represented in the bl ock
sparse colum format and op(A) is one of

op(A) =inv(A or op(A) =inv(A) or op(A) =inv(conjg(A))
(inv denotes matrix inverse, ' indicates matrix transpose).

ARGUMENTS

TRANSA(i nput) On entry, integer TRANSA specifies the formof op(A) to be
used in the sparse matrix inverse as follows:.
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

MB(i nput) On entry, MB specifies the nunber of bl ock col ums
in the matrix A Unchanged on exit.

N(i nput) On entry, N specifies the nunmber of col ums
in the matrix C. Unchanged on exit.

UNI TD(i nput) On entry, integer UNITD specifies the type of scaling:
1: ldentity matrix (argunment DV[] is ignored)
2 : Scale on left (row scaling)
3 : Scale on right (columm scaling)
Unchanged on exit.

DV(i nput) On entry, DV is an array of |ength MB*LB*LB consi sting
of the elenents of the diagonal blocks of the matrix D.
The size of each square block is LB-by-LB and each
bl ock is stored in standard col um-maj or form

Page 130 of 4153

Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scalar al pha.
Unchanged on exit.

DESCRA (input) Descriptor argument. Five element integer array:
DESCRA(1) matrix structure

0 : general
1: symetric (A=A")
2 : Hermtian (A= CONDG A'))
3 : Triangular
4 : Skew(Anti)-Symmetric (A=-A")
5 : Di agonal
6 : SkewHernmitian (A= -CONJG(A'))
Note: For the routine, DESCRA(1)=3 is only supported.

DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-identity blocks on the main di agonal
1: identity diagonal bl ocks
2 : diagonal blocks are dense matrices
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a scalar array of length LB*LB*BNNZ
consi sting of the non-zero block entries stored
colum-maj or within each dense bl ock where
BNNZ = BPNTRE(MB) - BPNTRB(1) . Unchanged on exit.

Bl NDX(i nput) On entry, BINDX is an integer array of |ength BNNZ consi sting
of the block row indices of the block entries of A where
BNNZ = BPNTRE(MB) - BPNTRB(1). The bl ock row i ndi ces MJUST
be sorted in increasing order for each bl ock colum.
Unchanged on exit.

BPNTRB(i nput) On entry, BPNTRB is an integer array of |ength MB such
t hat BPNTRB(J) - BPNTRB(1)+1 points to |ocation in Bl NDX
of the first block entry of the J-th block col um
of A. Unchanged on exit.

BPNTRE(i nput) On entry, BPNTRE is an integer array of |ength MB such
t hat BPNTRE(J) - BPNTRB(1) points to |ocation in Bl NDX
of the last block entry of the J-th bl ock col um
of A. Unchanged on exit.

LB (input) On entry, LB specifies the dimension of dense bl ocks
conposing A. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
On entry, the leading nb*Ib by n part of the array B
must contain the matrix B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.

Page 131 of 4153

C(input/output) Array of DIMENSION (LDC, N).
On entry, the leading nb*Ib by n part of the array C
must contain the matrix C On exit, the array Cis
overwitten.

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK(wor kspace) Scratch array of |ength LWORK.
On exit, if LMORK= -1, WORK(1) returns the optimm size
of LWORK.

LWORK (i nput) On entry, LWORK specifies the length of WORK array. LWORK
shoul d be at | east MB*LB.

For good performance, LWORK should generally be |arger.
For optimum perfornmance on multiple processors, LWORK
>=MB*LB*N_CPUS where N _CPUS is the maxi mum nunber of
processors available to the program

If LMWORK=0, the routine is to allocate workspace needed.
If LMORK = -1, then a workspace query is assuned; the
routine only cal cul ates the opti mum size of the WORK array,

returns this value as the first entry of the WORK array,
and no error nessage related to LWORK i s issued by XERBLA.

SEE ALSO

Li bsunperf SPARSE BLAS is parallelized with the help of OPENVP and it is
fully conpatible with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN Sparse Bl as.

Besi des several new features and routines are inpl enmented.

NI ST FORTRAN Sparse Bl as User's Guide avail able at:

http://math. ni st. gov/ ncsd/ St af f / KRem ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprogranms (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee, 1996:

http://ww. netlib. org/utk/papers/sparse. ps
NOTES/ BUGS
1. No test for singularity or near-singularity is included
inthis routine. Such tests nust be perforned before calling
this routine.

2. |f DESCRA(3)=0 ,the |ower or upper triangular part of
each di agonal block is used by the routine dependi ng on
DESCRA(2)

3. If DESCRA(3)=1 , the diagonal blocks in the block sparse
colum representation of A don't need to be the identity
matri ces because these block entries are not used by the
routine in this case.

Page 132 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

4. |f DESCRA(3)=2 , the diagonal blocks are considered as
dense matrices and the LU factorization with parti al
pivoting is used by the routine. WORK(1)=0 on return if the
factorization for all diagonal blocks has been conpl et ed
successful ly, otherwise WORK(1) = -i where i is the block
nunber for which the LU factorization could not be conputed

5. The source is designed so that the routine only uses
necessary bl ock entries fromthe sparse matrix
representati on based on DESCRA(2) and DESCRA(3) . The
feature prevents the routine fromusing entries with

i ncorrect indices.

It also provides a possibility to use the sparse matrix
representation of a general matrix A for solving triangular
systens with the upper or |lower triangle of A The user
doesn't need to form additional sparse matrix
representations for the desired triangle of Ain this case.
It's enough to set the values of DESCRA(2) and DESCRA(3)
But DESCRA(1) nust be equal to 3 even in this case

6. It is known that there exists another representation of
the bl ock sparse colum format (see for exanple Y. Saad,
"Iterative Methods for Sparse Linear Systens", WPS, 1996).
Its data structure consists of three array instead of the
four used in the current inplenentation. The main
difference is that only one array, |A containing the
pointers to the begi nning of each block colum in the arrays
VAL and BINDX is used instead of two arrays BPNTRB and
BPNTRE. To use the routine with this kind of block sparse
colum format the followi ng calling sequence should be used

CALL CBSCSM TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
* VAL, BINDX, |A 1A(2), LB,
* B, LDB, BETA, C, LDC, WORK, LWORK)

Page 133 of 4153

Contents

. NAME

NAME

SYNOPSIS
o F951

NTERFACE

o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

cbsrnmm - bl oc

SYNOPSIS

*

*

SUBR&JTI NE

| NTEGER

| NTEGER
COWPLEX
COWPLEX

SUBROUTI NE
*

*

*

| NTEGER* 8

| NTEGER* 8
COWPLEX
COWPLEX

k sparse row format matrix-matrix nultiply

CBSRMWM TRANSA, MB, N, KB, ALPHA, DESCRA,
VAL, BINDX, BPNTRB, BPNTRE, LB,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), LB,

LDB, LDC, LWORK

BI NDX(BNNZ), BPNTRB(MB), BPNTRE(MB)

ALPHA, BETA

VAL(LB*LB*BNNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

CBSRWM 64(TRANSA, MB, N, KB, ALPHA, DESCRA,
VAL, BINDX, BPNTRB, BPNTRE, LB,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, MB, N, KB, DESCRA(5), LB,

LDB, LDC, LWORK

BI NDX(BNNZ) , BPNTRB(MB), BPNTRE(MB)

ALPHA, BETA

VAL(LB*LB*BNNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

where: BNNZ = BPNTRE(MB) - BPNTRB(1)

FO95 | NTERFACE

*

*

SUBROUTI NE

BSRMM TRANSA, MB, [N, KB, ALPHA, DESCRA, VAL, BI NDX,

BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

| NTEGER
| NTEGER, DI
COWVPLEX
COWPLEX, DI
COWPLEX, DI

SUBROUTI NE

TRANSA, MB, KB, LB

MENSI ON(:) :: DESCRA, BI NDX, BPNTRB, BPNTRE
ALPHA, BETA

MENSI ON(:) :: VAL

MENSION(:, :) :: B, C

BSRWM 64(TRANSA, MB, [N, KB, ALPHA, DESCRA, VAL, BI NDX,

BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

| NTEGER* 8
| NTEGER* 8,
COWPLEX

TRANSA, MB, KB, LB
DI MENSION(:) :: DESCRA, BI NDX, BPNTRB, BPNTRE
ALPHA, BETA

Page 134 of 4153

COWPLEX, DI MENSI ON(:) :: VAL
COWLEX, DIMENSION(:, :) :: B, C

C | NTERFACE
#i ncl ude <sunperf. h>

void cbsrmm(int transa, int nmb, int n, int kb,

conpl ex *al pha, int *descra, conplex *val,

int *bindx, int *bpntrb, int *bpntre, int Ib, conplex *b,
int 1db, conplex *beta, conplex* ¢, int ldc);

void cbsrmm64(long transa, long nmb, long n, long kb,
conpl ex *al pha, |ong *descra, conplex *val, |ong *bindx,

Il ong *bpntrb, long *bpntre, long Ib, complex *b, long |db,
conpl ex *beta, complex *c, long |ldc);

DESCRIPTION

cbsrmm perforns one of the matrix-matri x operations
C <- alpha op(A) B + beta C

where al pha and beta are scalars, C and B are dense matri ces,
Ais an (nb*Ib) by (kb*Ib) sparse matrix represented in the
bl ock sparse row format and op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A).
(' indicates matri x transpose)

ARGUMENTS

TRANSA(i nput) TRANSA specifies the formof op(A) to be used in
the matrix multiplication as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

MB(i nput) On entry, MB specifies the nunber of block rows
in the matrix A Unchanged on exit.

N(i nput) On entry, N specifies the nunber of colums in the matrix C.
Unchanged on exit.

KB(i nput) On entry, KB specifies the nunmber of block colums in
the matri x A. Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scal ar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure
. general
symretric (A=A")
Herm tian (A= CONJG A))
Tri angul ar
Skew(Anti)-Symetric (A=-A")
Di agonal

a b wNEFE O

Page 135 of 4153

6 : SkewHernmitian (A= -CONJG(A'))
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n bl ock di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a scalar array of length LB*LB*BNNZ
consi sting of the non-zero block entries stored
colum-maj or within each dense bl ock where
BNNZ = BPNTRE(MB) - BPNTRB(1). Unchanged on exit.

Bl NDX(i nput) On entry, BINDX is an integer array of |ength BNNZ consi sting
of the block colum indices of the block entries of A where
BNNZ = BPNTRE(MB) - BPNTRB(1). Unchanged on exit.

BPNTRB(i nput) On entry, BPNTRB is an integer array of |ength MB such
t hat BPNTRB(J) - BPNTRB(1) +1 points to |ocation in Bl NDX
of the first block entry of the J-th block row
of A. Unchanged on exit.

BPNTRE(i nput) On entry, BPNTRE is an integer array of |ength MB such
t hat BPNTRE(J) - BPNTRB(1) points to |ocation in Bl NDX
of the last block entry of the J-th block row
of A. Unchanged on exit.

LB (i nput) On entry, LB specifies the dimension of dense bl ocks
conposing A. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading kb*lIb by n
part of the array B nust contain the matrix B, otherw se
the leading nb*Ib by n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.
BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.

C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading nb*Ib by n
part of the array C nust contain the matrix C, otherw se
the leading kb*Ib by n part of the array C nust contain the
matrix C. On exit, the array Cis overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

Page 136 of 4153

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are

i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Qui de avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRemi ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee
1996:

http://ww. netlib.org/utk/papers/sparse. ps

The routine is designed so that it provides a possibility to
use just one sparse nmatrix representati on of a genera
conplex matrix A for conputing matrix-matrix multiply for
anot her sparse matri x conposed by bl ock triangles and/or the
mai n bl ock di agonal of A The full description of the
feature for block entry formats is given in section

NOTES/ BUGS for the cbcomm manpage.

NOTES/ BUGS
It is known that there exists another representation of the
bl ock sparse row format (see for exanple Y.Saad, "lterative

Met hods for Sparse Linear Systens", WPS, 1996). Its data
structure consists of three array instead of the four used
in the current inplenentation. The main difference is that
only one array, |A containing the pointers to the begi nning
of each block row in the arrays VAL and BINDX is used

i nstead of two arrays BPNTRB and BPNTRE. To use the routine
with this kind of block sparse row format the follow ng

cal l'ing sequence shoul d be used

CALL SBSRW TRANSA, MB, N, KB, ALPHA, DESCRA
*

VAL, BINDX, |A [|A(2), LB,
* B, LDB, BETA, C, LDC, WORK, LWORK)

Page 137 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

NAME

cbsrsm - bl ock sparse row format triangul ar sol ve

SYNOPSIS

SUBRQJTI NE CBSRSM TRANSA, MB, N, UNI TD, DV, ALPHA, DESCRA,
VAL, BI NDX, BPNTRB, BPNTRE, LB,

* B, LDB, BETA, C, LDC, WORK, LWORK)
| NTEGER TRANSA, MB, N, UNI TD, DESCRA(5), LB,
* LDB, LDC, LWORK

INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
COWPLEX ALPHA, BETA
COWPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC *), WORK(LWORK)

SUBROUTI NE CBSRSM 64(TRANSA, MB, N, UNI TD, DV, ALPHA, DESCRA,
* VAL, BI NDX, BPNTRB, BPNTRE, LB,

* B, LDB, BETA, C, LDC, WORK, LWORK)
I NTECER*8 TRANSA, MB, N, UNI TD, DESCRA(5), LB,
* LDB, LDC, LWORK

| NTEGER*8 Bl NDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
COWPLEX ALPHA, BETA
COWPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC *), WORK(LWORK)
where: BNNZ = BPNTRE(MB) - BPNTRB(1)
F95 | NTERFACE

SUBROUTI NE BSRSM TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BI NDX,

* BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
INTEGER TRANSA, MB, N, UNITD, LB
| NTEGER, DI MENSI ON(:) :: DESCRA, BI NDX, BPNTRB, BPNTRE

COWVPLEX ALPHA, BETA
COWPLEX, DI MENSION(:) :: VAL, DV

COWPLEX, DIMENSION(:, :) :: B, C
SUBROUTI NE BSRSM 64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BI NDX,
* BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
INTEGER*8 TRANSA, MB, N, UNITD, LB

| NTEGER*8, DI MENSI ON(:) :: DESCRA, BI NDX, BPNTRB, BPNTRE

COWPLEX ALPHA, BETA

Page 138 of 4153

COWPLEX, DIMENSION(:) :: VAL, DV
COWPLEX, DIMENSION(:, :) :: B, C

C | NTERFACE
#i ncl ude <sunperf. h>

void cbsrsm(int transa, int mb, int n, int unitd,
conpl ex *dv, conplex *al pha, int *descra, conplex *val,
int *bindx, int *bpntrb, int *bpntre, int Ib, conplex *b,
int 1db, conplex *beta, conplex* ¢, int ldc);
void cbsrsm64(long transa, long nmb, long n, long unitd,
conpl ex *dv, conplex *al pha, |ong *descra, conplex *val,
I ong *bindx, long *bpntrb, long *bpntre, long |b, conplex
*b, long | db, conplex *beta, conplex *c, long |ldc);

DESCRIPTION

cbsrsm perforns one of the matrix-matri x operations

C <- alpha op(A) B + beta C, C <-al pha D op(A) B + beta C,
C <- alpha op(A) DB + beta C,

where al pha and beta are scalars, C and B are nmb*lb by n dense matri ces,
Dis a block diagonal matrix, A is a sparse nb*lb by nb*Ib unit, or
non-unit, upper or lower triangular matrix represented in the bl ock
sparse row format and op(A) is one of

op(A) =inv(A or op(A) =inv(A) or op(A) =inv(conjg(A))
(inv denotes matrix inverse, ' indicates matrix transpose).

ARGUMENTS

TRANSA(i nput) On entry, integer TRANSA specifies the formof op(A) to be
used in the sparse matrix inverse as follows:.
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

MB(i nput) On entry, MB specifies the nunber of block rows
in the matrix A Unchanged on exit.

N(i nput) On entry, N specifies the nunmber of col ums
in the matrix C. Unchanged on exit.

UNI TD(i nput) On entry, integer UNITD specifies the type of scaling:
1: ldentity matrix (argunment DV[] is ignored)
2 : Scale on left (row scaling)
3 : Scale on right (columm scaling)
Unchanged on exit.

DV(i nput) On entry, DV is an array of |ength MB*LB*LB consi sting
of the elenents of the diagonal blocks of the matrix D.
The size of each square block is LB-by-LB and each
bl ock is stored in standard col um-maj or form

Page 139 of 4153

Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scalar al pha.
Unchanged on exit.

DESCRA (input) Descriptor argument. Five element integer array:
DESCRA(1) matrix structure

0 : genera
1: symetric (A=A")
2 : Hermtian (A= CONDG A'))
3 : Triangular
4 : Skew(Anti)-Symmetric (A=-A")
5 : Di agonal
6 : SkewHernmitian (A= -CONJG(A'))
Note: For the routine, DESCRA(1)=3 is only supported.

DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-identity blocks on the main di agonal
1: identity diagonal bl ocks
2 : diagonal blocks are dense matrices
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a scalar array of length LB*LB*BNNZ
consi sting of the non-zero block entries stored
colum-maj or within each dense bl ock where
BNNZ = BPNTRE(MB) - BPNTRB(1) . Unchanged on exit.

Bl NDX(i nput) On entry, BINDX is an integer array of |ength BNNZ consi sting
of the block colum indices of the block entries of A where
BNNZ = BPNTRE(MB) - BPNTRB(1). The bl ock col um i ndi ces MJST
be sorted in increasing order for each bl ock colum.
Unchanged on exit.

BPNTRB(i nput) On entry, BPNTRB is an integer array of |ength MB such
t hat BPNTRB(J) - BPNTRB(1)+1 points to |ocation in Bl NDX
of the first block entry of the J-th block row
of A. Unchanged on exit.

BPNTRE(i nput) On entry, BPNTRE is an integer array of |ength MB such
t hat BPNTRE(J) - BPNTRB(1) points to |ocation in Bl NDX
of the last block entry of the J-th block row
of A. Unchanged on exit.

LB (input) On entry, LB specifies the dimension of dense bl ocks
conposing A. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
On entry, the leading nb*Ib by n part of the array B
must contain the matrix B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.

Page 140 of 4153

C(input/output) Array of DIMENSION (LDC, N).
On entry, the leading nb*Ib by n part of the array C
must contain the matrix C On exit, the array Cis
overwitten.

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK(wor kspace) Scratch array of |ength LWORK.
On exit, if LMORK= -1, WORK(1) returns the optimm size
of LWORK.

LWORK (i nput) On entry, LWORK specifies the length of WORK array. LWORK
shoul d be at | east MB*LB.

For good performance, LWORK should generally be |arger.
For optimum perfornmance on multiple processors, LWORK
>=MB*LB*N_CPUS where N _CPUS is the maxi mum nunber of
processors available to the program

If LMWORK=0, the routine is to allocate workspace needed.
If LMORK = -1, then a workspace query is assuned; the
routine only cal cul ates the opti mum size of the WORK array,

returns this value as the first entry of the WORK array,
and no error nessage related to LWORK i s issued by XERBLA.

SEE ALSO

Li bsunperf SPARSE BLAS is parallelized with the help of OPENVP and it is
fully conpatible with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN Sparse Bl as.

Besi des several new features and routines are inpl enmented.

NI ST FORTRAN Sparse Bl as User's Guide avail able at:

http://math. ni st. gov/ ncsd/ St af f / KRem ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprogranms (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee, 1996:

http://ww. netlib. org/utk/papers/sparse. ps
NOTES/ BUGS
1. No test for singularity or near-singularity is included
inthis routine. Such tests nust be perforned before calling
this routine.

2. |If DESCRA(3)=0 , the |l ower or upper triangular part of
each di agonal block is used by the routine dependi ng on
DESCRA(2)

3. If DESCRA(3)=1 , the diagonal blocks in the block sparse
row representation of A don't need to be the identity
matri ces because these block entries are not used by the
routine in this case.

Page 141 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

4. |f DESCRA(3)=2 , the diagonal blocks are considered as
dense matrices and the LU factorization with parti al
pivoting is used by the routine. WORK(1)=0 on return if the
factorization for all diagonal blocks has been conpl et ed
successfully, otherwise WORK(1) = - i where i is the block
nunber for which the LU factorization could not be conputed

5. The routine is designed so that it checks the validity of
each sparse block entry given in the sparse bl as
representation. Block entries with incorrect indices are not
used and no error nmessage related to the entries is issued.

The feature also provides a possibility to use the sparse
matri x representation of a general matrix A for solving
triangul ar systens with the upper or |ower block triangle of
A. But DESCRA(1) MJST be equal to 3 even in this case

Assume that there is the sparse matrix representation a
general matrix A deconposed in the form

A=L+D+ U

where L is the strictly block |lower triangle of A, Uis the
strictly block upper triangle of A Dis the block diagona
matrix. Let's | denotes the identity matrix.

Then the correspondence between the first three val ues of
DESCRA and the result matrix for the sparse representation
of Ais

DESCRA(1) DESCRA(2) DESCRA(3) RESULT
3 1 1 al pha*op(L+l) *B+bet a*C
3 1 0 al pha*op(L+D) * B+bet a*C
3 2 1 al pha*op(U+l) * B+bet a*C
3 2 0 al pha*op(U+D) * B+bet a*C

6. It is known that there exists another representation of
the bl ock sparse row format (see for exanple Y. Saad,
"Iterative Methods for Sparse Linear Systens", WPS, 1996).
Its data structure consists of three array instead of the
four used in the current inplenentation. The main
difference is that only one array, |A containing the
pointers to the begi nning of each block row in the arrays
VAL and BINDX is used instead of two arrays BPNTRB and
BPNTRE. To use the routine with this kind of block sparse
row format the followi ng calling sequence should be used

CALL CBSRSM TRANSA, MB, N, UNI TD, DV, ALPHA, DESCRA,
* VAL, BINDX, |A 1A(2), LB,
* B, LDB, BETA, C, LDC, WORK, LWORK)

Page 142 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

ccnvcor - conpute the convolution or correlation of conplex
vectors

SYNOPSIS

SUBROUTI NE CCNVCOR(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M Y,
I FY, INCLY, INC2Y, Nz, K Z, IFZ, INClZ, |NC2Z, WORK, LWORK)

CHARACTER * 1 CNVCOR, FOUR

COWPLEX X(*), Y(*), Z(*), WORK(*)

INTEGER NX, IFX, INCX, NY, NPRE, M IFY, INCLY, INC2Y, Nz
K, 1FZ, INC1Z, INC2Z, LWORK

SUBROUTI NE CCNVCOR_64(CNVCOR, FQUR, NX, X, IFX, INCX, NY, NPRE, M Y,
I FY, INCLY, INC2Y, Nz, K Z, IFZ, INClZ, |NC2Z, WORK, LWORK)

CHARACTER * 1 CNVCOR, FOUR

COWPLEX X(*), Y(*), Z(*), WORK(*)

INTEGER*8 NX, IFX, INCX, NY, NPRE, M IFY, INCLY, INC2Y, NZ
K, 1FZ, INC1Z, INC2Z, LWORK

F95 | NTERFACE
SUBROUTI NE CNVCOR(CNVCOR, FOUR, NX, X, IFX, [INCX], NY, NPRE, M Y,
IFY, INCLY, INC2Y, Nz, K, Z, IFZ, INClZ, |INC2Z, WORK, [LWORK])

CHARACTER(LEN=1) :: CNVCOR, FOUR

COWPLEX, DIMENSION(:) :: X Y, Z, WRK

INTEGER :: NX, IFX, INCX, NY, NPRE, M |FY, [INCLlY, I|NC2Y,
NZ, K, IFZ, INC1Z, |INC2Z, LWORK

SUBROUTI NE CNVCOR_64(CNVCOR, FOUR, NX, X, IFX, [INCX], NY, NPRE, M
Y, ITFY, INCLY, INC2Y, Nz, K, Z, IFZ, [INClZ, |INC2Z, WORK, [LWORK])

CHARACTER(LEN=1) :: CNVCOR, FOUR

COWPLEX, DIMENSION(:) :: X Y, Z, WRK

INTEGER(8) :: NX [|FX [INCX, NY, NPRE, M [FY, INCLY, |NC2Y,
NZ, K, IFZ, INC1Z, |INC2Z, LWORK

C | NTERFACE
#i ncl ude <sunperf.h>

Page 143 of 4153

voi d ccnvcor (char cnvcor, char four, int nx, conplex *x, int
ifx, int incx, int ny, int npre, int m conplex
*y, int ify, int incly, int inc2y, int nz, int K,
conplex *z, int ifz, int inclz, int inc2z, conplex
*work, int |work);

voi d ccnvcor _64(char cnvcor, char four, long nx, conplex *x,
long ifx, long incx, long ny, long npre, long m
conplex *y, long ify, long incly, long inc2y, |ong
nz, long k, conplex *z, long ifz, long inclz, |ong
inc2z, conplex *work, |ong |work);

PURPOSE

ccnvcor computes the convolution or correlation of conplex
vectors.

ARGUMENTS

CNVCOR (i nput)
CHARACTER
V' or 'v' if convolution is desired, 'R or 'r
if correlation is desired.

FOUR (i nput)
CHARACTER
"T" or 't' if the Fourier transformmethod is to
be used, 'D or 'd if the conputation should be
done directly fromthe definition. The Fouri er
transform nethod is generally faster, but it nmay
i ntroduce noticeable errors into certain results
notably when both the real and inmaginary parts of
the filter and data vectors consist entirely of
integers or vectors where elenments of either the
filter vector or a given data vector differ signi-
ficantly in magnitude fromthe 1-norm of the vec-
tor.

NX (i nput)
Length of the filter vector. NX >= 0. CCNVCOR
will return imrediately if NX = 0.

X (input) dinension(*)
Filter vector.

I FX (input)
I ndex of the first elenent of X. NX >= |FX >= 1.
I NCX (i nput)
Stride between elenents of the filter vector in X
I NCX > 0.
NY (input)

Length of the input vectors. NY >= 0. CCNVCOR
will return imrediately if NY = 0.

NPRE (i nput)

Page 144 of 4153

The nunber of inplicit zeros prepended to the Y
vectors. NPRE >= 0.

M (i nput)
Nunber of input vectors. M>= 0. CCNVCOR wi |
return imediately if M= 0.

Y (input) dinmension(*)
I nput vectors.

I FY (input)
Index of the first elenment of Y. NY >= |FY >= 1.
I NC1Y (i nput)
Stride between el enents of the input vectors in Y.
I NC1Y > 0.
I NC2Y (i nput)
Stride between the input vectors in Y. [|NC2Y > 0.
NZ (input)
Length of the output vectors. Nz >= 0. CCNVCOR
will return imediately if NZ = 0. See the Notes

section below for information about how this argu-
ment interacts with NX and NY to control circular
versus end-off shifting.

K (input)
Nunber of Z vectors. K >= 0. If K = 0 then
CCNVCOR will return imediately. |If K< Mthen
only the first Kinput vectors will be processed.
If K> Mthen Minput vectors will be processed.

Z (output)

di mensi on(*)
Resul t vectors.
I FZ (input)
Index of the first elenent of Z NZ >= |FZ >= 1.

I NC1Z (i nput)
Stride between el enments of the output vectors in
Z. I NC1Z > 0.

I NC2Z (i nput)
Stride between the output vectors in Z INC2Zz >
0.

WORK (i nput/ out put)

(i nput/scratch) dimensi on(LWORK)

Scratch space. Before the first call to CCNVCOR
with particular values of the integer argunents
the first elenment of WORK nust be set to zero. |If
WORK is witten between calls to CCNVCOR or if
CCNVCOR is called with different values of the
integer argunents then the first element of WORK
must again be set to zero before each call. | f
WORK has not been witten and the sane val ues of
the integer argunents are used then the first ele-
ment of WORK to zero. This can avoid certain ini-
tializations that store their results into WORK,
and avoiding the initialization can make CCNVCOR

Page 145 of 4153

run faster.

LWORK (i nput)
Length of WORK. LWORK >= 2* MAX(NX, NY+NPRE, NZ) +8.

Page 146 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

ccnvcor2 - conpute the convolution or correlation of conplex
matri ces

SYNOPSIS

SUBROUTI NE CCNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, M, NZ, Z,
LDZ, WORK, LWORK)

CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
SCRATCHY

COWPLEX X(LDX, *), Y(LDY,*), Z(LDZ *), WORK(*)

INTEGER MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, Mz, Nz, LDZ
LVORK

SUBROUTI NE CCNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, M, NZ, Z,
LDZ, WORK, LWORK)

CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
SCRATCHY

COWPLEX X(LDX, *), Y(LDY,*), Z(LDZ *), WORK(*)

INTEGER*8 MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, Nz, LDZ,
LVORK

F95 | NTERFACE
SUBROUTI NE CNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,

SCRATCHY, [MX], [NX], X, [LDX], [M], [NY], MPRE, NPRE, Y, [LDY],
[MZ], [NZ], Z, [LDZ], WORK, [LWORK])

CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
TRANSY, SCRATCHY

COWPLEX, DI MENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: X Y, Z

I NTEGER :: MX, NX, LDX, My, NY, MPRE, NPRE, LDY, M, Nz,
LDZ, LWORK

SUBROUTI NE CNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,

SCRATCHY, [MX], [NX], X, [LDX], [M], [NY], MPRE, NPRE, Y, [LDY],
[MZ], [NZ], Z, [LDZ], WORK, [LWORK])

Page 147 of 4153

CHARACTER(LEN=1)
TRANSY, SCRATCHY
COVPLEX, DI MENSION(:) :: WORK
COWPLEX, DIMENSION(:,:) :: X, Y, Z
| NTECER(8) MX, NX, LDX, My, NY, MPRE, NPRE, LDY, MZ, Nz,
LDZ, LWORK

C | NTERFACE
#i ncl ude <sunperf.h>

CNVCOR, METHOD, TRANSX, SCRATCHX,

voi d ccnvcor2(char cnvcor, char nethod, char transx, char
scratchx, char transy, char scratchy, int nx, int
nx, conplex *x, int ldx, int nmy, int ny, int npre,
int npre, conplex *y, int ldy, int ng, int nz,
conplex *z, int |dz, conplex *work, int |work);

voi d ccnvcor2_64(char cnvcor, char method, char transx, char
scratchx, char transy, char scratchy, |ong nx,
I ong nx, complex *x, long Idx, long ny, |long ny,
long npre, long npre, conplex *y, long |Idy, |ong
ne, long nz, conmplex *z, long |dz, conplex *work,
| ong | worK);

PURPOSE

ccnvcor 2 conputes the convol ution or correl ation of conplex
matri ces.

ARGUMENTS

CNVCOR (i nput)
V' or 'v' to conpute convolution, 'R or 'r' to
conpute correl ation.

METHOD (i nput)
'"T" or '"t' if the Fourier transformnethod is to

be used, 'D or 'd to conpute directly fromthe
definition.

TRANSX (i nput)
"N or 'n'" if Xis the filter matrix, 'T" or 't'
if transpose(X) is the filter matrix.

SCRATCHX (i nput)
"N or 'n" if X nust be preserved, 'S or 's' if X
can be wused as scratch space. The contents of X
are undefined after returning froma call in which
Xis allowed to be used for scratch.

TRANSY (i nput)
"N or 'n" if Yis the input matrix, 'T or "t' if
transpose(Y) is the input nmatrix.

SCRATCHY (i nput)
"N or 'n" if Y nust be preserved, 'S or 's' if Y
can be wused as scratch space. The contents of Y

Page 148 of 4153

are undefined after returning froma call in which
Y is allowed to be used for scratch.

MX (i nput)
Nunber of rows in the filter matrix. MX >= 0.

NX (i nput)
Nunber of columms in the filter matrix. NX >= 0.

X (i nput)
On entry, the filter matrix. Unchanged on exit if
SCRATCHX is 'N or 'n', wundefined on exit if
SCRATCHX is 'S'" or 's'.

LDX (i nput)
Leadi ng di mension of the array that contains the
filter matrix.

MY (i nput)
Nunber of rows in the input matrix. MY >= 0.

NY (i nput)
Nunmber of colums in the input matrix. NY >= 0.

MPRE (i nput)
Nunber of inplicit zeros to prepend to each row of
the input matrix. MPRE >= 0.

NPRE (i nput)
Nunber of inplicit zeros to prepend to each col um
of the input matrix. NPRE >= 0.

Y (input)
Input matrix. Unchanged on exit if SCRATCHY is
"N or 'n', undefined on exit if SCRATCHY is 'S
or 's'.

LDY (i nput)

Leadi ng di mension of the array that contains the
i nput matrix.

MZ (i nput)
Nunber of rows in the output matrix. M >= 0.
CCNVCOR2 wi I I return inmediately if MZ = 0.

NZ (input)
Nunber of columms in the output matrix. Nz >= 0.
CCNVCOR2 wi Il return inmmediately if NZ = 0.

Z (output)
di mensi on(LDz, *)
Result natri x.

LDZ (i nput)
Leadi ng di mension of the array that contains the
result matrix. LDZ >= MAX(1, MZ).

WORK (i nput/ out put)
(i nput/scratch) dimensi on(LWORK)
On entry for the first call to CCNVCOR2, WORK(1)
must contain CMPLX(O0.0,0.0). After the first
call, WORK(1) nust be set to OCMPLX(0.0,0.0) iff

Page 149 of 4153

WORK has been altered since the last call to this
subroutine or if the sizes of the arrays have
changed.

LWORK (i nput)

Length of the work vector. The upper bound of the
wor kspace length requirenent is 2 * (MYC + NYC) +
15, where MYC = MAX(MAX(MX, NX), MAX(MY, NY) +NPRE)
and NYC = MAX(MAX(MX, NX), MAX(MY, NY)+MPRE). If
LWORK i ndi cates a workspace that is too small, the
routine will allocate its owm workspace. |[|f the
FFT is not used, the value of LWORK is uninpor-
tant.

Page 150 of 4153

Contents

. NAME

SYNOPSIS

o F95 INTERFACE
o CINTERFACE

. DESCRIPTION
. ARGUMENTS
. SEEALSO
NAME
ccoomm - coordinate matrix-matrix multiply
SYNOPSIS
SUBR&JTI NE CCOOMM TRANSA, M N, K, ALPHA, DESCRA,
VAL, | NDX, JNDX, NNz,
* B, LDB, BETA, C, LDC, WORK, LWORK)
| NTEGER TRANSA, M N, K, DESCRA(5), NNz
* LDB, LDC, LWORK
| NTEGER I NDX(NNZ) , JNDX(NNZ)
COWPLEX ALPHA, BETA
COWPLEX VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)
SUBROUTI NE CCOOWM 64(TRANSA, M N, K, ALPHA, DESCRA,
* VAL, | NDX, JNDX, NNz,
* B, LDB, BETA, C, LDC, WORK, LWORK)
I NTEGER*8 TRANSA, M N, K, DESCRA(5), NNZ
* LDB, LDC, LWORK
| NTEGER*8 | NDX(NNZ), JNDX(NNz)
COWPLEX ALPHA, BETA
COWPLEX VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

FO95 | NTERFACE

*

*

SUBR&JTI NE COOVMWM TRANSA, M [N}, K, ALPHA, DESCRA,
VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDqQ,
[VWORK], [LWORK])

I NTEGER TRANSA, M K, NN\Z

I NTEGER, DIMENSION(:) :: DESCRA, |NDX, JNDX

COWPLEX ALPHA, BETA

COVPLEX, DI MENSION(:) :: VAL

COWPLEX, DIMENSION(:, :) :: B, C

SUBR&JTI NE COOWM 64(TRANSA, M [N], K, ALPHA, DESCRA,
VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LD],
[VWORK], [LWORK])

| NTEGER*8 TRANSA, M K, NNZ

| NTEGER*8, DI MENSION(:) :: DESCRA, |NDX, JNDX

COWPLEX ALPHA, BETA

Page 151 of 4153

COWPLEX, DI MENSI ON(:) :: VAL
COWLEX, DIMENSION(:, :) :: B, C

C | NTERFACE
#i ncl ude <sunperf. h>

void ccoomm (int transa, int m int n, int k, conplex

*al pha, int *descra, conplex *val, int *indx, int *jndx, int
nnz, conplex *b, int Idb, conplex *beta, conplex *c, int
I dc);
voi d ccoomm 64 (long transa, long m long n, |ong Kk,
conpl ex *al pha, |ong *descra, conplex *val, |ong *indx,

long *jndx, long nnz, conplex *b, long |db,
conpl ex *beta, conplex *c, long |dc);

DESCRIPTION

ccoomm perforns one of the matrix-matri x operations
C <- alpha op(A) B + beta C
where op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A)

(' indicates matrix transpose),
A is an Mby-K sparse matrix represented in the coordi nate fornat,
al pha and beta are scalars, C and B are dense mmtrices.

ARGUMENTS

TRANSA(i nput) On entry, integer TRANSA specifies the form
of op(A) to be used in the matrix
mul tiplication as foll ows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, integer M specifies the number of rows in
the matri x A. Unchanged on exit.

N(i nput) On entry, integer N specifies the nunmber of colums in
the matrix C. Unchanged on exit.

K(i nput) On entry, integer K specifies the nunber of col ums
in the matrix A Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scal ar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array.
DESCRA(1) matrix structure
. general
symretric (A=A")
Herm tian (A= CONJG A))
Tri angul ar
Skew(Anti)-Symetric (A=-A")

A WNEFO

Page 152 of 4153

5 : Di agonal
6 : SkewHernmitian (A= -CONJG(A'))
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL (i nput) On entry, VAL is a scalar array array of |ength
NNZ consi sting of the non-zero entries of A
in any order. Unchanged on exit.

I NDX (i nput) On entry, INDX is an integer array of |ength NNZ
consi sting of the corresponding row indi ces of
the entries of A Unchanged on exit.

JNDX (i nput) On entry, JNDX is an integer array of |length NNZ
consi sting of the correspondi ng col um i ndices of
the entries of A Unchanged on exit.

NNZ (i nput) On entry, integer NNZ specifies the nunmber of
non-zero elements in A Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading k by n
part of the array B nust contain the matrix B, otherw se
the leading mby n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.
C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading mby n
part of the array C nust contain the matrix C, otherw se
the leading k by n part of the array C nust contain the
matrix C. On exit, the array C is overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinmension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN

Page 153 of 4153

Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Qui de avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRemi ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee,
1996:

http://ww. netlib.org/utk/papers/sparse. ps

NOTES/ BUGS
The all conplex sparse blas matrix-matrix multiply routines
except the skyline and jagged-di agonal format routines are
desi gned so that if DESCRA(1)> 0, the routines check the
validity of each sparse entry given in the sparse bl as
representation. Entries with incorrect indices are not used
and no error nessage related to the entries is issued.

The feature also provides a possibility to use just one
sparse matrix representation of a general matrix A for
conputing matrix-matrix rmultiply for another sparse matrix
conposed by triangles and/or the main diagonal of A .

Assume that there is the sparse matrix representati on of a
general conplex matrix A deconposed in the form

A=L+D+ U
where L is the strictly lower triangle of AL Uis the
strictly upper triangle of A, Dis the diagonal matrix.
Let's | denotes the identity natrix.

Then the correspondence between the first three val ues of
DESCRA and the result matrix for the sparse representation

of Ais
DESCRA(1) DESCRA(2) DESCRA(3) RESULT
1 1 0 al pha*op(L+D+L") *B+bet a*C
1 1 1 al pha*op(L+l +L') * B+bet a*C
1 2 0 al pha*op(U +D+U) * B+bet a*C
1 2 1 al pha*op(U +l +U) * B+bet a*C
2 1 0 al pha*op(L+D+conj g(L')) *B+bet a*C
2 1 1 al pha*op(L+l +conj g(L')) *B+beta*C
2 2 0 al pha*op(conj g(U) +D+U) *B+bet a*C
2 2 1 al pha*op(conj g(U)+l +U) *B+bet a*C

Page 154 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

3 1 1 al pha*op(L+l)*B+bet a*C

3 1 0 al pha*op(L+D) * B+bet a*C

3 2 1 al pha*op(U+l) *B+bet a*C

3 2 0 al pha*op(U+D) * B+bet a*C

4 1 0or 1 al pha*op(L-L"')*B+beta*C

4 2 0or 1 al pha*op(U- U) *B+bet a*C

5 1or 2 0 al pha*op(D) *B+bet a*C

5 1or 2 1 al pha*B+bet a*C

6 1 0or 1 al pha*op(L-conj g(L'))*B+tbeta*C
6 2 0or 1 al pha*op(U-conj g(U)) *B+beta*C

Remarks to the table:

1. the value of DESCRA(3) is sinply ignored and the
di agonal entries given in the sparse matrix representation
are not used by the routine, if DESCRA(1)= 4 or 6;

2. the diagonal entries are not used al so, if DESCRA(3)=1
and DESCRA(1)is one of 1, 2, 3 or 5;

3. if DESCRA(3) is not 1 and DESCRA(1l) is one of 1,2, 4 or
6, the type of D should correspond to the choosen val ue of
DESCRA(1)

Page 155 of 4153

Contents

. NAME

. SYNOPSIS
o F95 INTERFACE
o CINTERFACE

. PURPOSE

. ARGUMENTS

NAME

ccopy - Copy x to y

SYNOPSIS

SUBROUTI NE CCOPY(N, X, INCX Y, INCY)

COWPLEX X(*), Y(*)
INTEGER N, INCX, |NCY

SUBROUTI NE CCOPY_64(N, X, INCX, Y, I|INCY)

COWPLEX X(*), Y(*)
INTEGER*8 N, INCX, |NCY

F95 | NTERFACE
SUBROUTI NE COPY([N], X, [INCX], Y, [INCY])

COWLEX, DIMENSION(:) :: X Y
INTEGER :: N, INCX, | NCY

SUBROUTI NE COPY 64([N], X, [INCX], Y, [INCY])

COWLEX, DIMENSION(:) :: X Y
INTEGER(8) :: N, INCX, [|NCY

C | NTERFACE
#i ncl ude <sunperf.h>
void ccopy(int n, conmplex *x, int incx, complex *y, int
incy);
voi d ccopy_64(long n, conplex *x, long incx, conplex *y,
| ong incy);
PURPOSE

ccopy Copy x to y where x and y are n-vectors.

Page 156 of 4153

ARGUMENTS

N (i nput)
On entry, N specifies the nunber of elenents in
the vector. N nmust be at |east one for the sub-
routine to have any visible effect. Unchanged on
exit.

X (i nput)
of DIMENSION at least (1 + (n - 1)*abs(INCX)
). Before entry, the incremented array X nust

contain the vector x. Unchanged on exit.

I NCX (i nput)
On entry, INCX specifies the increnment for the
el ements of X. Unchanged on exit.

Y (out put)
of DOMENSION at least (1 + (n - 1)*abs(INCY)
). On entry, the increnented array Y must contain
the vector y. On exit, Y is overwitten by the
vector X.

I NCY (i nput)

On entry, INCY specifies the increment for the
el ements of Y. Unchanged on exit.

Page 157 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

NAME

ccscmm - conpressed sparse colum format matrix-matrix
mul tiply

SYNOPSIS

SUBROUTI NE CCSCMM TRANSA, M N, K, ALPHA, DESCRA,
* VAL, | NDX, PNTRB, PNTRE,

* B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER TRANSA, M N, K, DESCRA(5),

* LDB, LDC, LWORK

INTEGER | NDX(NNZ), PNTRB(K), PNTRE(K)

COWPLEX ALPHA, BETA
COWPLEX VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

SUBROUTI NE CCSCWM 64(TRANSA, M N, K, ALPHA, DESCRA,
* VAL, | NDX, PNTRB, PNTRE,

* B, LDB, BETA, C, LDC, WORK, LWRK)
I NTECER*8 TRANSA, M N, K, DESCRA(5),
* LDB, LDC, LWORK

I NTEGER*8 | NDX(NNZ), PNTRB(K), PNTRE(K)
COWPLEX ALPHA, BETA
COWPLEX VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

where NNZ = PNTRE(K) - PNTRB(1) .
F95 | NTERFACE

SUBROUTI NE CSCMM TRANSA, M [N, K, ALPHA, DESCRA, VAL, I|NDX,
* PNTRB, PNTRE, B, [LDB], BETA, C [LDC], [WORK], [LWORK])
I NTEGER TRANSA, M K

INTEGER, DIMENSION(:) :: DESCRA, |NDX, PNTRB, PNTRE
COWPLEX ALPHA, BETA

COWPLEX, DI MENSION(:) :: VAL

COWPLEX, DIMENSION(:, :) :: B, C

SUBROUTI NE CSCVMM 64(TRANSA, M [N], K, ALPHA, DESCRA, VAL, | NDX,
* PNTRB, PNTRE, B, [LDB], BETA, C [LDC], [WORK], [LWORK])

| NTEGER*8 TRANSA, M K

I NTEGER*8, DIMENSION(:) :: DESCRA, |NDX, PNTRB, PNTRE

Page 158 of 4153

COVPLEX ALPHA, BETA

COWPLEX, DI MENSI ON(:) :: VAL

COWLEX, DIMENSION(:, :) :: B, C
C | NTERFACE

#i ncl ude <sunperf. h>

void ccscmm(int transa, int m int n, int k, conplex *al pha,

int *descra, conplex *val, int *indx, int *pntrb, int
*pntre, conplex *b, int |db, conplex *beta, conplex* c, int
I dc);

void ccscmm 64(long transa, long m long n, long K,

conpl ex *al pha, |ong *descra, conplex *val, long *indx, |ong
*pntrb, long *pntre, conplex *b, long | db, conpl ex *beta,
conplex *c, long |dc);

DESCRIPTION

ccscmm perforns one of the matrix-matri x operations
C <- alpha op(A) B + beta C
where op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A)

(' indicates matrix transpose),
A is an Mby-K sparse matrix represented in the conpressed sparse colum
format, al pha and beta are scalars, C and B are dense matri ces.

ARGUMENTS

TRANSA(i nput) TRANSA specifies the formof op(A) to be used in
the matrix multiplication as foll ows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, M specifies the nunber of rows in
the matri x A. Unchanged on exit.

N(i nput) On entry, N specifies the nunmber of columms in
the matri x C. Unchanged on exit.

K(i nput) On entry, K specifies the nunmber of col ums
in the matrix A Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scal ar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure
0 : general
1 symretric (A=A")
2 : Hermtian (A= CONUDGA))
3 Tri angul ar

Page 159 of 4153

4 : Skew(Anti)-Symmetric (A=-A")
5 : Di agonal
6 : SkewHernmitian (A= -CONJG(A'))
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a scalar array of |ength
NNZ = PNTRE(K)-PNTRB(1) consisting of nonzero
entries of A Unchanged on exit.

I NDX(i nput) On entry, INDX is an integer array of |ength
NNZ = PNTRE(K)-PNTRB(1) consisting of the row
i ndi ces of nonzero entries of A
Unchanged on exit.

PNTRB(i nput) On entry, PNTRB is an integer array of length K
such that PNTRB(J)-PNTRB(1)+1 points to |ocation
in VAL of the first nonzero elenment in colum J.
Unchanged on exit.

PNTRE(i nput) On entry, PNTRE is an integer array of length K
such that PNTRE(J)-PNTRB(1l) points to |ocation
in VAL of the | ast nonzero element in colum J.
Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading k by n
part of the array B nust contain the matrix B, otherw se
the leading mby n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.
C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading mby n
part of the array C nust contain the matrix C, otherw se
the leading k by n part of the array C nust contain the
matrix C. On exit, the array C is overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinmension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

Page 160 of 4153

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Quide avail able at:

http://math. nist.gov/ncsd/ St af f/ KReni ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard”, University of Tennessee, Knoxville, Tennessee,
1996:

http://ww. netlib.org/utk/papers/sparse. ps

The routine is designed so that it provides a possibility to
use just one sparse matrix representation of a general
matrix A for conputing matrix-matrix nmultiply for another
sparse matrix conposed by triangles and/or the nain

di agonal of A. The full description of the feature for point
entry formats in the case of conplex matrices is given in
section NOTES/ BUGS for the ccoomm nanpage.

NOTES/ BUGS
It is known that there exists another representation of the
conpressed sparse colum format (see for exanple Y. Saad,
"Iterative Methods for Sparse Linear Systens", WPS, 1996).
Its data structure consists of three array instead of the
four used in the current inplenentation. The main
difference is that only one array, |A, containing the
pointers to the begi nning of each colum in the arrays VAL
and INDX is used instead of two arrays PNTRB and PNTRE. To
use the routine with this kind of sparse columm format the
follow ng calling sequence should be used

SUBROUTI NE CCSCMM TRANSA, M N, K, ALPHA, DESCRA,
*

VAL, INDX, IA [|A(2), B, LDB, BETA,
* C, LDC, WORK, LWORK)

Page 161 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

. NAME

. ARGUMENTS

SYNOPSIS

o F95 INTERFACE
o CINTERFACE
. DESCRIPTION

. SEEALSO

NAME

cc

scsm - conpressed sparse colum format triangul ar sol ve

SYNOPSIS

SUBROUTI NE
*

*

*

SUBROUTI NE
*

*

*

| NTEGER

| NTEGER
COWPLEX
COWPLEX

| NTEGER* 8

| NTEGER* 8
COWPLEX
COWPLEX

CCSCSM. TRANSA, M N, UNITD, DV, ALPHA, DESCRA,
VAL, |NDX, PNTRB, PNTRE,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, M N, UNITD, DESCRA(5),

LDB, LDC, LWORK

I NDX(NNZ), PNTRB(M, PNTRE(M

ALPHA, BETA

DV(M, VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

CCSCSM 64(TRANSA, M N, UNITD, DV, ALPHA, DESCRA,
VAL, |NDX, PNTRB, PNTRE,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, M N, UNITD, DESCRA(5),

LDB, LDC, LWORK

I NDX(NNZ), PNTRB(M, PNTRE(M

ALPHA, BETA

DV(M, VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

where NNZ = PNTRE(M - PNTRB(1)

FO95 | NTERFACE

*

*

SUBROUTI NE CSCSM| TRANSA, M [N], UNITD, DV, ALPHA, DESCRA, VAL,

PNTRB, PNTRE, B, [LDB], BETA, C, [LDC, [WORK], [LWORK])
| NTEGER TRANSA, M UNI TD
I NTEGER, DIMENSION(:) :: DESCRA, |NDX, PNTRB, PNTRE

COWVPLEX

ALPHA, BETA

COWPLEX, DI MENSION(:) :: VAL, DV
COWLEX, DIMENSION(:, :) :: B, C

I NDX,

SUBROUTI NE CSCSM 64(TRANSA, M [N], UNITD, DV, ALPHA, DESCRA, VAL, |NDX,
PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
| NTEGER*8 TRANSA, M UNI TD

| NTEGER* 8,

COWPLEX

DI MENSION(:) :: DESCRA, | NDX, PNTRB, PNTRE
ALPHA, BETA

Page 162 of 4153

COVPLEX, DI MENSI ON(:) VAL, DV

COWPLEX, DIMENSION(:, :) :: B, C
C | NTERFACE
#i ncl ude <sunperf. h>
void ccscsn(int transa, int nmb, int n, int unitd, conplex
*dv, conplex *al pha, int *descra, conplex *val, int *indx,
int *pntrb, int *pntre, conplex *b, int |db, conplex *beta,
conplex* ¢, int ldc);
void ccscsm64(long transa, long nmb, long n, long unitd,
conpl ex *dv, conplex *al pha, |ong *descra, conplex *val,
long *indx, long *pntrb, long *pntre, conplex *b, l[ong | db,
conpl ex *beta, complex *c, long |ldc);

DESCRIPTION

ccscsm perforns one of the matrix

C <-
C <-

al pha
al pha

op(A) B + beta C,
op(A) DB + beta C,

where al pha and beta are scal ars,

-matrix operations

C <-al pha D op(A) B + beta C,

C and B are mby n dense matri ces,

D is a diagonal
upper or

op(A) =

ARGUMENTS

TRANSA(i nput)

scaling matri x,

Ais a sparse mby munit, or non-unit,

inv(A) or
(inv denotes matrix inverse, '

|l ower triangular matrix represented in the conpressed sparse
colum format and op(A)

is one of

op(A) =inv(A) or op(A) =inv(conjg(A

i ndicates matri x transpose).

))

On entry, integer TRANSA indicates how to operate
with the sparse matrix:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, M specifies the nunber of rows in
the matri x A. Unchanged on exit.
N(i nput) On entry, N specifies the nunmber of columms in
the matri x C. Unchanged on exit.
UNI TD(i nput) On entry, UNTD specifies the type of scaling:
1: ldentity matrix (argunment DV[] is ignored)
2 : Scale on left (row scaling)
3 : Scale on right (columm scaling)
4 : Automatic colum scaling (see section NOTES for
further details)
Unchanged on exit.
DV(i nput) On entry, DV is an array of |length M consisting of the
di agonal entries of the diagonal scaling matrix D.

Page 163 of 4153

If UNNTD is 4, DV contains diagonal nmatrix by which
t he colums of A have been scal ed (see section NOTES for
further details). O herw se, unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scalar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure

0 : general

1: symetric (A=A")

2 : Hermtian (A= CONDG A'))

3 : Triangular

4 : Skew(Anti)-Symmetric (A=-A")
5 : Di agonal

6 :

Skew Hermtian (A= - CONJG(A'))
Note: For the routine, DESCRA(1)=3 is only supported.

DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a scalar array of |ength
NNZ = PNTRE(M -PNTRB(1) consisting of nonzero
entries of A. If UNNTD is 4, VAL contains
the scaled matrix A*D (see section NOTES for
further details). O herw se, unchanged on exit.

I NDX(i nput) On entry, INDX is an integer array of |ength
NNZ = PNTRE(M - PNTRB(1) consisting of the row
i ndi ces of nonzero entries of A
Row i ndi ces MJUST be sorted in increasing order
for each colum. Unchanged on exit.

PNTRB(i nput) On entry, PNTRB is an integer array of length M
such that PNTRB(J)-PNTRB(1)+1 points to |ocation
in VAL of the first nonzero elenment in colum J.
Unchanged on exit.

PNTRE(i nput) On entry, PNTRE is an integer array of length M
such that PNTRE(J)-PNTRB(1l) points to |ocation
in VAL of the | ast nonzero element in colum J.
Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
On entry, the leading mby n part of the array B
must contain the matrix B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinmension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.

C(input/output) Array of DIMENSION (LDC, N).

Page 164 of 4153

On entry, the leading mby n part of the array C
must contain the matrix C On exit, the array Cis
overwitten.

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK(wor kspace) Scratch array of |ength LWORK.
On exit, if LMORK= -1, WORK(1) returns the optimm size
of LWORK.

LWORK (i nput) On entry, LWORK specifies the length of WORK array. LWORK
shoul d be at least M

For good performance, LWORK should generally be |arger.
For optimum perfornmance on multiple processors, LWRK
>=MrN_CPUS where N_CPUS is the naxi num nunber of
processors available to the program

If LMWORK=0, the routine is to allocate workspace needed.

If LMORK = -1, then a workspace query is assuned; the
routine only cal cul ates the opti mum size of the WORK array,
returns this value as the first entry of the WORK array,
and no error nessage related to LWORK i s issued by XERBLA.

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Qui de avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRemi ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee,
1996:

http://ww. netlib.org/utk/papers/sparse. ps

NOTES/ BUGS
1. No test for singularity or near-singularity is included
inthis routine. Such tests nust be perforned before calling
this routine.

2. If UNNTD =4, the routine scales the colums of A such
that their 2-norns are one. The scaling may inprove the
accuracy of the conputed sol ution. Corresponding entries of
VAL are changed only in the particular case. On return DV
matri x stored as a vector contains the diagonal natrix by
whi ch the col ums have been scal ed. UNI TD=3 shoul d be used
for the next calls to the routine with overwitten VAL and
Dv.

Page 165 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

WORK(1)=0 on return if the scaling has been conpl eted
successfully, otherwise WORK(1) = - i where i is the colum
nunmber which 2-normis exactly zero.

3. If DESCRA(3)=1 and UNITD < 4, the diagonal entries are
each used with the mathematical value 1. The entries of the
mai n di agonal in the CSC representation of a sparse matrix
do not need to be 1.0 in this usage. They are not used by
the routine in these cases. But if UNI TD=4, the unit

di agonal el enents MJST be referenced in the CSC
representation.

4. The routine is designed so that it checks the validity of
each sparse entry given in the sparse blas representation.
Entries with incorrect indices are not used and no error
message related to the entries is issued

The feature also provides a possibility to use the sparse
matri x representation of a general matrix A for solving
triangul ar systens with the upper or lower triangle of A
But DESCRA(1) MJUST be equal to 3 even in this case

Assume that there is the sparse matrix representation a
general matrix A deconposed in the form

A=L+D+ U

where L is the strictly lower triangle of AL Uis the
strictly upper triangle of AL Dis the diagonal matrix.
Let's | denotes the identity natrix.

Then the correspondence between the first three val ues of
DESCRA and the result matrix for the sparse representation
of Ais

DESCRA(1) DESCRA(2) DESCRA(3) RESULT
3 1 1 al pha*op(L+l) *B+bet a*C
3 1 0 al pha*op(L+D) * B+bet a*C
3 2 1 al pha*op(U+l) * B+bet a*C
3 2 0 al pha*op(U+D) * B+bet a*C

5. It is known that there exists another representation of
the conpressed sparse columm fornmat (see for exanple Y. Saad,
"Iterative Methods for Sparse Linear Systens", WPS, 1996).
Its data structure consists of three array instead of the
four used in the current inplenentation. The main
difference is that only one array, |A containing the
pointers to the begi nning of each colum in the arrays VAL
and INDX i s used instead of two arrays PNTRB and PNTRE. To
use the routine with this kind of sparse colum fornmat the
follow ng calling sequence should be used

SUBROUTI NE CCSCSM| TRANSA, M N, UNITD, DV, ALPHA, DESCRA,
* VAL, INDX, IA IA(2), B, LDB, BETA
* C, LDC, WORK, LWORK)

Page 166 of 4153

Contents

- NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO
NAME
ccsrmm - conpressed sparse row format matrix-matrix multiply
SYNOPSIS
SUBROUTI NE CCSRMM TRANSA, M N, K, ALPHA, DESCRA,
* VAL, | NDX, PNTRB, PNTRE,
* B, LDB, BETA, C, LDC, WORK, LWORK)
| NTEGER TRANSA, M N, K, DESCRA(5),
* LDB, LDC, LWORK
| NTEGER I NDX(NNZ) , PNTRB(M, PNTRE(M
COWPLEX ALPHA, BETA
COWPLEX VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)
SUBROUTI NE CCSRWM 64(TRANSA, M N, K, ALPHA, DESCRA,
* VAL, | NDX, PNTRB, PNTRE,
* B, LDB, BETA, C, LDC, WORK, LWORK)
I NTEGER*8 TRANSA, M N, K, DESCRA(5),
* LDB, LDC, LWORK
| NTEGER*8 | NDX(NNZ), PNTRB(M, PNTRE(M
COWPLEX ALPHA, BETA
COWPLEX VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

where NNZ = PNTRE(M - PNTRB(1) .

FO95 | NTERFACE

*

*

SUBROUTI NE

CSRW TRANSA, M [N, K, ALPHA, DESCRA, VAL,

I NDX,

PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
| NTEGER TRANSA, M K

| NTEGER, DI
COWVPLEX

COWPLEX, DI
COWPLEX, DI

SUBROUTI NE

MENSI ON(:) DESCRA, | NDX, PNTRB, PNTRE

ALPHA, BETA

MENSI ON(:) :: VAL

MENSION(:,) :: B, C

CSRW 64(TRANSA, M [N], K, ALPHA, DESCRA, VAL, | NDX,

PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
| NTEGER*8 TRANSA, M K

| NTEGER* 8,
COWPLEX

DI MENSION(:) :: DESCRA, | NDX, PNTRB, PNTRE

ALPHA, BETA

Page 167 of 4153

COWPLEX, DI MENSI ON(:) :: VAL
COWLEX, DIMENSION(:, :) :: B, C

C | NTERFACE
#i ncl ude <sunperf. h>

void ccsrmm(int transa, int m int n, int k, conplex *al pha,

int *descra, conplex *val, int *indx, int *pntrb, int
*pntre, conplex *b, int Idb, conplex *beta, conplex *c, int
I dc);

void ccsrnmm64(long transa, long m long n, long K,

conpl ex *al pha, |ong *descra, conplex *val, long *indx, |ong

*pntrb, long *pntre, conplex *b, long | db, conpl ex *beta,
conplex *c, long |Idc);

DESCRIPTION

ccsrmm perforns one of the matrix-matri x operations
C <- alpha op(A) B + beta C
where op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A)

(' indicates matrix transpose),
A is an Mby-K sparse matrix represented in the conpressed sparse row
format, al pha and beta are scalars, C and B are dense matrices.

ARGUMENTS

TRANSA(i nput) TRANSA specifies the formof op(A) to be used in
the matrix multiplication as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, M specifies the nunber of rows in
the matri x A. Unchanged on exit.

N(i nput) On entry, N specifies the nunmber of colums in
the matrix C. Unchanged on exit.

K(i nput) On entry, K specifies the nunmber of col ums
in the matrix A. Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scal ar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure
. general
symretric (A=A")
Herm tian (A= CONJG A))
Tri angul ar
Skew(Anti)-Symetric (A=-A")
Di agonal

a b wNEFE O

Page 168 of 4153

6 : SkewHernmitian (A= -CONJG(A'))
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a scalar array of |ength
NNZ = PNTRE(M - PNTRB(1) consisting of nonzero entries
of A. Unchanged on exit.

I NDX(i nput) On entry, INDX is an integer array of |ength
NNZ = PNTRE(M - PNTRB(1) consisting of the colum
i ndi ces of nonzero entries of A Unchanged on exit.

PNTRB(i nput) On entry, PNTRB is an integer array of |ength M such
that PNTRB(J)-PNTRB(1)+1 points to location in VAL
of the first nonzero elenent in row J.
Unchanged on exit.

PNTRE(i nput) On entry, PNTRE is an integer array of length M
such that PNTRE(J)-PNTRB(1l) points to |ocation
in VAL of the |ast nonzero el enment in row J.
Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading k by n
part of the array B nust contain the matrix B, otherw se
the leading mby n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.

C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading mby n
part of the array C nust contain the matrix C, otherw se
the leading k by n part of the array C nmust contain the
matrix C. On exit, the array C is overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatible

Page 169 of 4153

with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are

i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Qui de avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRemi ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee
1996:

http://ww. netlib.org/utk/papers/sparse. ps

The routine is designed so that it provides a possibility to
use just one sparse nmatrix representati on of a genera

matrix A for conputing matrix-matrix nmultiply for another
sparse matri x conposed by triangles and/or the nain

di agonal of A. The full description of the feature for point
entry formats in the case of conplex matrices is given in
section NOTES/ BUGS for the ccoomm nanpage.

NOTES/ BUGS
It is known that there exists another representation of the
conpressed sparse row format (see for exanple Y. Saad,
"Iterative Methods for Sparse Linear Systens", WPS, 1996).
Its data structure consists of three array instead of the
four used in the current inplenentation. The main
difference is that only one array, |A, containing the
pointers to the begi nning of each rowin the arrays VAL and
INDX i s used instead of two arrays PNTRB and PNTRE. To use
the routine with this kind of conpressed sparse row fornat
the follow ng calling sequence should be used

SUBROUTI NE CCSRMWM TRANSA, M N, K, ALPHA, DESCRA
*

VAL, INDX, IA [1A(2), B, LDB, BETA,
* C, LDC, WORK, LWORK)

Page 170 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME
SYNOPSIS

o F95 INTERFACE
o CINTERFACE

. DESCRIPTION
. ARGUMENTS
NAME
ccsrsm - conpressed sparse row format triangul ar sol ve
SYNOPSIS
SUBROUTI NE CCSRSM| TRANSA, M N, UNITD, DV, ALPHA, DESCRA,
* VAL, | NDX, PNTRB, PNTRE,
* B, LDB, BETA, C, LDC, WORK, LWORK)
| NTEGER TRANSA, M N, UNI TD, DESCRA(5),
* LDB, LDC, LWORK
| NTEGER I NDX(NNZ), PNTRB(M, PNTRE(M
COVPLEX ALPHA, BETA
COMPLEX DV(M, VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)
SUBROUTI NE CCSRSM 64(TRANSA, M N, UNITD, DV, ALPHA, DESCRA,
* VAL, | NDX, PNTRB, PNTRE,
* B, LDB, BETA, C, LDC, WORK, LWORK)
I NTEGER*8 TRANSA, M N, UN TD, DESCRA(5),
* LDB, LDC, LWORK
I NTEGER*8 | NDX(NNZ), PNTRB(M), PNTRE(M
COVPLEX ALPHA, BETA
COMVPLEX DV(M, VAL(NNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

where NNZ = PNTRE(M - PNTRB(1)

F95 | NTERFACE

*

*

SUBROUTI NE CSRSM TRANSA, M [N, UNITD, DV, ALPHA, DESCRA, VAL, |NDX,
PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

| NTEGER TRANSA, M UNI TD

INTEGER, DIMENSION(:) :: DESCRA, |NDX, PNTRB, PNTRE

COVPLEX

ALPHA, BETA

COWLEX, DIMENSION(:) :: VAL, DV

COVPLEX, DI MENSION(:, :)

B, C

SUBROUTI NE CSRSM 64(TRANSA, M [N], UNITD, DV, ALPHA, DESCRA, VAL, |NDX,
PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
| NTEGER*8 TRANSA, M UNI TD

| NTEGER* 8,

COVPLEX

DI MENSI ON(:) :: DESCRA, | NDX, PNTRB, PNTRE
ALPHA, BETA

COWLEX, DIMENSION(:) :: VAL, DV

COVPLEX, DI MENSION(:, :)

B, C

Page 171 of 4153

C | NTERFACE

#i ncl ude <sunperf.h>

void ccsrsm(int transa, int mb, int n, int unitd, conplex
*dv, conplex *al pha, int *descra, conplex *val, int *indx,
int *pntrb, int *pntre, conplex *b, int |db, conplex *beta,
conpl ex* ¢, int |dc);

void ccsrsm64(long transa, long nb, Iong n, |long unitd,
conpl ex *dv, conplex *al pha, |ong *descra, conplex *val,
long *indx, long *pntrb, long *pntre, conmplex *b, long |db,

conpl ex *beta, conplex *c,

DESCRIPTION

long |dc);

ccsrsmperforns one of the matrix-matrix operations

C <-
C <-

al pha
al pha

op(A) B + beta C,
op(A) DB + beta C,

where al pha and beta are scal ars,
Dis a diagonal scaling matrix,

C <-alpha D op(A) B + beta C,

C and B are mby n dense matrices,
Ais a sparse mby munit, or non-unit,

upper or lower triangular matrix represented in the conpressed sparse
row format and op(A) is one of
op(A) =inv(A) or op(A) =inv(A) or op(A) =inv(conjg(A))

(inv denotes matrix inverse,

i ndicates matrix transpose).

ARGUMENTS

TRANSA(i nput)

On entry, TRANSA indicates how to operate with the
sparse matri x:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, M specifies the nunber of rows in
the matrix A. Unchanged on exit.
N(i nput) On entry, N specifies the nunber of colums in
the matri x C. Unchanged on exit.
UNI TD(i nput) On entry, UNTD specifies the type of scaling:
1 Identity matrix (argunent DV[] is ignored)
2 Scal e on left (row scaling)
3 : Scale on right (colum scaling)
4 : Automatic row scaling (see section NOTES for
further details)
Unchanged on exit.
DV(i nput) On entry, DV is an array of length Mconsisting of the
di agonal entries of the diagonal scaling natrix D.

If UNTD is 4, DV contains diagonal

matri x by which

the rows have been scal ed (see section NOTES for further

Page 172 of 4153

ALPHA(i nput)
DESCRA (i nput)

VAL(i nput)

I NDX(i nput)

PNTRB(i nput)

PNTRE(i nput)

B (input)

LDB (i nput)
BETA (i nput)

C(i nput/ out put)

details). Oherw se, unchanged on exit.

On entry, ALPHA specifies the scalar al pha. Unchanged on exit.

Descriptor argunent. Five elenent integer array:

DESCRA(1) matrix structure

0 : general

1: symetric (A=A")

2 : Hermtian (A= CONDG A'))

3 : Triangular

4 : Skew(Anti)-Symmetric (A=-A")
5 : Di agonal

6

: Skew Hermitian (A= -CONJDG(A'))

Note: For the routine, DESCRA(1)=3 is only supported.

DESCRA(2) upper/|lower triangular indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

On entry, VAL is a scalar array of length

NNZ = PNTRE(M - PNTRB(1) consisting of nonzero entries
of A If UNNTD is 4, VAL contains the scaled matrix

D*A (see section NOTES for further details).
O herwi se, unchanged on exit.

On entry, INDX is an integer array of |ength

NNZ = PNTRE(M - PNTRB(1) consisting of the colum
i ndi ces of nonzero entries of A Columm indices

MUST be sorted in increasing order for each
row. Unchanged on exit.

On entry, PNTRB is an integer array of |length M such

that PNTRB(J)-PNTRB(1)+1 points to |location in VAL

of the first nonzero elenent in row J.
Unchanged on exit.

On entry, PNTRE is an integer array of length M

such that PNTRE(J)-PNTRB(1l) points to |ocation
in VAL of the |last nonzero elenent in row J.
Unchanged on exit.

Array of DIMENSION (LDB, N).

On entry, the leading mby n part of the array B

must contain the matrix B. Unchanged on exit.

On entry, LDB specifies the first dinension of B as decl ared

in the calling (sub) program Unchanged on exit.

On entry, BETA specifies the scalar beta. Unchanged on exit.

Array of DIMENSION (LDC, N).

On entry, the leading mby n part of the array C
nmust contain the matrix C On exit, the array Cis

overwritten.

Page 173 of 4153

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK(wor kspace) Scratch array of |ength LWORK.
On exit, if LMORK= -1, WORK(1) returns the optinmm size
of LWORK.

LWORK (i nput) On entry, LWORK specifies the length of WORK array. LWORK
shoul d be at least M

For good performance, LWORK should generally be |arger.
For optimum perfornmance on multiple processors, LWORK
>=MrN_CPUS where N_CPUS is the naxi num nunber of
processors available to the program

If LMWORK=0, the routine is to allocate workspace needed.

If LMORK = -1, then a workspace query is assuned; the
routine only cal cul ates the opti mum size of the WORK array,
returns this value as the first entry of the WORK array,
and no error nessage related to LWORK i s issued by XERBLA.

NOTES/ BUGS
1. No test for singularity or near-singularity is included
inthis routine. Such tests nust be perforned before calling
this routine.

2. If UNNTD =4, the routine scales the rows of A such that
their 2-norns are one. The scaling nmay inprove the accuracy
of the conputed solution. Corresponding entries of VAL are
changed only in the particular case. On return DV matrix
stored as a vector contains the diagonal matrix by which the
rows have been scal ed. UNI TD=2 shoul d be used for the next
calls to the routine with overwitten VAL and DV.

WORK(1)=0 on return if the scaling has been conpl eted
successfully, otherwise WORK(1) = - i where i is the row
nunmber which 2-normis exactly zero.

3. If DESCRA(3)=1 and UNITD < 4, the diagonal entries are
each used with the mathematical value 1. The entries of the
mai n di agonal in the CSR representation of a sparse matrix
do not need to be 1.0 in this usage. They are not used by
the routine in these cases. But if UNI TD=4, the unit

di agonal el enents MJST be referenced in the CSR
representation.

4. The routine is designed so that it checks the validity of
each sparse entry given in the sparse blas representation.
Entries with incorrect indices are not used and no error
message related to the entries is issued.

The feature also provides a possibility to use the sparse
matri x representation of a general matrix A for solving
triangul ar systens with the upper or lower triangle of A
But DESCRA(1) MJST be equal to 3 even in this case.

Assume that there is the sparse matrix representation a
general matrix A deconposed in the form

A=L+D+ U

Page 174 of 4153

where L is the strictly lower triangle of AL Uis the
strictly upper triangle of A, Dis the diagonal matrix.
Let's | denotes the identity natrix.

Then the correspondence between the first three val ues of
DESCRA and the result matrix for the sparse representation
of Ais

DESCRA(1) DESCRA(2) DESCRA(3) RESULT
3 1 1 al pha*op(L+l) *B+bet a*C
3 1 0 al pha*op(L+D) * B+bet a*C
3 2 1 al pha*op(U+l) * B+bet a*C
3 2 0 al pha*op(U+D) * B+bet a*C

5. It is known that there exists another representation of
the conpressed sparse row format (see for exanple Y. Saad,
"Iterative Methods for Sparse Linear Systens", WPS, 1996).
Its data structure consists of three array instead of the
four used in the current inplenentation. The main
difference is that only one array, |A, containing the
pointers to the beginning of each rowin the arrays VAL and
INDX i s used instead of two arrays PNTRB and PNTRE. To use
the routine with this kind of conpressed sparse row fornat
the followi ng calling sequence should be used

_SUBROUTI NE CCSRSM__TRANSA, M N, UNITD, DV, ALPHA DESCRA
VAL, INDX, IA IA(2), B, LDB, BETA G,
* LDC, WORK, LWORK)

Page 175 of 4153

Contents

. NAME
. SYNOPSIS
o F95I

NTERFACE

o CINTERFACE
. DESCRIPTION

. ARGUMENTS
. SEEALSO

NAME
cdi amm - di ag
SYNOPSIS

SUBROUTI NE
*

*

| NTEGER
*

| NTEGER

COWPLEX

COWPLEX

SUBROUTI NE
*

*

| NTEGER* 8
*

| NTEGER* 8

COWPLEX

COWPLEX

onal format matrix-matrix multiply

CDI AW TRANSA, M N, K, ALPHA, DESCRA,
VAL, LDA, IDIAG NDIAG

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, M N, K, DESCRA(5), LDA, NDIAG

LDB, LDC, LWORK

| DI AG(NDI AG)

ALPHA, BETA

VAL(LDA, NDI AG), B(LDB,*), C(LDC, *), WORK(LWORK)

CDI AW 64(TRANSA, M N, K, ALPHA, DESCRA,
VAL, LDA, IDIAG NDIAG

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, M N, K, DESCRA(5), LDA, NDIAG

LDB, LDC, LWORK

| DI AG(NDI AG)

ALPHA, BETA

VAL(LDA, NDI AG), B(LDB,*), C(LDC, *), WORK(LWORK)

FO95 | NTERFACE

SUBROUTI NE DI AM TRANSA, M [N, K, ALPHA, DESCRA, VAL, [LDA],

* I DI AG,
| NTEGER
| NTEGER, DI
COWPLEX
COWPLEX, DI

NDI AG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

TRANSA, M K, NDI AG

MENSI ON(:) :: DESCRA, | DI AG
ALPHA, BETA
MENSI ON(:, :) :: VAL B, C

SUBROUTI NE DI AWM 64(TRANSA, M [N, K, ALPHA, DESCRA, VAL,

* I DI AG,
| NTEGER* 8
| NTEGER* 8,
COWPLEX
COWPLEX, DI

C | NTERFACE

NDI AG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

TRANSA, M K, NDI AG

DI MENSI ON(:) :: DESCRA, | DI AG
ALPHA, BETA
MENSI ON(:, :) :: VAL B, C

[LDA],

Page 176 of 4153

#i ncl ude <sunperf. h>

void cdianmm (int transa, int m int n, int k, conplex

*al pha, int *descra, conplex *val, int Ida, int *idiag, int
ndi ag, conplex *b, int |Idb, conplex *beta,

conplex *c, int |dc);

voi d cdiamm 64 (long transa, long m long n, long k, conpl ex
*al pha, long *descra, conplex *val, |long |da,

long *idiag, |ong ndiag, conplex *b, |long |db,

conpl ex *beta, conplex *c, long |dc);

DESCRIPTION

cdi amm perforns one of the matrix-matrix operations
C <- alpha op(A) B + beta C
where op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A)

(' indicates matrix transpose),
A is an Mby-K sparse matrix represented in the di agonal format,
al pha and beta are scalars, C and B are dense matri ces.

ARGUMENTS

TRANSA(i nput) TRANSA specifies the formof op(A) to be used in
the matrix multiplication as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, M specifies the nunmber of rows in
the matri x A. Unchanged on exit.

N(i nput) On entry, N specifies the number of columms in
the matrix C. Unchanged on exit.

K(i nput) On entry, K specifies the nunmber of col ums
in the matrix A Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scalar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(l) matrix structure
gener al
symretric (A=A")
Herm tian (A= CONJG A))
Tri angul ar
Skew(Anti)-Symetric (A=-A")
Di agonal
Skew Hermitian (A= -CONJG(A'))
DESCRA(2) upper/lower triangul ar indicator
1: |ower

OO WNEO

Page 177 of 4153

2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) Two- di mensi onal LDA-by-NDI AG array such that VAL(:,I)
consi sts of non-zero el ements on diagonal |D A1)
of A. Diagonals in the lower triangular part of A
are padded fromthe top, and those in the upper
triangul ar part are padded fromthe bottom
Unchanged on exit.

LDA(i nput) On entry, NDI AG specifies the |eading dinension of VAL,
must be >= M N(M K). Unchanged on exit.

I DI AG(i nput) Integer array of |ength NDI AG consisting of the
correspondi ng di agonal offsets of the non-zero
di agonal s of A in VAL. Lower triangular diagonals
have negative offsets, the main diagonal has offset O,
and upper triangul ar di agonal s have positive offset.
Unchanged on exit.

NDI AG(i nput) On entry, NDI AG specifies the nunber of non-zero di agonal s
in A Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading k by n
part of the array B nust contain the matrix B, otherw se
the leading mby n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.
C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading mby n
part of the array C nust contain the matrix C, otherw se
the leading k by n part of the array C nmust contain the
matrix C. On exit, the array C is overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.

Page 178 of 4153

Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN
Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Qui de avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRemi ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee,
1996:

http://ww. netlib.org/utk/papers/sparse. ps

The routine is designed so that it provides a possibility to
use just one sparse natrix representation of a general
matrix A for conputing matrix-matrix nmultiply for another
sparse matrix conposed by triangles and/or the nain

di agonal of A. The full description of the feature for point
entry formats in the case of conplex matrices is given in
section NOTES/ BUGS for the ccoomm nanpage.

Page 179 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

. NAME

SYNOPSIS

o F95 INTERFACE
o CINTERFACE

. DESCRIPTION
. ARGUMENTS
. SEEALSO
NAME
cdi asm - di agonal format triangular solve
SYNOPSIS
SUBROUTI NE CDI ASM| TRANSA, M N, UNITD, DV, ALPHA, DESCRA,
* VAL, LDA, |D AG ND AG
* B, LDB, BETA, C, LDC, WORK, LWORK)
| NTEGER TRANSA, M N, UNI TD, DESCRA(5), LDA, NDI AG
* LDB, LDC, LWORK
| NTEGER I DI AG(NDI AG)
COWPLEX ALPHA, BETA
COWPLEX DV(M, VAL(LDA NDI AG, B(LDB,*), C(LDC, *), WORK(LWORK)
SUBROUTI NE CDI ASM 64(TRANSA, M N, UNITD, DV, ALPHA, DESCRA,
* VAL, LDA, |D AG ND AG
* B, LDB, BETA, C, LDC, WORK, LWORK)
I NTEGER*8 TRANSA, M N, UNI TD, DESCRA(5), LDA, NDI AG
* LDB, LDC, LWORK
I NTEGER*8 | DI AG(NDI AG)
COWPLEX ALPHA, BETA
COWPLEX DV(M, VAL(LDA NDI AG, B(LDB,*), C(LDC, *), WORK(LWORK)

FO95 | NTERFACE

*

*

SUBROUTI NE DI ASM TRANSA, M [N, UNITD, DV, ALPHA, DESCRA, VAL,

[LDA], IDIAG NDIAG B, [LDB], BETA C [LDC], [WORK], [LWORK])
INTEGER TRANSA, M NDI AG
| NTEGER, DI MENSI ON(:) :: DESCRA, | DI AG
COWPLEX ALPHA, BETA
COWPLEX, DIMENSION(:) :: DV
COWPLEX, DIMENSION(:, :) :: VAL, B, C

SUBROUTI NE DI ASM 64(TRANSA, M [N, UNITD, DV, ALPHA, DESCRA, VAL,

[LDA], IDIAG NDIAG B, [LDB], BETA C, [LDC], [WORK], [LWORK])
INTEGER*8 TRANSA, M NDI AG
| NTEGER*8, DI MENSI ON(:) :: DESCRA, | DI AG
COWPLEX ALPHA, BETA
COWPLEX, DIMENSION(:) :: DV
COWPLEX, DIMENSION(:, :) :: VAL, B, C

Page 180 of 4153

C | NTERFACE
#i ncl ude <sunperf. h>

void cdiasm (int transa, int m int n, int unitd,

conpl ex *dv, conplex *al pha, int *descra, conplex *val, int
| da,

int *idiag, int ndiag, conplex *b, int |db, conplex *beta,
conplex *c, int ldc);

void cdiasm64 (long transa, long m long n, |ong unitd,
conpl ex *dv, conplex *al pha, |ong *descra, conplex *val,

| ong | da,

long *idiag, |ong ndiag, conplex *b, |ong |db,

conpl ex *beta, conplex *c, long |dc);

DESCRIPTION

cdiasm perforns one of the matrix-matri x operations

C <- alpha op(A) B + beta C, C <-al pha D op(A) B + beta C,
C <- alpha op(A) DB + beta C,

where al pha and beta are scalars, C and B are mby n dense matri ces,
Dis a diagonal scaling matrix, A is a sparse mby munit, or non-unit,
upper or lower triangular matrix represented in the diagonal fornmat

and op(A) is one of

op(A) =inv(A or op(A) =inv(A) or op(A) =inv(conjg(A))
(inv denotes matrix inverse, ' indicates matrix transpose).

ARGUMENTS

TRANSA(i nput) On entry, TRANSA indicates how to operate with the
sparse matri x:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, M specifies the nunber of rows in
the matri x A. Unchanged on exit.

N(i nput) On entry, N specifies the nunmber of columms in
the matri x C. Unchanged on exit.

UNI TD(i nput) On entry, UNTD specifies the type of scaling:
: ldentity matrix (argument DV[] is ignored)
Scale on left (row scaling)
Scal e on right (columm scaling)
Aut omatic row scaling (see section NOTES for
further details)
Unchanged on exit.

A WDNPRF

DV(i nput) On entry, DV is an array of |length M consisting of the
di agonal entries of the diagonal scaling matrix D.

Page 181 of 4153

ALPHA(i nput)
DESCRA (i nput)

VAL(i nput)

LDA(i nput)

| Dl A()

NDI AG(i nput)

B (input)

LDB (i nput)

BETA (i nput)

C(i nput/ out put)

If UNNTD is 4, DV contains diagonal nmatrix by which
the rows have been scal ed (see section NOTES for further
details). O herw se, unchanged on exit.

On entry, ALPHA specifies the scalar al pha. Unchanged on exit.
Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure

0 : general

1: symetric (A=A")

2 : Hermtian (A= CONDG A'))

3 : Triangular

4 : Skew(Anti)-Symmetric (A=-A")
5 : Di agonal

6

: Skew Hermitian (A= -CONUG A'))
Note: For the routine, DESCRA(1)=3 is only supported.
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

On entry, VAL is a two-dimensional LDA-by-ND AG array

such that VAL(:,l) consists of non-zero el enents on

di agonal IDIAGI) of A Diagonals in the |ower triangular
part of A are padded fromthe top, and those in the upper
triangul ar part are padded fromthe bottom |f UNITD is 4,
VAL contains the scaled matrix D*A (see section NOTES for
further details). O herw se, unchanged on exit.

On entry, LDA specifies the |eading dinension of VAL
and | NDX. LDA must be > M N(M K). Unchanged on exit.

On entry, IDIAGis an integer array of |ength ND AG
consi sting of the correspondi ng di agonal offsets of
the non-zero diagonals of Ain VAL. Lower triangular
di agonal s have negative offsets, the nain di agonal
has of fset 0, and upper triangul ar diagonals have
positive offset. Elenents of |DI AG of MIST be sorted
in increasing order. Unchanged on exit.

On entry, NDIAG specifies the nunmber of non-zero di agonal s
in A Unchanged on exit.

Array of DIMENSION (LDB, N).
On entry, the leading mby n part of the array B
must contain the matrix B. Unchanged on exit.

On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.
On entry, BETA specifies the scalar beta. Unchanged on exit.

Array of DIMENSION (LDC, N).

On entry, the leading mby n part of the array C
nmust contain the matrix C On exit, the array Cis

Page 182 of 4153

overwritten.

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK(wor kspace) Scratch array of |ength LWORK.
On exit, if LMORK= -1, WORK(1) returns the optimm size
of LWORK.

LWORK (i nput) On entry, LWORK specifies the length of WORK array. LWORK
shoul d be at least M

For good performance, LWORK should generally be |arger.
For optimum perfornmance on multiple processors, LWRK
>=MrN_CPUS where N_CPUS is the naxi num nunber of
processors available to the program

If LMWORK=0, the routine is to allocate workspace needed.
If LMORK = -1, then a workspace query is assuned; the
routine only cal cul ates the opti mum size of the WORK array,

returns this value as the first entry of the WORK array,
and no error nessage related to LWORK i s issued by XERBLA.

SEE ALSO

Li bsunperf SPARSE BLAS is parallelized with the help of OPENVP and it is
fully conpatible with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN Sparse Bl as.

Besi des several new features and routines are inpl enmented.

NI ST FORTRAN Sparse Bl as User's Guide avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRem ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprogranms (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee, 1996:

http://ww. netlib. org/utk/papers/sparse. ps

NOTES/ BUGS
1. No test for singularity or near-singularity is included
in this routine. Such tests nust be perfornmed before calling
this routine.
2. If UNNTD =4, the routine scales the rows of A such that
their 2-norns are one. The scaling nmay inprove the accuracy
of the conputed solution. Corresponding entries of VAL are
changed only in the particular case. On return DV matrix
stored as a vector contains the diagonal matrix by which the
rows have been scal ed. UNI TD=2 shoul d be used for the next
calls to the routine with overwitten VAL and DV.

WORK(1)=0 on return if the scaling has been conpl eted

successfully, otherwise WORK(1) = - i where i is the row
nunmber which 2-normis exactly zero.

Page 183 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

3. If DESCRA(3)=1 and UNITD < 4, the diagonal entries are
each used with the mathematical value 1. The entries of the
mai n di agonal in the D A representation of a sparse matrix
do not need to be 1.0 in this usage. They are not used by
the routine in these cases. But if UNI TD=4, the unit

di agonal el enents MJST be referenced in the DA
representation.

4. The routine is designed so that it checks the validity of
each sparse entry given in the sparse blas representation.
Entries with incorrect indices are not used and no error
message related to the entries is issued.

The feature also provides a possibility to use the sparse
matri x representation of a general matrix A for solving
triangul ar systens with the upper or lower triangle of A
But DESCRA(1) MJST be equal to 3 even in this case.

Assume that there is the sparse matrix representation a
general matrix A deconposed in the form

A=L+D+ U

where L is the strictly lower triangle of AL Uis the
strictly upper triangle of A, Dis the diagonal matrix.
Let's | denotes the identity natrix.

Then the correspondence between the first three val ues of
DESCRA and the result matrix for the sparse representation
of Ais

DESCRA(1) DESCRA(2) DESCRA(3) RESULT
3 1 1 al pha*op(L+l) *B+bet a*C
3 1 0 al pha*op(L+D) * B+bet a*C
3 2 1 al pha*op(U+l) * B+bet a*C
3 2 0 al pha*op(U+D) * B+bet a*C

Page 184 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cdotc - conpute the dot product of two vectors conjg(x) and
y.

SYNOPSIS

COVPLEX FUNCTI ON CDOTC(N, X, INCX, Y, [|NCY)

COWPLEX X(*), Y(*)
INTEGER N, INCX, |NCY

COWPLEX FUNCTI ON CDOTC 64(N, X, INCX, Y, |INCY)

COWPLEX X(*), Y(*)
INTEGER*8 N, INCX, |NCY

F95 | NTERFACE
COVPLEX FUNCTI ON DOTC([N], X, [INCX], Y, [INCY])

COWLEX, DIMENSION(:) :: X Y
INTEGER :: N, INCX, |NCY

COVPLEX FUNCTI ON DOTC 64([N], X, [INCX], Y, [INCY])

COWLEX, DIMENSION(:) :: X Y
INTEGER(8) :: N, INCX, |NCY

C | NTERFACE
#i ncl ude <sunperf.h>

conpl ex cdotc(int n, conplex *x, int incx, conplex *y, int
incy);

conpl ex cdotc_64(1ong n, conplex *x, long incx, conplex *y,
| ong incy);

PURPOSE

Page 185 of 4153

cdotc conpute the dot product of conjg(x) and y where x and
y are n-vectors.

ARGUMENTS

N (i nput)
On entry, N specifies the nunber of elenents in
the vector. If Nis not positive then the func-
tion returns the value 0.0. Unchanged on exit.

X (i nput)
of DIMENSION at least (1 + (n - 1)*abs(INCX)
). On entry, the increnented array X must contain
the vector x. Unchanged on exit.

I NCX (i nput)
On entry, INCX specifies the increnment for the
el ements of X. Unchanged on exit.

Y (input)
of DOMENSION at least (1 + (n - 1)*abs(INCY)
). On entry, the increnented array Y must contain
the vector y. Unchanged on exit.

I NCY (i nput)

On entry, INCY specifies the increment for the
el ements of Y. Unchanged on exit.

Page 186 of 4153

Contents

. NAME

. SYNOPSIS

. PURPOSE

. ARGUMENTS

NAME

cdotci - Conpute the conpl ex conjugated i ndexed dot product.

SYNOPSIS

COVPLEX FUNCTI ON CDOTCl (Nz, X, | NDX, Y)

COWPLEX X(*), Y(*)
| NTEGER NZ
| NTEGER | NDX(*)

COWPLEX FUNCTI ON CDOTCl _64(Nz, X, |NDX, Y)

COWPLEX X(*), Y(*)
| NTEGER*8 NZ
| NTEGER*8 | NDX(*)

F95 | NTERFACE
COVPLEX FUNCTI ON DOTCI ([NZ], X, INDX, Y)

COWPLEX, DIMENSION(:) :: X, Y
INTEGER :: NZ
I NTEGER, DI MENSI ON(:) :: | NDX

COVPLEX FUNCTI ON DOTCl _64([Nz], X, |NDX, Y)
COWPLEX, DIMENSION(:) :: X, Y

I NTEGER(8) :: NZ
I NTEGER(8), DI MENSION(:) :: I NDX

PURPOSE

CDOTClI Conpute the conpl ex conjugated i ndexed dot product of
a conpl ex sparse vector x stored in conpressed formwith a
conpl ex vector y in full storage form

dot =0
doi =1, n

dot = dot + conjg(x(i)) * y(indx(i))
enddo

Page 187 of 4153

ARGUMENTS

NZ (input)
Nurmber of elements in the conpressed form
Unchanged on exit.

X (i nput)
Vector in conpressed form Unchanged on exit.

I NDX (i nput)
Vector containing the indices of the conpressed
form It is assuned that the elements in | NDX are

distinct and greater than zero. Unchanged on exit.

Y (input)
Vector in full storage form Only the elenents
corresponding to the indices in INDX will be
accessed.

Page 188 of 4153

Contents

. NAME

. SYNOPSIS
o F95 INTERFACE
o CINTERFACE

. PURPOSE

. ARGUMENTS

NAME

cdotu - conpute the dot product of two vectors x and y.

SYNOPSIS

COVPLEX FUNCTI ON CDOTU(N, X, INCX, Y, [|NCY)

COWPLEX X(*), Y(*)
INTEGER N, INCX, |NCY

COWPLEX FUNCTI ON CDOTU 64(N, X, INCX, Y, |INCY)

COWPLEX X(*), Y(*)
INTEGER*8 N, INCX, |NCY

F95 | NTERFACE
COVPLEX FUNCTI ON DOT([N], X, [INCX, Y, [INCY])

COWLEX, DIMENSION(:) :: X Y
INTEGER :: N, INCX, | NCY

COVPLEX FUNCTI ON DOT_64([N], X, [INCX], Y, [INCY])

COWLEX, DIMENSION(:) :: X Y
INTEGER(8) :: N, INCX, [|NCY

C | NTERFACE
#i ncl ude <sunperf.h>

conpl ex cdotu(int n, conplex *x, int incx, conplex *y, int
incy);

conpl ex cdotu_64(long n, conplex *x, long incx, conplex *y,
| ong incy);

PURPOSE

cdotu conpute the dot product of x and y where x and y are

Page 189 of 4153

n-vectors.

ARGUMENTS

N (i nput)
On entry, N specifies the nunber of elenents in
the vector. If Nis not positive then the func-
tion returns the value 0.0. Unchanged on exit.

X (i nput)
of DIMENSION at least (1 + (n - 1)*abs(INCX)
). On entry, the increnented array X must contain
the vector x. Unchanged on exit.

I NCX (i nput)
On entry, INCX specifies the increnment for the
el ements of X. Unchanged on exit.

Y (input)
of DOMENSION at least (1 + (n - 1)*abs(INCY)
). On entry, the increnented array Y must contain
the vector y. Unchanged on exit.

I NCY (i nput)

On entry, INCY specifies the increment for the
el ements of Y. Unchanged on exit.

Page 190 of 4153

Contents

. NAME

. SYNOPSIS

. PURPOSE

. ARGUMENTS

NAME

cdotui - Compute the conpl ex unconjugated i ndexed dot
pr oduct .

SYNOPSIS

COVPLEX FUNCTI ON CDOTCl (Nz, X, | NDX, Y)

COWPLEX X(*), Y(*)
| NTEGER NZ
| NTEGER | NDX(*)

COWPLEX FUNCTI ON CDOTCl _64(Nz, X, |NDX, Y)

COWPLEX X(*), Y(*)
| NTEGER*8 NZ
| NTEGER*8 | NDX(*)

F95 | NTERFACE
COVPLEX FUNCTI ON DOTCI ([NZ], X, INDX, Y)

COWPLEX, DIMENSION(:) :: X, Y
INTEGER :: NZ
I NTEGER, DI MENSI ON(:) :: | NDX

COVPLEX FUNCTI ON DOTCl _64([Nz], X, |NDX, Y)
COWPLEX, DIMENSION(:) :: X, Y

I NTEGER(8) :: NZ
I NTEGER(8), DI MENSION(:) :: I NDX

PURPOSE

CDOTUI Conpute the conpl ex unconjugated i ndexed dot product
of a conplex sparse vector x stored in conpressed formwth
a conplex vector y in full storage form

dot = 0
doi =1, n

dot = dot + x(i) * y(indx(i))
enddo

Page 191 of 4153

ARGUMENTS

NZ (i nput)
Nunber of elenents in the conpressed form
Unchanged on exit.

X (i nput)
Vector in conpressed form Unchanged on exit.

I NDX (i nput)
Vector containing the indices of the conpressed
form It is assuned that the elenents in | NDX are

di stinct and greater than zero. Unchanged on exit.

Y (input)
Vector in full storage form Only the elenents
corresponding to the indices in INDX will be
accessed.

Page 192 of 4153

Contents

. NAME

NAME

SYNOPSIS
o F951

NTERFACE

o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

cellmm- Ellp

SYNOPSIS

*

*

*

*

*

*

SUBROUTI NE

| NTEGER
| NTEGER
COWPLEX
COWPLEX

SUBROUTI NE

| NTEGER* 8

| NTEGER* 8
COWPLEX
COWPLEX

ack format matrix-matrix multiply

CELLMM TRANSA, M N, K, ALPHA, DESCRA,
VAL, INDX, LDA, MAXNZ,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, M N, K, DESCRA(5), LDA, MAXNZ,

LDB, LDC, LWORK

| NDX(LDA, MAXNZ)

ALPHA, BETA

VAL(LDA, MAXNZ), B(LDB, *), C(LDC, *), WORK(LWORK)

CELLMM 64(TRANSA, M N, K, ALPHA, DESCRA,
VAL, INDX, LDA, MAXNZ,

B, LDB, BETA, C, LDC, WORK, LWORK)

TRANSA, M N, K, DESCRA(5), LDA, MAXNZ,

LDB, LDC, LWORK

| NDX(LDA, MAXNZ)

ALPHA, BETA

VAL(LDA, MAXNZ), B(LDB, *), C(LDC, *), WORK(LWORK)

FO95 | NTERFACE

*

*

SUBROUTI NE

ELLMM TRANSA, M [N, K, ALPHA, DESCRA, VAL, | NDX,

[LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

| NTEGER
| NTEGER, DI
| NTEGER, DI
COWPLEX
COWPLEX, DI

SUBROUTI NE

TRANSA, M K, NMAXNZ

MENSI ON(:) :: DESCRA

MENSI ON(:, @) :: I NDX
ALPHA, BETA

MENSION(:, :) :: VAL, B, C

ELLMM 64(TRANSA, M [N, K ALPHA, DESCRA, VAL, |NDX,

[LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])

| NTEGER* 8

| NTEGER* 8,

| NTEGER* 8,
COWPLEX
COWPLEX, DI

TRANSA, M K, NMAXNZ

DI MENSION(:) :: DESCRA

DI MENSI ON(:, :) :: I NDX
ALPHA, BETA

MENSION(:, :) :: VAL, B, C

Page 193 of 4153

C | NTERFACE
#i ncl ude <sunperf. h>

void cellmm (int transa, int m int n, int k, conplex

*al pha, int *descra, conplex *val, int *indx, int lda, int
maxnz, conplex *b, int |db, conplex *beta, conplex *c, int
I dc);
void cellmMm 64 (long transa, long m long n, long k, conpl ex
*al pha, long *descra, conplex *val, long *indx, long |da,
| ong maxnz, conplex *b, long | db, conplex *beta, conplex *c,
| ong I dc);

DESCRIPTION

cell mm perforns one of the matrix-matri x operations
C <- alpha op(A) B + beta C
where op(A) is one of

op(A) = A or op(A) = A or op(A) =conjg(A)

(' indicates matrix transpose),
A is an Mby-K sparse matrix represented in the ell pack format,
al pha and beta are scalars, C and B are dense mmtrices.

ARGUMENTS

TRANSA(i nput) TRANSA specifies the formof op(A) to be used in
the matrix multiplication as follows:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, M specifies the nunmber of rows in
the matri x A. Unchanged on exit.

N(i nput) On entry, N specifies the number of columms in
the matrix C. Unchanged on exit.

K(i nput) On entry, K specifies the nunmber of col ums
in the matrix A Unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scalar al pha. Unchanged on exit.

DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(l) matrix structure

gener al

symretric (A=A")

Herm tian (A= CONJG A))

Tri angul ar

Skew(Anti)-Symetric (A=-A")

Di agonal

Skew Hermitian (A= -CONJG(A'))

DESCRA(2) upper/lower triangul ar indicator

OO WNEO

Page 194 of 4153

1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a two-dimensional LDA-by-MAXNZ array
such that VAL(Il,:) consists of non-zero el ements
inrow!l of A padded by zero values if the row
contains | ess than MAXNZ. Unchanged on exit.

I NDX(i nput) On entry, INDX is an integer two-dimensional
LDA- by- MAXNZ array such that | NDX(I,:)
consi sts of the colum indices of the
nonzero elenents in row |, padded by the integer
value | if the nunmber of nonzeros is |ess than
MAXNZ. Unchanged on exit.

LDA(i nput) On entry, LDA specifies the |eading dinmension of VAL
and INDX. Unchanged on exit.

MAXNZ(i nput) On entry, MAXNZ specifies the nax nunber of
nonzeros el enments per row. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
Before entry with TRANSA = 0, the leading k by n
part of the array B nust contain the matrix B, otherw se
the leading mby n part of the array B nust contain the
matri x B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.
C(input/output) Array of DIMENSION (LDC, N).
Before entry with TRANSA = 0, the leading mby n
part of the array C nust contain the matrix C, otherw se
the leading k by n part of the array C nmust contain the
matrix C. On exit, the array C is overwitten by the matrix
(alpha*op(A)* B + beta*C).

LDC (i nput) On entry, LDC specifies the first dinmension of C as declared
in the calling (sub) program Unchanged on exit.

WORK (is not referenced in the current version)

LWORK (is not referenced in the current version)

SEE ALSO

Li bsunperf SPARSE BLAS is fully parallel and conpatibl e
with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN

Page 195 of 4153

Sparse Bl as. Besides several new features and routines are
i mpl ement ed.

NI ST FORTRAN Sparse Bl as User's Qui de avail able at:

http://math. ni st.gov/ ncsd/ St af f / KRemi ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprograns (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee,
1996:

http://ww. netlib.org/utk/papers/sparse. ps

The routine is designed so that it provides a possibility to
use just one sparse natrix representation of a general
matrix A for conputing matrix-matrix nmultiply for another
sparse matrix conposed by triangles and/or the nain

di agonal of A. The full description of the feature for point
entry formats in the case of conplex matrices is given in
section NOTES/ BUGS for the ccoomm nmanpage.

Page 196 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. DESCRIPTION
. ARGUMENTS
. SEEALSO

NAME
cellsm- Ellpack format triangul ar sol ve
SYNOPSIS

SUBROUTI NE CELLSM TRANSA, M N, UNI TD, DV, ALPHA, DESCRA,
* VAL, | NDX, LDA, MAXNZ,

* B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER TRANSA, M N, UNITD, DESCRA(5), LDA MAXNZ,

* LDB, LDC, LWORK

INTEGER | NDX(LDA, MAXNZ)

COWPLEX ALPHA, BETA

COWPLEX DV(M, VAL(LDA, MAXNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

SUBROUTI NE CELLSM 64(TRANSA, M N, UNITD, DV, ALPHA, DESCRA,
* VAL, | NDX, LDA, MAXNZ,

* B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER*8 TRANSA, M N, UNI TD, DESCRA(5), LDA MAXNZ,

* LDB, LDC, LWORK

| NTEGER*8 | NDX(LDA, MAXNZ)

COWPLEX ALPHA, BETA

COWLEX DV(M, VAL(LDA MAXNZ), B(LDB,*), C(LDC, *), WORK(LWORK)

FO95 | NTERFACE

SUBROUTI NE ELLSM TRANSA, M [N], UNITD, DV, ALPHA, DESCRA, VAL,

* INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
INTEGER TRANSA, M MAXNZ

I NTEGER, DI MENSION(:) :: DESCRA

I NTEGER, DI MENSION(:, :) :: | NDX

COWPLEX ALPHA, BETA

COWPLEX, DIMENSION(:) :: DV

COWPLEX, DI MENSION(:, :) VAL, B, C

SUBROUTI NE ELLSM 64(TRANSA, M [N, UNITD, DV, ALPHA, DESCRA, VAL,

* INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
INTEGER*8 TRANSA, M MAXNZ

| NTEGER*8, DI MENSION(:) :: DESCRA

| NTEGER*8, DI MENSION(:, :) :: | NDX

COWPLEX ALPHA, BETA

Page 197 of 4153

COWPLEX, DIMENSION(:) :: DV
COWPLEX, DIMENSION(:, :) :: VAL, B, C

C | NTERFACE
#i ncl ude <sunperf. h>

void cellsm (int transa, int m int n, int unitd, conplex
*dv, conplex *al pha, int *descra, conplex *val, int *indx,
int lda, int naxnz, conplex *b, int Idb, conplex *beta,
conplex *c, int ldc);

void cellsm64 (long transa, long m long n, |long unitd,
conpl ex *dv, conplex *al pha, |ong *descra, conplex *val,
long *indx, long |da, |ong naxnz, conplex *b, |ong |db,
conpl ex *beta, complex *c, long |ldc);

DESCRIPTION

zell smperforns one of the matri x-matri x operations

C <- alpha op(A) B + beta C, C <-al pha D op(A) B + beta C,
C <- alpha op(A) DB + beta C,

where al pha and beta are scalars, C and B are mby n dense matri ces,

Dis a diagonal scaling matrix, A is a sparse mby munit, or non-unit,
upper or lower triangular matrix represented in the ellpack/itpack fornat
and op(A) is one of

op(A) =inv(A or op(A) =inv(A) or op(A) =inv(conjg(A))
(inv denotes matrix inverse, ' indicates matrix transpose).

ARGUMENTS

TRANSA(i nput) On entry, TRANSA indicates how to operate with the
sparse matri x:
O : operate with matrix
1 : operate with transpose matrix
2 : operate with the conjugate transpose of matrix.
2 is equivalent to 1 if matrix is real.
Unchanged on exit.

M i nput) On entry, M specifies the nunber of rows in
the matri x A. Unchanged on exit.

N(i nput) On entry, N specifies the nunmber of columms in
the matri x C. Unchanged on exit.

UNI TD(i nput) On entry, UNTD specifies the type of scaling:
: ldentity matrix (argument DV[] is ignored)
Scale on left (row scaling)
Scal e on right (columm scaling)
Aut omatic row scaling (see section NOTES for
further details)
Unchanged on exit.

A WDNPRF

DV(i nput) On entry, DV is an array of |length M consisting of the
di agonal entries of the diagonal scaling matrix D.

Page 198 of 4153

If UNNTD is 4, DV contains diagonal nmatrix by which
the rows have been scal ed (see section NOTES for further
details). O herw se, unchanged on exit.

ALPHA(i nput) On entry, ALPHA specifies the scalar al pha. Unchanged on exit.
DESCRA (input) Descriptor argunent. Five elenent integer array:
DESCRA(1) matrix structure

0 : general

1: symetric (A=A")

2 : Hermtian (A= CONDG A'))

3 : Triangular

4 : Skew(Anti)-Symmetric (A=-A")
5 : Di agonal

6

: Skew Hermitian (A= -CONUG A'))
Note: For the routine, DESCRA(1)=3 is only supported.
DESCRA(2) upper/|lower triangul ar indicator
1: |ower
2 . upper
DESCRA(3) nmi n di agonal type
0 : non-unit
1: unit
DESCRA(4) Array base (NOT | MPLEMENTED)
0 : C/ C++ conpatible
1 : Fortran conpatible
DESCRA(5) repeated indices? (NOT | MPLEMENTED)
0 : unknown
1 : no repeated indices

VAL(i nput) On entry, VAL is a two-dimensional LDA-by-MAXNZ array
such that VAL(l,:) consists of non-zero el ements
inrow!l of A padded by zero values if the row
contains less than MAXNZ. |f UNITD is 4, VAL contains
the scaled matrix D*A (see section NOTES for further
details). O herw se, unchanged on exit.

I NDX(i nput) On entry, INDX is an integer two-dinmensional
LDA- by- MAXNZ array such that |INDX(I,:) consists
of the colum indices of the nonzero el enents
inrowl, padded by the integer value | if the
nunmber of nonzeros is |ess than MAXNZ.
The col um indi ces MIST be sorted in increasing order
for each row. Unchanged on exit.

LDA(i nput) On entry, LDA specifies the |eading dinmension of VAL
and INDX. Unchanged on exit.

MAXNZ(i nput) On entry, MAXNZ specifies the nax nunber of
nonzeros el ements per row. Unchanged on exit.

B (input) Array of DIMENSION (LDB, N).
On entry, the leading mby n part of the array B
must contain the matrix B. Unchanged on exit.

LDB (i nput) On entry, LDB specifies the first dinension of B as decl ared
in the calling (sub) program Unchanged on exit.

BETA (i nput) On entry, BETA specifies the scalar beta. Unchanged on exit.
C(input/output) Array of DIMENSION (LDC, N).
On entry, the leading mby n part of the array C
nmust contain the matrix C On exit, the array Cis
overwitten.

Page 199 of 4153

LDC (i nput) On entry, LDC specifies the first dinension of C as declared
in the calling (sub) program Unchanged on exit.

WORK(wor kspace) Scratch array of |ength LWORK.
On exit, if LMORK= -1, WORK(1) returns the optinmm size
of LWORK.

LWORK (i nput) On entry, LWORK specifies the length of WORK array. LWORK
shoul d be at least M

For good performance, LWORK should generally be |arger.
For optimum perfornmance on multiple processors, LWRK
>=MrN_CPUS where N_CPUS is the naxi num nunber of
processors available to the program

If LMWORK=0, the routine is to allocate workspace needed.
If LMORK = -1, then a workspace query is assuned; the
routine only cal cul ates the opti mum size of the WORK array,

returns this value as the first entry of the WORK array,
and no error nessage related to LWORK i s issued by XERBLA.

SEE ALSO

Li bsunperf SPARSE BLAS is parallelized with the help of OPENVP and it is
fully conpatible with NI ST FORTRAN Sparse Bl as but the sources are different.
Li bsunperf SPARSE BLAS is free of bugs found in N ST FORTRAN Sparse Bl as.

Besi des several new features and routines are inpl enmented.

NI ST FORTRAN Sparse Bl as User's Guide avail able at:

http://math. ni st. gov/ ncsd/ St af f / KRem ngt on/ f spbl as/

Based on the standard proposed in

"Docunent for the Basic Linear Al gebra Subprogranms (BLAS)
Standard", University of Tennessee, Knoxville, Tennessee, 1996:

http://ww. netlib.org/utk/papers/sparse. ps

NOTES/ BUGS
1. No test for singularity or near-singularity is included
in this routine. Such tests nust be perfornmed before calling
this routine.
2. If UNNTD =4, the routine scales the rows of A such that
their 2-norns are one. The scaling nmay inprove the accuracy
of the conputed solution. Corresponding entries of VAL are
changed only in the particular case. On return DV matrix
stored as a vector contains the diagonal matrix by which the
rows have been scal ed. UNI TD=2 shoul d be used for the next
calls to the routine with overwitten VAL and DV.

WORK(1)=0 on return if the scaling has been conpl eted
successfully, otherwise WORK(1) = - i where i is the row
nunmber which 2-normis exactly zero.

3. If DESCRA(3)=1 and UNITD < 4, the diagonal entries are

Page 200 of 4153

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

each used with the mathematical value 1. The entries of the
mai n di agonal in the ELL representation of a sparse matrix

do not need to be 1.0 in this usage. They are not used by
the routine in these cases. But if UNI TD=4, the unit

di agonal el enents MJST be referenced in the ELL
representation.

4. The routine is designed so that it checks the validity of
each sparse entry given in the sparse blas representation.

Entries with incorrect indices are not used and no error
message related to the entries is issued.

The feature also provides a possibility to use the sparse
matri x representation of a general matrix A for solving
triangul ar systens with the upper or lower triangle of A
But DESCRA(1) MJST be equal to 3 even in this case.

Assume that there is the sparse matrix representation a
general matrix A deconposed in the form

A=L+D+ U
where L is the strictly lower triangle of AL Uis the
strictly upper triangle of A, Dis the diagonal matrix.

Let's | denotes the identity natrix.

Then the correspondence between the first three val ues of

DESCRA and the result matrix for the sparse representation

of Ais
DESCRA(1) DESCRA(2) DESCRA(3) RESULT
3 1 1 al pha*op(L+l) *B+bet a*C
3 1 0 al pha*op(L+D) * B+bet a*C
3 2 1 al pha*op(U+l) * B+bet a*C
3 2 0 al pha*op(U+D) * B+bet a*C

Page 201 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cfft2b - conpute a periodic sequence fromits Fourier coef-
ficients. The XxFFT operations are unnormalized, so a call
of xFFT2F followed by a call of xFFT2B will mltiply the
i nput sequence by MN.

SYNOPSIS

SUBROUTI NE CFFT2B(M N, A, LDA, WORK, LWORK)

COVPLEX A(LDA *)
INTEGER M N, LDA LWORK
REAL WAORK(*)

SUBROUTI NE CFFT2B 64(M N, A, LDA, WORK, LWORK)
COVPLEX A(LDA *)

INTEGER*8 M N, LDA, LWORK

REAL WAORK(*)

F95 | NTERFACE
SUBROUTI NE FFT2B([M, [N, A [LDA], WORK, LWORK)

COWPLEX, DIMENSION(:,:) :: A

INTEGER :: M N, LDA LWORK

REAL, DI MENSI ON(:) :: WORK

SUBROUTI NE FFT2B 64([M, [N, A [LDA], WORK, LWORK)
COWPLEX, DIMENSION(:,:) :: A

INTEGER(8) :: M N, LDA, LWORK

REAL, DI MENSI ON(:) :: WORK

C | NTERFACE
#i ncl ude <sunperf. h>

void cfft2b(int m int n, conplex *a, int lda, float *work,
int |work);

void cfft2b_64(long m long n, conplex *a, long Ilda, float
*wor k, |ong |work);

Page 202 of 4153

ARGUMENTS

M (i nput)

N (i nput)

Nunber of rows to be transforned. These subrou-
tines are nost efficient when Mis a product of
smal |l primes. M >= 0.
Nunber of columms to be transforned. These sub-
routines are nost efficient when Nis a product of
smal |l primes. N >= 0.

A (i nput/out put)

On entry, a two-dinensional array ACMN) that con-
tains the sequences to be transforned.

LDA (i nput)

Leadi ng di mensi on of the array containing the data
to be transformed. LDA >= M

WORK (i nput)

On input, workspace WORK nust have been initial-
i zed by CFFT2I.

LWORK (i nput)

The di mension of the array WORK. LWORK >= (4 * (M
+ N + 30)

Page 203 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cfft2f - conpute the Fourier coefficients of a periodic
sequence. The XxFFT operations are unnormalized, so a call
of XFFT2F followed by a call of xFFT2B will nultiply the
i nput sequence by MN.

SYNOPSIS

SUBROQUTI NE CFFT2F(M N, A, LDA, WORK, LWORK)

COVPLEX A(LDA *)
INTEGER M N, LDA LWORK
REAL WAORK(*)

SUBROUTI NE CFFT2F_64(M N, A, LDA, WORK, LWORK)
COVPLEX A(LDA *)

INTEGER*8 M N, LDA, LWORK

REAL WAORK(*)

F95 | NTERFACE
SUBROUTI NE FFT2F([M, [N, A [LDA], WORK, LWORK)

COWPLEX, DIMENSION(:,:) :: A

INTEGER :: M N, LDA LWORK

REAL, DI MENSI ON(:) :: WORK

SUBROUTI NE FFT2F 64([M, [N, A [LDA], WORK, LWORK)
COWPLEX, DIMENSION(:,:) :: A

INTEGER(8) :: M N, LDA, LWORK

REAL, DI MENSI ON(:) :: WORK

C | NTERFACE
#i ncl ude <sunperf. h>

void cfft2f(int m int n, conplex *a, int lda, float *work,
int |work);

void cfft2f_64(long m long n, conplex *a, long Ilda, float
*wor k, |ong |work);

Page 204 of 4153

ARGUMENTS

M (i nput)

N (i nput)

Nunber of rows to be transforned. These subrou-
tines are nost efficient when Mis a product of
smal |l primes. M >= 0.
Nunber of columms to be transforned. These sub-
routines are nost efficient when Nis a product of
smal |l primes. N >= 0.

A (i nput/out put)

On entry, a two-dinensional array ACMN) that con-
tains the sequences to be transforned.

LDA (i nput)

Leadi ng di mensi on of the array containing the data
to be transformed. LDA >= M

WORK (i nput)

On input, workspace WORK nust have been initial-
i zed by CFFT2I.

LWORK (i nput)

The di mension of the array WORK. LWORK >= (4 * (M
+ N + 30)

Page 205 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cfft2i - initialize the array WSAVE, which is used in both
the forward and backward transforns.

SYNOPSIS

SUBROUTI NE CFFT2I (M N, WORK)

INTEGER M N
REAL WAORK(*)

SUBROUTI NE CFFT2l _64(M N, WORK)

I NTEGER*8 M N
REAL WORK(*)

F95 | NTERFACE
SUBROUTI NE CFFT2I (M N, WORK)

INTEGER :: M N
REAL, DI MENSI ON(:) :: WORK

SUBROUTI NE CFFT2l _64(M N, WORK)

INTEGER(8) :: M N
REAL, DI MENSI ON(:) :: WORK

C | NTERFACE
#i ncl ude <sunperf. h>

void cfft2i(int m int n, float *work);

void cfft2i_64(long m long n, float *work);

ARGUMENTS

M (i nput) Nunber of rows to be transforned. M >= 0.

N (i nput) Nunber of columms to be transformed. N >= 0.

Page 206 of 4153

WORK (i nput/ out put)

On entry, an array of dinmension (4 * (M+ N + 30)
or greater. CFFT2l needs to be called only once
toinitialize array WORK before calling CFFT2F
and/or CFFT2B if M N and WORK remai n unchanged
bet ween these calls. Thus, subsequent transforns
or inverse transforns of sane size can be obtained
faster than the first since they do not require
initialization of the workspace.

Page 207 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cfft3b - conpute a periodic sequence fromits Fourier coef-
ficients. The FFT operations are unnornalized, so a call of
CFFT3F followed by a call of CFFT3B will nultiply the input
sequence by M NK.

SYNOPSIS

SUBROUTI NE CFFT3B(M N, K, A, LDA LD2A, WORK, LWORK)

COVPLEX A(LDA, LD2A, *)
INTEGER M N, K, LDA, LD2A, LWORK
REAL WAORK(*)

SUBROUTI NE CFFT3B 64(M N, K, A, LDA LD2A, WORK, LWORK)
COVPLEX A(LDA, LD2A, *)

INTEGER*8 M N, K, LDA, LD2A, LWORK

REAL WAORK(*)

F95 | NTERFACE
SUBROUTI NE FFT3B([M, [N, [Kl, A [LDA], LD2A, WORK, LWORK)

COWPLEX, DIMENSION(:,:,:) :: A

INTEGER :: M N, K, LDA, LD2A, LWORK

REAL, DI MENSI ON(:) :: WORK

SUBROUTI NE FFT3B 64([M, [N, [Kl, A [LDA], LD2A, WORK, LWORK)
COWPLEX, DIMENSION(:,:,:) :: A

INTEGER(8) :: M N, K, LDA, LD2A, LWORK

REAL, DI MENSI ON(:) :: WORK

C | NTERFACE
#i ncl ude <sunperf. h>

void cfft3b(int m int n, int k, conplex *a, int Ida, int
| d2a, float *work, int |work);

void cfft3b_64(long m long n, long k, conplex *a, long |da
| ong 1 d2a, float *work, |ong |work);

Page 208 of 4153

ARGUMENTS

M (i nput) Nunber of rows to be transforned. These subrou-
tines are nost efficient when Mis a product of
smal |l primes. M >= 0.

N (i nput) Nunber of columms to be transforned. These sub-
routines are nost efficient when Nis a product of
smal |l primes. N >= 0.

K (i nput) Nunber of planes to be transfornmed. These subrou-
tines are nost efficient when Kis a product of
smal | primes. K >= 0.

A (i nput/out put)
On entry, a three-dinmensional array A(LDA, LD2A K)
that contains the sequences to be transforned.

LDA (i nput)
Leadi ng di mensi on of the array containing the data
to be transformed. LDA >= M

LD2A (i nput)
Second di mensi on of the array containing the data
to be transformed. LD2A >= N.

WORK (i nput)
On input, workspace WORK nust have been initial-
i zed by CFFT3I.

LWORK (i nput)
The di mension of the array WORK. LWORK >= (4*(M +
N + K) + 45).

Page 209 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cfft3f - conpute the Fourier coefficients of a periodic
sequence. The FFT operations are unnornalized, so a call of
CFFT3F followed by a call of CFFT3B will nultiply the input
sequence by M NK.

SYNOPSIS

SUBROQUTI NE CFFT3F(M N, K, A, LDA LD2A, WORK, LWORK)

COVPLEX A(LDA, LD2A, *)
INTEGER M N, K, LDA, LD2A, LWORK
REAL WAORK(*)

SUBROUTI NE CFFT3F_64(M N, K, A, LDA LD2A, WORK, LWORK)
COVPLEX A(LDA, LD2A, *)

INTEGER*8 M N, K, LDA, LD2A, LWORK

REAL WAORK(*)

F95 | NTERFACE
SUBROUTI NE FFT3F([M, [N, [Kl, A [LDA], LD2A, WORK, LWORK)

COWPLEX, DIMENSION(:,:,:) :: A

INTEGER :: M N, K, LDA, LD2A, LWORK

REAL, DI MENSI ON(:) :: WORK

SUBROUTI NE FFT3F_64([M, [N, [Kl, A [LDA], LD2A, WORK, LWORK)
COWPLEX, DIMENSION(:,:,:) :: A

INTEGER(8) :: M N, K, LDA, LD2A, LWORK

REAL, DI MENSI ON(:) :: WORK

C | NTERFACE
#i ncl ude <sunperf. h>

void cfft3f(int m int n, int k, conplex *a, int Ida, int
| d2a, float *work, int |work);

void cfft3f_64(long m long n, long k, conplex *a, long |da
| ong 1 d2a, float *work, |ong |work);

Page 210 of 4153

ARGUMENTS

M (i nput)

N (i nput)

K (i nput)

Nunber of rows to be transforned. These subrou-
tines are nost efficient when Mis a product of
smal |l primes. M >= 0.
Nunber of columms to be transforned. These sub-
routines are nost efficient when Nis a product of
smal |l primes. N >= 0.

Nunber of planes to be transforned. These subrou-
tines are nost efficient when Kis a product of
smal | primes. K >= 0.

A (i nput/out put)

On entry, a three-dinmensional array A(MN, K) that
contains the sequences to be transforned.

LDA (i nput)

Leadi ng di mensi on of the array containing the data
to be transformed. LDA >= M

LD2A (i nput)

Second di mensi on of the array containing the data
to be transformed. LD2A >= N.

WORK (i nput)

On input, workspace WORK nust have been initial-
i zed by CFFT3I.

LWORK (i nput)

The dinmension of the array WORK. LWORK >= (4*(M +
N + K) + 45).

Page 211 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cfft3i - initialize the array WSAVE, which is used in both
CFFT3F and CFFT3B.

SYNOPSIS

SUBROUTI NE CFFT3I (M N, K, WORK)

INTEGER M N, K
REAL WAORK(*)

SUBROUTI NE CFFT3l _64(M N, K, WORK)

INTEGER*8 M N, K
REAL WORK(*)

F95 | NTERFACE
SUBROQUTI NE CFFT3I (M N, K, WORK)

INTEGER :: M N, K
REAL, DI MENSI ON(:) :: WORK

SUBROUTI NE CFFT3l _64(M N, K, WORK)

INTEGER(8) :: M N, K
REAL, DI MENSI ON(:) :: WORK

C | NTERFACE
#i ncl ude <sunperf. h>

void cfft3i(int m int n, int k, float *work);

void cfft3i_64(long m long n, long k, float *work);

ARGUMENTS

M (i nput) Nunber of rows to be transforned. M >= 0.

N (i nput) Nunber of columms to be transformed. N >= 0.

Page 212 of 4153

K (i nput) Nunber of planes to be transformed. K >= 0.

WORK (i nput/ out put)

On entry, an array of dinmension (4*(M+ N +
45) or greater. CFFT3l needs to be called only

once to initialize array WORK before

CFFT3F and/or CFFT3B if M N, K and WORK remai n
unchanged between these calls. Thus, subsequent
transforns or inverse transforns of same size can

be obtained faster than the first since

not require initialization of the workspace.

Page 213 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cfftb - conmpute a periodic sequence fromits Fourier coeffi-
cients. The FFT operations are unnornalized, so a call of
CFFTF followed by a call of CFFTB will nultiply the input
sequence by N

SYNOPSIS

SUBROUTI NE CFFTB(N, X, WBAVE)
COVPLEX X(*)

| NTEGER N

REAL WBAVE(*)

SUBROUTI NE CFFTB_64(N, X, WBAVE)
COVPLEX X(*)

| NTEGER*8 N

REAL WBAVE(*)

F95 | NTERFACE
SUBROUTI NE FFTB([N, X, WBAVE)

COWPLEX, DIMENSION(:) :: X

I NTEGER :: N

REAL, DI MENSION(:) :: WBAVE
SUBROUTI NE FFTB_64([N, X, WBAVE)
COWPLEX, DIMENSION(:) :: X

I NTEGER(8) :: N

REAL, DI MENSION(:) :: WBAVE

C | NTERFACE
#i ncl ude <sunperf. h>

void cfftb(int n, conplex *x, float *wsave);

void cfftb_64(long n, conplex *x, float *wsave);

Page 214 of 4153

ARGUMENTS

N (input) Length of the sequence to be transforned. These
subroutines are nost efficient when Nis a product
of small prinmes. N >= 0.

X (input) On entry, an array of length N containing the
sequence to be transforned.

WSAVE (i nput/ out put)
On entry, WBAVE nust be an array of dinension (4 *
N + 15) or greater and nust have been initialized
by CFFTI.

Page 215 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. SEEALSO

NAME

cfftc - initialize the trigononetric weight and factor
tables or conpute the Fast Fourier transform (forward or
i nverse) of a conpl ex sequence.

SYNOPSIS

SUBROUTI NE CFFTC(1 OPT, N, SCALE, X, Y, TRIGS, |FAC, WORK, LWORK, |ERR)

INTEGER | OPT, N, |FAC(*), LWORK, |ERR
COWPLEX X(*), Y(*)
REAL SCALE, TRIGS(*), WORK(*)

SUBROUTI NE CFFTC_64(1 OPT, N, SCALE, X, Y, TRIGS, |FAC, WORK, LWORK, |ERR)

INTEGER*8 | OPT, N, |FAC(*), LWORK, |ERR
REAL SCALE, TRIGS(*), WORK(*)
COWPLEX X(*), Y(*)

FO95 | NTERFACE
SUBROUTI NE FFT(1 OPT, [N], [SCALE], X, Y, TRIGS, |FAC, WORK, [LWORK], |ERR)

I NTEGER*4, INTENT(IN) :: |OPT

I NTEGER*4, |NTENT(IN), OPTIONAL :: N, LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE
COWPLEX, | NTENT(IN), DIMENSION(:) :: X
COVPLEX, | NTENT(OUT), DIMENSION(:) :: Y
REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

I NTECER*4, | NTENT(INOUT), DI MENSION(:) :: IFAC
REAL, I NTENT(QUT), DIMENSION(:) :: WORK
I NTEGER*4, | NTENT(QUT) :: IERR

SUBROUTI NE FFT_64(1OPT, [N], [SCALE], X, Y, TRIGS, |FAC, WORK, [LWORK], |ERR)

I NTEGER(8), INTENT(IN) :: |OPT

I NTEGER(8), |NTENT(IN), OPTIONAL :: N, LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE
COWPLEX, | NTENT(IN), DIMENSION(:) :: X
COVPLEX, | NTENT(OUT), DIMENSION(:) :: Y
REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

Page 216 of 4153

| NTEGER(8), | NTENT(INOUT), DI MENSION(:) :: |FAC
REAL, | NTENT(OUT), DIMENSION(:) :: WORK
I NTEGER(8), | NTENT(OUT) :: |ERR

C | NTERFACE
#i ncl ude <sunperf. h>

void cfftc_ (int *iopt, int *n, float *scale, conplex *Xx,
complex *y, float *trigs, int *ifac, float *work,
int *lwork, int *ierr);

void cfftc_64_ (long *iopt, long *n, float *scale, conplex
*x, conplex *y, float *trigs, long *ifac, float
*work, long *lwork, long *ierr);

PURPOSE

cfftc initializes the trigononetric weight and factor tables
or conputes the Fast Fourier transform (forward or inverse)
of a conpl ex sequence as foll ows:

N-1

Y(k) = scale * SUM W X(j)
j=0

wher e

k ranges fromO to N-1

i =sqrt(-1)

isign =1 for inverse transformor -1 for forward transform
W= exp(isign*i*j*k*2*pi /N)

ARGUMENTS

| OPT (i nput)
I nt eger specifying the operation to be perforned:
|OPT = 0 conputes the trigononetric weight table
and factor table
IOPT = -1 conputes forward FFT
| OPT = +1 conputes inverse FFT

N (i nput)

I nt eger specifying length of the input sequence X
N is nost efficient when it is a product of snall
primes. N >= 0. Unchanged on exit.

SCALE (i nput)
Real scal ar by which transformresults are scal ed.
Unchanged on exit. SCALE is defaulted to 1.0 for
F95 | NTERFACE.

X (input) On entry, Xis a conplex array of dinension at
| east N that contains the sequence to be
transf or med.

Y (out put)
Conpl ex array of dinension at least N that con-

Page 217 of 4153

tains the transformresults. X and Y may be the
sane array starting at the same nmenory |ocation.
O herwise, it is assunmed that there is no overlap
between X and Y in nmenory.

TRI GS (i nput/ out put)
Real array of length 2*N that contains the tri-
gononetric weights. The weights are conputed when
the routine is called with IOPT = 0 and they are
used in subsequent calls when IOPT = 1 or | OPT =
-1. Unchanged on exit.

| FAC (i nput/out put)
Integer array of dinmension at |east 128 that con-
tains the factors of N. The factors are conputed
when the routine is called with |OPT = 0 and they
are used in subsequent <calls where |OPT = 1 or
| OPT = -1. Unchanged on exit.

WORK (wor kspace)
Real array of dinension at |east 2*N. The user
can also choose to have the routine allocate its
own wor kspace (see LWORK)

LWORK (i nput)
I nt eger specifying workspace size. |If LWORK = O,
the routine will allocate its own workspace

| ERR (out put)
On exit, integer |ERR has one of the follow ng
val ues:
0 = normal return

-1 =10PTis not 0, 1 or -1
-2=N<0
-3 = (LMORK is not 0) and (LWORK is | ess than 2*N)
-4 = nenory allocation for workspace failed
SEE ALSO
fft

Page 218 of 4153

Contents

. NAME

. SYNOPSIS
o F95 INTERFACE
o CINTERFACE

. PURPOSE

. ARGUMENTS

. SEEALSO

. CAUTIONS

NAME

cfftc2 - initialize the trigononetric weight and factor
tabl es or conpute the two-di mensional Fast Fourier Transform
(forward or inverse) of a two-dinmensional conplex array.

SYNOPSIS

SUBROUTI NE CFFTC2(1 OPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, |FAC, WORK, LWORK,
| ERR)

I NTEGER | OPT, N1, N2, LDX, LDY, IFAC(*), LWORK, |IERR
COWPLEX X(LDX, *), Y(LDY, *)
REAL SCALE, TRIGS(*), WORK(*)

SUBROUTI NE CFFTC2_64(1OPT, NI, N2, SCALE, X, LDX, Y, LDY, TRIGS, |FAC, WORK, LWORK,
| ERR)

I NTECER*8 | OPT, N1, N2, LDX, LDY, IFAC(*), LWORK, |ERR
REAL SCALE, TRIGS(*), WORK(*)
COWPLEX X(LDX, *), Y(LDY, *)

F95 | NTERFACE
SUBROUTI NE FFT2(1 OPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
| FAC, WORK, [LWORK], |ERR)

| NTEGER*4, | NTENT(IN) :: |OPT
| NTEGER*4, |INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
REAL, | NTENT(IN), OPTIONAL :: SCALE

COVPLEX, INTENT(IN), DIMENSION(:,:) :: X

COWPLEX, I NTENT(OQUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

| NTEGER*4, | NTENT(INOUT), DIMENSION(:) :: |FAC
REAL, | NTENT(OUT), DI MENSION(:) :: WORK
| NTEGER*4, | NTENT(OUT) :: IERR

SUBROUTI NE FFT2_64(1OPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, |FAC, WORK,
[LMORK], | ERR)

I NTEGER(8), INTENT(IN) :: |OPT

Page 219 of 4153

I NTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE

COWPLEX, INTENT(IN), DIMENSION(:,:) :: X

COWPLEX, |NTENT(QUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

I NTEGER(8), | NTENT(INOUT), DI MENSION(:) :: |FAC

REAL, | NTENT(OQUT), DI MENSION(:) :: WORK

I NTEGER(8), | NTENT(QUT) :: |ERR

C | NTERFACE

#i ncl ude <sunperf. h>

void cfftc2_ (int *iopt, int *nl, int *n2, float *scale,
conplex *x, int *ldx, conplex *y, int *ldy, float
*trigs, int *ifac, float *work, int *lwork, int
*jerr);

void cfftc2_64_ (long *iopt, long *nl, long *n2, float
*scale, conmplex *x, long *ldx, conplex *y, long
*|dy, float *trigs, long *ifac, float *work, |ong

*work, long *ierr);

PURPOSE

cfftc2 initializes the trigononetric weight and factor
tabl es or conput es the two-dinmensional Fast Fourier
Transform (forward or inverse) of a two-dinensional conplex

array. I'n conputi ng t he t wo- di nensi onal FFT,
one-di nensi onal FFTs are conputed al ong the colums of the
i nput array. One-di mensi onal FFTs are then conputed al ong

the rows of the internediate results.

N2-1 NI1-1
Y(k1, k2) = scale * SUM SUM W*WL*X(j1,j2)
j2=0 j1=0
wher e
kl ranges fromO to N1-1 and k2 ranges fromO to N2-1
i =sqrt(-1)

isign =1 for inverse transformor -1 for forward transform
WL = exp(isign*i*j1l*kl*2*pi/N1)
W2 exp(isign*i*j2*k2*2*pi / N2)

ARGUMENTS

| OPT (i nput)
I nt eger specifying the operation to be perforned:
|OPT = 0 conputes the trigononetric weight table
and factor table
IOPT = -1 conmputes forward FFT

| OPT = +1 conputes inverse FFT

N1 (i nput)
I nteger specifying length of the transformin the
first dinension. Nl is nost efficient when it is
a product of small primes. N1 >= 0. Unchanged on
exit.

Page 220 of 4153

N2 (input)
I nteger specifying length of the transformin the
second dinmension. N2 is nost efficient when it is
a product of small primes. N2 >= 0. Unchanged on
exit.

SCALE (i nput)
Real scalar by which transformresults are scal ed
Unchanged on exit. SCALE is defaulted to 1.0 for
F95 | NTERFACE.

X (input) X is a conplex array of dinmensions (LDX, N2) that
contains input data to be transforned.

LDX (i nput)
Leadi ng di mension of X. LDX >= Nl Unchanged on
exit.

Y (out put)

Y is a conplex array of dinensions (LDY, N2) that
contains the transform results. X and Y can be
the sane array starting at the sane nenory |oca-
tion, in which case the input data are overwitten
by their transform results. QG herwise, it is
assuned that there is no overlap between X and Y
in menory.

LDY (i nput)
Leadi ng dinmension of Y. |If X and Y are the sanme
array, LDY = LDX Else LDY >= N1 Unchanged on exit.

TRI GS (i nput/ out put)
Real array of length 2*(N1+N2) that contains the
trigononmetric weights. The wei ghts are conputed
when the routine is called with |OPT = 0 and they
are used in subsequent calls when I1OPT = 1 or | OPT
= -1. Unchanged on exit.

| FAC (i nput/out put)
Integer array of dinmension at |east 2*128 that
contains the factors of N1 and N2. The factors
are conputed when the routine is called with |OPT
= 0 and they are used in subsequent calls when
IOPT =1 or IOPT = -1. Unchanged on exit.

WORK (wor kspace)
Real array of di mensi on at | east
2* MAX(N1, N2) *NCPUS where NCPUS is the nunber of
threads used to execute the routine. The user can
al so choose to have the routine allocate its own
wor kspace (see LWORK)

LWORK (i nput)
I nt eger specifying workspace size. |If LMWORK = O,
the routine will allocate its own workspace

| ERR (out put)
On exit, integer |ERR has one of the follow ng
val ues:
0 = normal return
-1 =10PTis not O, 1 or -1

Page 221 of 4153

-2 =NL <O

-:3=N2<0

-4 = (LDX < N1)

-5 = (LDY < N1) or (LDY not equal LDX when X and Y

are sanme array)

-6 = (LWORK not equal 0) and (LWORK <
2* MAX(N1, N2) * NCPUS)

-7 = nenory allocation failed

SEE ALSO

fft

CAUTIONS

On exit, entire output array Y(1:LDY, 1:N2) is overwitten.

Page 222 of 4153

Contents

. NAME

. SYNOPSIS
o F95 INTERFACE
o CINTERFACE

. PURPOSE
. ARGUMENTS
. SEEALSO
. CAUTIONS
NAME
cfftc3 - initialize the trigononetric weight and factor
tabl es or conpute the three-dinmensional Fast Fourier
Transform (forward or inverse) of a three-dinmensional com
pl ex array.
SYNOPSIS
SUBROUTI NE CFFTC3(1 OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS,
| FAC, WORK, LWORK, |ERR)
I NTEGER | OPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, |FAC(*),
LWORK, | ERR
COWPLEX X(LDX1, LDX2, *), Y(LDY1, LDY2, *)
REAL SCALE, TRIGS(*), WORK(*)
SUBROUTI NE CFFTC3_64(1 OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDYl, LDY2, TRIGS,
I FAC, WORK, LWORK, |ERR)
I NTEGER*8 | OPT, N1, N2, N3, LDX1, LDX2, LDYl, LDY2, |FAC(*),
LWORK, | ERR
COVPLEX X(LDX1, LDX2, *), Y(LDY1, LDY2, *)
REAL SCALE, TRIGS(*), WORK(*)
F95 | NTERFACE
SUBROUTI NE FFT3(1 OPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2,
TRI GS,
| FAC, WORK, [LWORK], |ERR)
| NTEGER*4, | NTENT(I N) | OPT, LDX2, LDY2
I NTEGER*4, I NTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDy1,
LWORK
REAL, | NTENT(IN), OPTIONAL :: SCALE
COVPLEX, | NTENT(IN), DIMENSION(:,:) :: X
COWPLEX, |NTENT(QUT), DIMENSION(:,:) :: Y
REAL, | NTENT(INOUT), DI MENSI ON(:) TRI GS
| NTEGER*4, | NTENT(| NOUT), DI MENSI ON(:) | FAC
REAL, | NTENT(QUT), DI MENSI O\(:) WORK
| NTEGER* 4, | NTENT(OUT) | ERR

Page 223 of 4153

SUBROUTI NE FFT3_64(1OPT, [N1], [N2], [N3], [SCALE], X, [LDX1],

LDY2, TRIGS,
| FAC, WORK, [LWORK], |ERR)
I NTEGER(8), INTENT(IN) :: |OPT, LDX2, LDY2
| NTEGER(8), INTENT(IN), OPTIONAL :: NI, N2, N3, LDX1, LDVY1,
LWORK
REAL, | NTENT(IN), OPTIONAL :: SCALE
COWPLEX, INTENT(IN), DIMENSION(:,:) :: X
COWPLEX, |NTENT(QUT), DIMENSION(:,:) :: Y
REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS
I NTEGER(8), | NTENT(INOUT), DI MENSION(:) :: |FAC
REAL, | NTENT(OUT), DI MENSION(:) :: WORK
I NTEGER(8), | NTENT(QUT) :: |ERR
C | NTERFACE
#i ncl ude <sunperf. h>
void cfftc3_ (int *iopt, int *nl, int *n2, int *n3, float
*scale, conplex *x, int *Idx1, int *|ldx2, conplex
*y, int *ldyl, int *ldy2, float *trigs, int *ifac,
float *work, int *lwork, int *ierr);
void cfftc3_64_ (long *iopt, long *nl, long *n2, long *n3,
float *scale, conplex *x, long *Idxl, |long *Idx2,
complex *y, long *ldyl, long *ldy2, float *trigs,
long *ifac, float *work, long *Iwork, long *ierr);
PURPOSE
cfftc3 initializes the trigononetric weight and factor
tabl es or conputes the three-dinensional Fast Fourier
Transform (forward or inverse) of a three-dinensional com
pl ex array.
N3-1 N2-1 N1-1
Y(k1, k2,k3) = scale * SUM SUM SUM WB*V*WL*X(j1,j2,j3)
j3=0 j2=0 j1=0
wher e
kl ranges fromO to N1-1; k2 ranges fromO to N2-1 and k3
ranges fromO0O to N3-1
i =sqrt(-1)
isign =1 for inverse transformor -1 for forward transform
WL = exp(isign*i*j1l*kl*2*pi/N1)
W2 = exp(isign*i*j2*k2*2*pi/ N2)
WB = exp(isign*i*j3*k3*2*pi/ N3)
ARGUMENTS
| OPT (i nput)

I nt eger specifying the operation to be perforned:
|OPT = 0 conputes the trigononetric weight table
and factor table

IOPT = -1 conmputes forward FFT

| OPT = +1 conputes inverse FFT

LDX2, Y, [LDY1],

Page 224 of 4153

N1 (input)
I nteger specifying length of the transformin the
first dimension. N1 is nost efficient when it is
a product of small primes. N1 >= 0. Unchanged on
exit.

N2 (input)
I nteger specifying length of the transformin the
second dinension. N2 is nost efficient when it is
a product of small primes. N2 >= 0. Unchanged on
exit.

N3 (i nput)
I nteger specifying length of the transformin the
third dinmension. N3 is nost efficient when it is
a product of small primes. N3 >= 0. Unchanged on
exit.

SCALE (i nput)
Real scalar by which transformresults are scal ed.
Unchanged on exit. SCALE is defaulted to 1.0 for
F95 | NTERFACE.

X (input) Xis a conplex array of dinensions (LDX1, LDX2,
N3) that contains input data to be transforned.

LDX1 (i nput)
first dinmension of X. LDX1 >= Nl Unchanged on
exit.

LDX2 (i nput)
second di mension of X. LDX2 >= N2 Unchanged on
exit.

Y (out put)
Y is a conplex array of dinensions (LDYl, LDY2,
N3) that contains the transformresults. X and Y
can be the sane array starting at the sane nenory

| ocati on, in which case the input data are
overwitten by their transform results. O her -
wise, it is assuned that there is no overlap

between X and Y in nmenory.

LDY1 (i nput)

first dinmension of Y. If Xand Y are the sane
array, LDYl = LDX1 Else LDY1 >= N1 Unchanged on
exit.

LDY2 (i nput)

second dinension of Y. If Xand Y are the sane
array, LDY2 = LDX2 Else LDY2 >= N2 Unchanged on
exit.

TRI GS (i nput/ out put)
Real array of length 2*(N1L+N2+N3) that contains
the trigononetric weights. The weights are com
puted when the routine is called with IOPT = 0 and
they are used in subsequent calls when | OPT = 1 or
IOPT = -1. Unchanged on exit.

Page 225 of 4153

| FAC (i nput/ out put)
Integer array of dinmension at |east 3*128 that
contains the factors of NI, N2 and N3. The fac-
tors are conputed when the routine is called wth
IOPT = 0 and they are used in subsequent calls
when IOPT = 1 or IOPT = -1. Unchanged on exit.

WORK (wor kspace)
Real array of dinension at |east (2*MAX(N, N2, N3) +
32*N3) * NCPUS where NCPUS is the nunber of
threads used to execute the routine. The user can
al so choose to have the routine allocate its own
wor kspace (see LWORK).

LWORK (i nput)
I nt eger specifying workspace size. |If LVWORK = O,
the routine will allocate its own workspace.

| ERR (out put)
On exit, integer |ERR has one of the follow ng
val ues:
0 = normal return

-1 =10PTis not O, 1 or -1

-2 =NL <O

-:3=N2<0

-4 =N3 <0

-5 = (LDX1 < N1)

-6 = (LDX2 < N2)

-7 = (LDY1 < N1) or (LDY1 not equal LDX1 when X

and Y are sane array)

-8 = (LDY2 < N2) or (LDY2 not equal LDX2 when X
and Y are sane array)

-9 = (LWORK not equal 0) and (LWORK <
(2*MAX(N, N2, N3) + 16*N3) * NCPUS)

-10 = menory allocation failed

SEE ALSO
fft

CAUTIONS
This routine uses Y(N1+1:LDY1,:,:) as scratch space. There-
fore, the woriginal contents of this subarray will be | ost

upon returning fromroutine while subarray Y(21: N1, 1: N2, 1: N3)
contains the transformresults.

Page 226 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. SEEALSO

NAME

cfftcm- initialize the trigononetric weight and factor
tabl es or conpute the one-di mensional Fast Fourier Transform
(forward or inverse) of a set of data sequences stored in a
two- di mensi onal conpl ex array.

SYNOPSIS

SUBROUTI NE CFFTCM | OPT, NI, N2, SCALE, X, LDX, Y, LDY, TRIGS, |FAC, WORK, LWORK,
| ERR)

INTEGER | OPT, N1, N2, LDX, LDY, IFAC(*), LWORK, |ERR
COWPLEX X(LDX, *), Y(LDY, *)
REAL SCALE, TRIGS(*), WORK(*)

SUBROUTI NE CFFTCM 64(1 OPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, |FAC, WORK, LWORK,
| ERR)

INTEGER*8 | OPT, NI, N2, LDX, LDY, IFAC(*), LWORK, |ERR
REAL SCALE, TRIGS(*), WORK(*)
COWPLEX X(LDX, *), Y(LDY, *)

F95 | NTERFACE
SUBROUTI NE FFTM | OPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
| FAC, WORK, [LWORK], |ERR)

I NTEGER*4, INTENT(IN) :: |OPT

I NTEGER*4, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE

COWPLEX, INTENT(IN), DIMENSION(:,:) :: X

COVPLEX, | NTENT(OUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

| NTEGER*4, | NTENT(INOUT), DIMENSION(:) :: |FAC
REAL, | NTENT(OUT), DI MENSION(:) :: WORK
| NTEGER*4, |NTENT(OUT) :: IERR

SUBROUTI NE FFTM 64(1 OPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, |FAC, WORK,
[LMWORK], | ERR)

| NTECER(8), INTENT(IN) :: IOPT

Page 227 of 4153

I NTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE

COWPLEX, INTENT(IN), DIMENSION(:,:) :: X

COWPLEX, |NTENT(QUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

I NTEGER(8), | NTENT(INOUT), DI MENSION(:) :: |FAC

REAL, | NTENT(OQUT), DI MENSION(:) :: WORK

I NTEGER(8), | NTENT(QUT) :: |ERR

C | NTERFACE

#i ncl ude <sunperf. h>

void cfftem_ (int *iopt, int *nl, int *n2, float *scale,
conplex *x, int *ldx, conplex *y, int *ldy, float
*trigs, int *ifac, float *work, int *lwork, int
*jerr);

void cfftcm64_ (long *iopt, long *nl, long *n2, float
*scale, conmplex *x, long *ldx, conplex *y, long
*|dy, float *trigs, long *ifac, float *work, |ong

*work, long *ierr);

PURPOSE

cfftcm initializes the trigononetric weight and factor
tabl es or conput es the one-dinmensional Fast Fourier
Transform (forward or inverse) of a set of data sequences
stored in a two-di nensional conplex array:

N1- 1
Y(k, 1) = SUM WX(j,1)
j=0

wher e

k ranges fromO to N1-1 and | ranges fromO to N2-1

i =sqrt(-1)

isign =1 for inverse transformor -1 for forward transform
W= exp(isign*i*j*k*2*pi/NL)

ARGUMENTS

| OPT (i nput)
I nt eger specifying the operation to be perforned:
|OPT = 0 conputes the trigononetric weight table
and factor table
IOPT = -1 conmputes forward FFT
| OPT = +1 conmputes inverse FFT

N1 (i nput)
I nt eger specifying length of the input sequences.
N1 is nost efficient when it is a product of snall
primes. Nl >= 0. Unchanged on exit.

N2 (i nput)

I nt eger specifying nunber of input sequences. N2
>= 0. Unchanged on exit.

Page 228 of 4153

SCALE (i nput)
Real scalar by which transformresults are scal ed
Unchanged on exit. SCALE is defaulted to 1.0 for
F95 | NTERFACE.

X (input) Xis a conplex array of dinmensions (LDX, N2) that
contains the sequences to be transforned stored in
its colums.

LDX (i nput)
Leadi ng di mension of X. LDX >= Nl Unchanged on
exit.

Y (out put)

Y is a conplex array of dinensions (LDY, N2) that
cont ai ns the transform results of the input
sequences. X and Y can be the sane array starting
at the sanme nenory |location, in which case the
i nput sequences are overwitten by their transform
resul ts. O herwise, it is assunmed that there is
no overlap between X and Y in nenory.

LDY (i nput)
Leadi ng dimension of Y. |If X and Y are the sanme
array, LDY = LDX Else LDY >= N1 Unchanged on exit.

TRI GS (i nput/ out put)
Real array of length 2*Nl that contains the tri-
gonornetric weights. The weights are conputed when
the routine is called with IOPT = 0 and they are
used in subsequent calls when IOPT = 1 or | OPT =
-1. Unchanged on exit.

| FAC (i nput/ out put)
Integer array of dinmension at |east 128 that con-
tains the factors of NL. The factors are conputed
when the routine is called with OPT = 0 and they
are used in subsequent calls when I1OPT = 1 or | OPT
= -1. Unchanged on exit.

WORK (wor kspace)
Real array of dinension at |east 2*N1*NCPUS where
NCPUS i s the nunber of threads used to execute the
routine. The user can also choose to have the
routine allocate its own workspace (see LWORK).

LWORK (i nput)
I nt eger specifying workspace size. |If LWORK = O,
the routine will allocate its own workspace

| ERR (out put)
On exit, integer |ERR has one of the follow ng
val ues:
0 = normal return

-1 =10PTis not O, 1 or -1

-2 =NL <O

-:3=N2<0

-4 = (LDX < N1)

-5 = (LDY < N1) or (LDY not equal LDX when X and Y

are sanme array)
-6 = (LWORK not equal 0) and (LWORK < 2*N1* NCPUS)

Page 229 of 4153

-7 = nenory allocation failed

SEE ALSO

fft

Page 230 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cfftf - conpute the Fourier coefficients of a periodic
sequence. The FFT operations are unnornalized, so a call of
CFFTF followed by a call of CFFTB will rmultiply the input
sequence by N

SYNOPSIS

SUBROUTI NE CFFTF(N, X, WBAVE)
COVPLEX X(*)

| NTEGER N

REAL WBAVE(*)

SUBROUTI NE CFFTF_64(N, X, WBAVE)
COVPLEX X(*)

| NTEGER*8 N

REAL WBAVE(*)

F95 | NTERFACE
SUBROUTI NE FFTF([N, X, WBAVE)

COWPLEX, DIMENSION(:) :: X

I NTEGER :: N

REAL, DI MENSION(:) :: WBAVE
SUBROUTI NE FFTF_64([N], X, WBAVE)
COWPLEX, DIMENSION(:) :: X

I NTEGER(8) :: N

REAL, DI MENSION(:) :: WBAVE

C | NTERFACE
#i ncl ude <sunperf. h>

void cfftf(int n, conplex *x, float *wsave);

void cfftf_64(long n, conplex *x, float *wsave);

Page 231 of 4153

ARGUMENTS

N (input) Length of the sequence to be transforned. These
subroutines are nost efficient when Nis a product
of small prinmes. N >= 0.

X (input) On entry, an array of length N containing the
sequence to be transforned.

WSAVE (i nput)
On entry, WBAVE nust be an array of dinension (4 *
N + 15) or greater and nust have been initialized
by CFFTI.

Page 232 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. ARGUMENTS

NAME

cffti - initialize the array WBAVE, which is wused in both

CFFTF and CFFTB.

SYNOPSIS

SUBROUTI NE CFFTI (N, WBAVE)

| NTEGER N
REAL WBAVE(*)

SUBROUTI NE CFFTI _64(N, WBAVE)

| NTEGER*8 N
REAL WBAVE(*)

F95 | NTERFACE
SUBROUTI NE CFFTI (N, WBAVE)

I NTEGER :: N
REAL, DI MENSI ON(:) :: WSBAVE

SUBROUTI NE CFFTI _64(N, WBAVE)

I NTEGER(8) :: N
REAL, DI MENSION(:) :: WBAVE

C | NTERFACE
#i ncl ude <sunperf. h>

void cffti(int n, float *wsave);

void cffti_64(long n, float *wsave);

ARGUMENTS

N (i nput) Length of the sequence to be transfornmed. N >= 0.

WBAVE (i nput/ out put)

Page 233 of 4153

On entry, an array of dimension (4 * N + 15) or
greater. CFFTI needs to be called only once to
initialize array WORK before calling CFFTF and/ or
CFFTB if N and WSAVE remain unchanged between
these calls. Thus, subsequent transforns or
inverse transforms of sane size can be obtained
faster than the first since they do not require
initialization of the workspace.

Page 234 of 4153

Contents

. NAME

. SYNOPSIS
o F95 INTERFACE
o CINTERFACE

. PURPOSE

NAME

cfftopt - conpute the length of the closest fast FFT

SYNOPSIS

| NTEGER FUNCTI ON CFFTOPT(LEN)

| NTEGER LEN

| NTEGER*8 FUNCTI ON CFFTOPT_64(LEN)
| NTEGER*8 LEN

F95 | NTERFACE
| NTEGER FUNCTI ON CFFTOPT(LEN)

| NTEGER :: LEN
| NTEGER(8) FUNCTI ON CFFTOPT_64(LEN)
| NTEGER(8) :: LEN

C | NTERFACE
#i ncl ude <sunperf. h>

int cfftopt(int len);

| ong cfftopt_64(long |en);

PURPOSE

cfftopt conputes the length of the closest fast FFT. Fast
Fourier transform algorithnms, including those used in Per-
formance Library, work best with vector Ilengths that are

products of small prines. For exanple, an FFT of length
32=2**5 will run faster than an FFT of prime length 31
because 32 is a product of small prinmes and 31 is not. |If

your application is such that you can taper or zero pad your
vector to a larger length then this function may hel p you

Page 235 of 4153

sel ect a better length and run your FFT faster.

CFFTOPT will return an integer no smaller than the input
argumrent N that is the closest nunber that is the product of
smal | primes. CFFTOPT will return 16 for an input of N=16
and return 18=2*3*3 for an input of N=17.

Note that the length conputed here is not guaranteed to be
optimal, only to be a product of small prines. Also, the
val ue returned nay change as the wunderlying FFTs becone
capable of handling larger prinmes. For exanple, passing in
N=51 today will return 52=2*2*13 rather than 51=3*17 because
the FFTs in Performance Library do not have fast radix 17
code. In the future, radix 17 code may be added and then
N=51 will return 51

Page 236 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. SEEALSO

NAME

cffts - initialize the trigononetric weight and factor
tables or conmpute the inverse Fast Fourier Transformof a
conpl ex sequence as fol |l ows.

SYNOPSIS

SUBROUTI NE CFFTS(1 OPT, N, SCALE, X, Y, TRIGS, |FAC, WORK, LWORK, |ERR)

INTEGER | OPT, N, |FAC(*), LWORK, |ERR
COWPLEX X(*)
REAL SCALE, Y(*), TRIGS(*), WORK(*)

SUBROUTI NE CFFTS_64(1 OPT, N, SCALE, X, Y, TRIGS, |FAC, WORK, LWORK, |ERR)

INTEGER*8 | OPT, N, |FAC(*), LWORK, |ERR
REAL SCALE, Y(*), TRIGS(*), WORK(*)
COWPLEX X(*)

FO95 | NTERFACE
SUBROUTI NE FFT(1 OPT, N, [SCALE], X, Y, TRIGS, |FAC, WORK, [LWORK], |ERR)

I NTEGER*4, INTENT(IN) :: 1OPT, N

I NTEGER*4, |NTENT(IN), OPTIONAL :: LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE
COWPLEX, | NTENT(IN), DIMENSION(:) :: X
REAL, | NTENT(OUT), DIMENSION(:) :: Y
REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

I NTECER*4, | NTENT(INOUT), DI MENSION(:) :: IFAC
REAL, I NTENT(QUT), DIMENSION(:) :: WORK
I NTEGER*4, | NTENT(QUT) :: IERR

SUBROUTI NE FFT_64(1 OPT, N, [SCALE], X, Y, TRIGS, |FAC, WORK, [LWORK], |ERR)

I NTEGER(8), INTENT(IN) :: IOPT, N

I NTEGER(8), |NTENT(IN), OPTIONAL :: LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE
COWPLEX, | NTENT(IN), DIMENSION(:) :: X
REAL, | NTENT(OUT), DIMENSION(:) :: Y
REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

Page 237 of 4153

| NTEGER(8), | NTENT(INOUT), DI MENSION(:) :: |FAC
REAL, | NTENT(OUT), DIMENSION(:) :: WORK
I NTEGER(8), | NTENT(OUT) :: |ERR

C | NTERFACE
#i ncl ude <sunperf. h>

void cffts_ (int *iopt, int *n, float *scale, conplex *Xx,
float *y, float *trigs, int *ifac, float *work,
int *lwork, int *ierr);

void cffts_64_ (long *iopt, long *n, float *scale, conplex
*x, float *y, float *trigs, long *ifac, float
*work, long *lwork, long *ierr);

PURPOSE

cffts initializes the trigononetric weight and factor tables
or conputes the inverse Fast Fourier Transform of a conplex
sequence as follows:

N-1

Y(k) = scale * SUM W X(j)
j=0

wher e

k ranges fromO to N-1

i =sqrt(-1)

isign =1 for inverse transformor -1 for forward transform
W= exp(isign*i*j*k*2*pi /N)

In conplex-to-real transformof length N, the (N2+1) com
plex input data points stored are the positive-frequency
hal f of the spectrumof the Discrete Fourier Transform The
other half can be obtained through conpl ex conjugation and
therefore is not stored. Furthernore, due to symetries the
i magi nary of the conponent of X(0) and X(N2) (if Nis even
inthe latter) is assuned to be zero and is not referenced.

ARGUMENTS
| OPT (i nput)
I nt eger specifying the operation to be perforned:
|OPT = 0 conputes the trigononetric weight table
and factor table
| OPT = 1 conputes inverse FFT
N (i nput)

I nt eger specifying length of the input sequence X
N is nost efficient when it is a product of snall
primes. N >= 0. Unchanged on exit.

SCALE (i nput)
Real scal ar by which transformresults are scal ed.
Unchanged on exit. SCALE is defaulted to 1.0 for
F95 | NTERFACE.

Page 238 of 4153

X (input) On entry, X is a conplex array whose first (N 2+1)
el ements are the input sequence to be transforned.

Y (out put)
Real array of dinension at least N that contains
the transform results. X and Y may be the sane
array starting at the same nenory | ocation. O h-
erwise, it is assumed that there is no overlap
between X and Y in nmenory.

TRI GS (i nput/ out put)
Real array of length 2*N that contains the tri-
gononetric weights. The weights are conputed when
the routine is called with IOPT = 0 and they are
used in subsequent calls when I1OPT = 1. Unchanged
on exit.

| FAC (i nput/out put)
Integer array of dinmension at |east 128 that con-
tains the factors of N The factors are conputed
when the routine is called with |OPT = 0 and they
are used in subsequent <calls where |OPT = 1.
Unchanged on exit.

WORK (wor kspace)
Real array of dinension at least N. The user can
al so choose to have the routine allocate its own
wor kspace (see LWORK)

LWORK (i nput)
I nt eger specifying workspace size. |If LMWORK = O,
the routine will allocate its own workspace

| ERR (out put)
On exit, integer |ERR has one of the follow ng
val ues:
0 = normal return

-1 =10PT is not 0 or 1
-2=N<0
-3 = (LWORK is not 0) and (LWORK is |less than N)
-4 = nenory allocation for workspace failed
SEE ALSO
fft

Page 239 of 4153

Contents

. NAME

. SYNOPSIS
o F95 INTERFACE
o CINTERFACE

. PURPOSE

. ARGUMENTS

. SEEALSO

. CAUTIONS

NAME

cffts2 - initialize the trigononmetric weight and
tables or conpute the two-di nensional inverse Fast
Transform of a two-di mensional conplex array.

SYNOPSIS

SUBROUTI NE CFFTS2(| OPT, N1,

| ERR)
I NTEGER | OPT, N1, N2, LDX, LDY, |FAC(*), LWORK, |ERR
COWPLEX X(LDX, *)
REAL SCALE, Y(LDY, *), TRIGS(*), WORK(*)

SUBROUTI NE CFFTS2_64(1 OPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, |FAC, WORK, LWORK
| ERR)

I NTEGER*8 | OPT, N1, N2, LDX, LDY, |FAC(*), LWORK, |ERR

COMPLEX X(LDX, *)

REAL SCALE, Y(LDY, *), TRIGS(*), WORK(*)

F95 | NTERFACE

SUBROUTI NE FFT2(1OPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TR GS,

& | FAC, WORK, [LWORK], |ERR)

| NTEGER*4, | NTENT(I N) | OPT, N1

| NTEGER*4, | NTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK

REAL, | NTENT(IN), OPTIONAL :: SCALE

COVPLEX, INTENT(IN), DIMENSION(:,:) :: X

REAL, | NTENT(QUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

| NTEGER*4, | NTENT(| NOUT), DI MENSI ON(:) | FAC

REAL, | NTENT(QUT), DI MENSI ON(:) WORK

| NTEGER* 4, | NTENT(OUT) | ERR

SUBROUTI NE FFT2_64(1OPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, |FAC, WORK
[LMORK] , | ERR)

| NTEGER(8), | NTENT(IN) | OPT, N1

N2, SCALE, X, LDX, Y, LDY, TRIGS,

factor
Fouri er

| FAC, WORK, LWORK,

Page 240 of 4153

I NTEGER(8), INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE

COWPLEX, INTENT(IN), DIMENSION(:,:) :: X

REAL, | NTENT(OQUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

I NTEGER(8), | NTENT(INOUT), DI MENSION(:) :: |FAC

REAL, | NTENT(OQUT), DI MENSION(:) :: WORK

I NTEGER(8), | NTENT(QUT) :: |ERR

C | NTERFACE

#i ncl ude <sunperf. h>

void cffts2_ (int *iopt, int *nl, int *n2, float *scale,
conplex *x, int *ldx, float *y, int *ldy, float
*trigs, int *ifac, float *work, int *lwork, int
*jerr);

void cffts2 64_ (long *iopt, long *nl, long *n2, float
*scale, conmplex *x, long *ldx, float *y, long
*|dy, float *trigs, long *ifac, float *work, |ong

*work, long *ierr);

PURPOSE

cffts2 initializes the trigononetric weight and factor
tables or conputes the two-di nensi onal inverse Fast Fourier
Transform of a two-di mensional conplex array. In conputing
the two-dinensional FFT, one-di nensional FFTs are conputed
along the rows of the input array. One-dinensional FFTs are
then conputed along the colums of the internediate results

N1-1 N2-1
Y(k1, k2) = scale * SUM SUM W*WL*X(j1,]2)
j1=0 j2=0
wher e
kl ranges fromO to N1-1 and k2 ranges fromO to N2-1
i =sqrt(-1)

isign =1 for inverse transform

WL = exp(isign*i*j1*kl*2*pi/N1)

W2 = exp(isign*i*j2*k2*2*pi/ N2)

In conpl ex-to-real transformof length N1, the (N1/2+1) com
plex input data points stored are the positive-frequency
hal f of the spectrumof the Discrete Fourier Transform The
other half can be obtained through conpl ex conjugation and
therefore is not stored

ARGUMENTS
| OPT (i nput)
I nt eger specifying the operation to be perforned:
|OPT = 0 conputes the trigononetric weight table
and factor table
| OPT = 1 conputes inverse FFT
N1 (i nput)

I nteger specifying length of the transformin the

Page 241 of 4153

first dinmension. N1 is nost efficient when it is
a product of small primes. N1 >= 0. Unchanged on
exit.

N2 (input)
I nteger specifying length of the transformin the
second dinension. N2 is nost efficient when it is
a product of small primes. N2 >= 0. Unchanged on
exit.

SCALE (i nput)
Real scalar by which transformresults are scal ed.
Unchanged on exit. SCALE is defaulted to 1.0 for
F95 | NTERFACE.

X (input) X is a conplex array of dinmensions (LDX, N2) that
contains input data to be transforned.

LDX (i nput)
Leading dinmension of X LDX >= (N1/2 + 1)
Unchanged on exit.

Y (output)

Yis areal array of dinensions (LDY, N2) that
contains the transform results. X and Y can be
the sane array starting at the sane nmenory |oca-
tion, in which case the input data are overwitten
by their transform results. QG herwise, it is
assuned that there is no overlap between X and Y
in menory.

LDY (i nput)
Leadi ng dinmension of Y. |If X and Y are the same
array, LDY = 2*LDX Else LDY >= 2*LDX and LDY nust
be even. Unchanged on exit.

TRI GS (i nput/ out put)
Real array of length 2*(N1+N2) that contains the

trigononmetric weights. The wei ghts are conputed
when the routine is called with OPT = 0 and they
are used in subsequent <calls when [|OPT = 1.

Unchanged on exit.

| FAC (i nput/ out put)
Integer array of dinmension at |east 2*128 that
contains the factors of N1 and N2. The factors
are conputed when the routine is called with |OPT
= 0 and they are used in subsequent calls when
IOPT = 1. Unchanged on exit.

WORK (wor kspace)
Real array of di mensi on at | east
MAX(N1, 2*N2) *NCPUS, where NCPUS is the nunber of
threads used to execute the routine. The user can
al so choose to have the routine allocate its own
wor kspace (see LWORK).

LWORK (i nput)
I nt eger specifying workspace size. |If LMWORK = O,
the routine will allocate its own workspace.

Page 242 of 4153

| ERR (out put)
On exit, integer |ERR has one of the follow ng
val ues:
0 = normal return

-1 =10PTis not O, 1

-2 =NL <O

-:3=N <0

-4 = (LDX < N1/ 2+1)

-5 = LDY not equal 2*LDX when X and Y are sane
array

-6 = (LDY < 2*LDX or LDY odd) when X and Y are
same array

-7 = (LWORK not equal 0) and (LWORK <

MAX(N1, 2* N2) * NCPUS)
-8 = nenory allocation failed

SEE ALSO

fft

CAUTIONS

Y(N1+1:LDY,:) is used as scratch space. Upon returning, the
original contents of Y(NL+1:LDY,:) wll be |ost, whereas
Y(1: N1, 1: N2) contains the transformresults.

Page 243 of 4153

Contents

. NAME

. SYNOPSIS
o F95 INTERFACE
o CINTERFACE

. PURPOSE

. ARGUMENTS

. SEEALSO

. CAUTIONS

NAME

cffts3 - initialize the trigononetric weight and factor
tabl es or conpute the three-di mensi onal inverse Fast Fourier
Transform of a three-di nensional conplex array.

SYNOPSIS

SUBROUTI NE CFFTS3(1 OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1l, LDY2, TRIGS,
| FAC, WORK, LWORK, |ERR)

INTEGER | OPT, N1, N2, N3, LDX1, LDX2, LDY1l, LDY2, |FAC(*),
LWORK, | ERR

COWPLEX X(LDX1, LDX2, *)

REAL SCALE, TRIGS(*), WORK(*), Y(LDY1, LDY2, *)

SUBROUTI NE CFFTS3_64(1 OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS,
| FAC, WORK, LWORK, |ERR)

INTEGER*8 | OPT, N1, N2, N3, LDX1, LDX2, LDY1l, LDY2, |FAC(*),
LWORK, | ERR

COWPLEX X(LDX1, LDX2, *)

REAL SCALE, TRIGS(*), WORK(*), Y(LDY1, LDY2, *)

F95 | NTERFACE
SUBROUTI NE FFT3(1 OPT, N1, [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2,
TRI GS,
| FAC, WORK, [LWORK], |ERR)

| NTEGER*4, INTENT(IN) :: IOPT, N1, LDX2, LDY2

| NTEGER*4, I NTENT(IN), OPTIONAL :: N2, N3, LDX1, LDY1, LWORK
REAL, | NTENT(IN), OPTIONAL :: SCALE

COWPLEX, INTENT(IN), DIMENSION(:,:) :: X

REAL, | NTENT(QUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

| NTEGER*4, | NTENT(INOUT), DIMENSION(:) :: |FAC
REAL, | NTENT(OUT), DI MENSION(:) :: WORK
| NTEGER*4, | NTENT(OUT) :: IERR

SUBROUTI NE FFT3_64(1OPT, N1, [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2,

Page 244 of 4153

TRI GS,

| FAC, WORK, [LWORK], |ERR)

I NTEGER(8), INTENT(IN) :: 1OPT, NI, LDX2, LDY2
I NTEGER(8), INTENT(IN), OPTIONAL :: N2, N3, LDX1, LDY1,
LVORK

REAL, |NTENT(IN), OPTIONAL :: SCALE
COWPLEX, INTENT(IN), DIMENSION(:,:) :: X
REAL, | NTENT(OQUT), DIMENSION(:,:) :: Y
REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

I NTEGER(8), | NTENT(INOUT), DI MENSION(:) :: |FAC

REAL, | NTENT(OQUT), DIMENSION(:) :: WORK

I NTEGER(8), | NTENT(QUT) :: |ERR

C | NTERFACE

#i ncl ude <sunperf. h>

void cffts3_ (int *iopt, int *nl, int *n2, int *n3, float
*scale, conplex *x, int *ldx1, int *ldx2, float
*y, int *ldyl, int *ldy2, float *trigs, int *ifac,
float *work, int *lwork, int *ierr);

void cffts3 64_ (long *iopt, long *nl, long *n2, long *n3,
float *scale, conplex *x, long *Idxl, |long *Idx2,
float *y, long *ldyl, long *ldy2, float *trigs,
long *ifac, float *work, long *Iwork, long *ierr);

PURPOSE

cffts3 initializes the trigononetric weight and factor

tabl es or conputes the three-dinensional inverse Fast

Fourier Transform of a three-di nensi onal conplex array.

N3-1 N2-1 N1-1
Y(k1l, k2,k3) = scale * SUM SUM SUM WB*VW*WL*X(j1,j2,j3)
j3=0 j2=0 j1=0

wher e

kl ranges fromO to N1-1; k2 ranges from0O to N2-1 and k3

ranges fromO0O to N3-1

i =sqrt(-1)

isign =1 for inverse transform

WL = exp(isign*i*j1l*kl*2*pi/N1)

W2 = exp(isign*i*j2*k2*2*pi/ N2)

WB = exp(isign*i*j3*k3*2*pi/ N3)

ARGUMENTS

| OPT (i nput)
I nt eger specifying the operation to be perforned:
|OPT = 0 conputes the trigononetric weight table
and factor table
| OPT = +1 conputes inverse FFT

N1 (i nput)

I nteger specifying length of the transformin the
first dimension. N1 is nost efficient when it is

Page 245 of 4153

a product of small primes. N1 >= 0. Unchanged on
exit.

N2 (input)
I nteger specifying length of the transformin the
second dinension. N2 is nost efficient when it is
a product of small primes. N2 >= 0. Unchanged on
exit.

N3 (i nput)
I nteger specifying length of the transformin the
third dinmension. N3 is nost efficient when it is
a product of small primes. N3 >= 0. Unchanged on
exit.

SCALE (i nput)
Real scalar by which transformresults are scal ed.
Unchanged on exit. SCALE is defaulted to 1.0 for
F95 | NTERFACE.

X (input) Xis a conplex array of dinensions (LDX1, LDX2,
N3) that contains input data to be transforned.

LDX1 (i nput)
first dinmension of X. LDX1 >= N1/2+1 Unchanged on
exit.

LDX2 (i nput)
second di mension of X. LDX2 >= N2 Unchanged on
exit.

Y (output)
Y is a conplex array of dinensions (LDYl, LDY2,
N3) that contains the transformresults. X and Y
can be the sane array starting at the sane nenory

| ocati on, in which case the input data are
overwitten by their transform results. O her -
wise, it is assuned that there is no overlap

between X and Y in nmenory.

LDY1 (i nput)
first dinmension of Y. If Xand Y are the sane
array, LDY1 = 2*LDX1 El se LDY1l >= 2*LDX1 and LDY1
is even Unchanged on exit.

LDY2 (i nput)

second dinension of Y. If Xand Y are the sane
array, LDY2 = LDX2 Else LDY2 >= N2 Unchanged on
exit.

TRI GS (i nput/ out put)
Real array of length 2*(N1+N2+N3) that contains
the trigononetric weights. The weights are com
puted when the routine is called with IOPT = 0 and
they are wused in subsequent calls when | OPT = 1.
Unchanged on exit.

| FAC (i nput/ out put)
Integer array of dinmension at |east 3*128 that
contains the factors of NI, N2 and N3. The fac-
tors are conputed when the routine is called wth
IOPT = 0 and they are used in subsequent calls

Page 246 of 4153

when | OPT = 1. Unchanged on exit.

WORK (wor kspace)
Real array of dinension at |east (MAX(N, 2*N2, 2*N3)
+ 16*N3) * NCPUS where NCPUS is the nunber of
threads used to execute the routine. The user can
al so choose to have the routine allocate its own
wor kspace (see LWORK).

LWORK (i nput)
I nt eger specifying workspace size. |If LWORK = O,
the routine will allocate its own workspace.

| ERR (out put)
On exit, integer |ERR has one of the follow ng
val ues:
0 = normal return

-1 =10PTis not O or 1

-2 =NL <O

-:3=N <0

-4 = N3 <0

-5 = (LDX1 < N1/2+1)

-6 = (LDX2 < N2)

-7 = LDY1 not equal 2*LDX1 when X and Y are sane
array

-8 = (LDY1 < 2*LDX1) or (LDY1l is odd) when X and Y
are not sane array

-9 = (LDY2 < N2) or (LDY2 not equal LDX2) when X
and Y are sane array

-10 = (LWORK not equal 0) and ((LWORK <
MAX(N, 2* N2, 2*N3) + 16* N3) * NCPUS)

-11 = menory allocation failed

SEE ALSO
fft

CAUTIONS
This routine uses Y(N1+1:LDY1,:,:) as scratch space. There-
fore, the woriginal contents of this subarray will be | ost

upon returning fromroutine while subarray Y(21: N1, 1: N2, 1: N3)
contains the transformresults.

Page 247 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. SEEALSO

NAME

cfftsm- initialize the trigononetric weight and factor
tables or conpute the one-di nensional inverse Fast Fourier
Transform of a set of conplex data sequences stored in a
two- di mensi onal array.

SYNOPSIS

SUBROUTI NE CFFTSM | OPT, NI, N2, SCALE, X, LDX, Y, LDY, TRIGS, |FAC, WORK, LWORK,
| ERR)

INTEGER | OPT, N1, N2, LDX, LDY, IFAC(*), LWORK, |ERR
COVPLEX X(LDX, *)
REAL SCALE, Y(LDY, *), TRIGS(*), WORK(*)

SUBROUTI NE CFFTSM 64(1 OPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, |FAC, WORK, LWORK,
| ERR)

INTEGER*8 | OPT, NI, N2, LDX, LDY, IFAC(*), LWORK, |ERR
REAL SCALE, Y(LDY,*), TRIGS(*), WORK(*)
COWPLEX X(LDX, *)

F95 | NTERFACE
SUBROUTI NE FFTM | OPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
| FAC, WORK, [LWORK], |ERR)

I NTEGER*4, INTENT(IN) :: |OPT, NL

I NTEGER*4, |NTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE

COWPLEX, INTENT(IN), DIMENSION(:,:) :: X

REAL, |NTENT(OUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

| NTEGER*4, | NTENT(INOUT), DIMENSION(:) :: |FAC
REAL, | NTENT(OUT), DI MENSION(:) :: WORK
| NTEGER*4, |NTENT(OUT) :: IERR

SUBROUTI NE FFTM 64(1 OPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, |FAC, WORK,
[LMWORK], | ERR)

I NTEGER(8), INTENT(IN) :: I|OPT, NL

Page 248 of 4153

I NTEGER(8), INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
REAL, |NTENT(IN), OPTIONAL :: SCALE

COWPLEX, INTENT(IN), DIMENSION(:,:) :: X

REAL, | NTENT(OQUT), DIMENSION(:,:) :: Y

REAL, | NTENT(INOUT), DIMENSION(:) :: TRIGS

I NTEGER(8), | NTENT(INOUT), DI MENSION(:) :: |FAC

REAL, | NTENT(OQUT), DI MENSION(:) :: WORK

I NTEGER(8), | NTENT(QUT) :: |ERR

C | NTERFACE

#i ncl ude <sunperf. h>

void cfftsm (int *iopt, int *nl, int *n2, float *scale,
conplex *x, int *ldx, float *y, int *ldy, float
*trigs, int *ifac, float *work, int *lwork, int
*jerr);

void cfftsm64_ (long *iopt, long *nl, long *n2, float
*scale, conmplex *x, long *ldx, float *y, long
*|dy, float *trigs, long *ifac, float *work, |ong

*work, long *ierr);

PURPOSE

cfftsm initializes the trigononetric weight and factor
tables or conputes the one-di nensi onal inverse Fast Fourier
Transform of a set of conplex data sequences stored in a
t wo- di nensi onal array:

N1-1
Y(k,1) = scale * SUM WX(j,I)
j=0
wher e
k ranges fromO to N1-1 and | ranges fromO to N2-1
i =sqrt(-1)

isign =1 for inverse transform

W= exp(isign*i*j*k*2*pi/NL)

In conpl ex-to-real transformof length N1, the (N1/2+1) com
plex input data points stored are the positive-frequency
hal f of the spectrumof the Discrete Fourier Transform The
other half can be obtained through conpl ex conjugation and
therefore is not stored. Furthernore, due to symmetries the
i magi nary of the conponent of X(0,0:N2-1) and X(N1/2,0: N2-1)
(if NL is eveninthe latter) is assuned to be zero and is
not referenced.

ARGUMENTS
| OPT (i nput)
I nt eger specifying the operation to be perforned:
|OPT = 0 conputes the trigononetric weight table
and factor table
| OPT = 1 conputes inverse FFT
N1 (i nput)

I nt eger specifying length of the input sequences.

Page 249 of 4153

N1 is nost efficient when it is a product of snall
primes. N1 >= 0. Unchanged on exit.

N2 (input)
I nt eger specifying nunber of input sequences. N2
>= 0. Unchanged on exit.

SCALE (i nput)
Real scalar by which transformresults are scal ed.
Unchanged on exit. SCALE is defaulted to 1.0 for
F95 | NTERFACE.

X (input) Xis a conplex array of dinmensions (LDX, N2) that
contains the sequences to be transforned stored in
its colums in X(0:Nl/2, 0:N2-1).

LDX (i nput)
Leadi ng di mensi on of X. LDX >= (N1/2+1) Unchanged
on exit.

Y (out put)

Y is areal array of dinmensions (LDY, N2) that
cont ai ns the transform results of the input
sequences in Y(0:N1-1,0:N2-1). X and Y can be the
sane array starting at the sane nenory | ocation,
in which case the input sequences are overwitten

by their transform results. O herwise, it is
assuned that there is no overlap between X and Y
in menory.

LDY (i nput)
Leadi ng dimension of Y. |If X and Y are the sanme
array, LDY = 2*LDX El se LDY >= N1 Unchanged on
exit.

TRI GS (i nput/ out put)
Real array of length 2*Nl that contains the tri-
gonornetric weights. The weights are conputed when
the routine is called with IOPT = 0 and they are
used in subsequent calls when IOPT = 1. Unchanged
on exit.

| FAC (i nput/ out put)
Integer array of dinmension at |east 128 that con-
tains the factors of NL. The factors are conputed
when the routine is called with |OPT = 0 and they
are used in subsequent <calls when [|OPT = 1.
Unchanged on exit.

WORK (wor kspace)
Real array of dinension at |east N1. The user can
al so choose to have the routine allocate its own
wor kspace (see LWORK).

LWORK (i nput)
I nt eger specifying workspace size. |If LWORK = O,
the routine will allocate its own workspace.

| ERR (out put)
On exit, integer |ERR has one of the follow ng
val ues:
0 = normal return

Page 250 of 4153

-1 =10PTis not O or 1

-2 =NL <O

-:3=N2<0

-4 = (LDX < N1/ 2+1)

-5 = (LDY < N1) or (LDY not equal 2*LDX when X and

Y are sane array)
-6 = (LWORK not equal 0) and (LWORK < N1)
-7 nenory allocation failed

SEE ALSO

fft

Page 251 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgbbrd - reduce a conplex general mby-n band matrix A to
real upper bidiagonal formB by a unitary transformation

SYNOPSIS

SUBROUTI NE CGBBRD(VECT, M N, NCC, KL, KU, AB, LDAB, D, E, Q LDQ
PT, LDPT, C, LDC, WORK, RWORK, INFO

CHARACTER * 1 VECT

COWPLEX AB(LDAB, *), QLDQ *), PT(LDPT,*), C(LDC *), WORK(*)
INTEGER M N, NCC, KL, KU, LDAB, LDQ LDPT, LDC, |INFO
REAL D(*), E(*), RWORK(*)

SUBROUTI NE CGBBRD_64(VECT, M N, NCC, KL, KU, AB, LDAB, D, E, Q LDQ
PT, LDPT, C, LDC, WORK, RWORK, I|NFO

CHARACTER * 1 VECT

COWPLEX AB(LDAB, *), QLDQ *), PT(LDPT,*), C(LDC *), WORK(*)
INTEGER*8 M N, NCC, KL, KU, LDAB, LDQ LDPT, LDC, |NFO
REAL D(*), E(*), RWORK(*)

F95 | NTERFACE
SUBROUTI NE GBBRD(VECT, M [N, [NCC], KL, KU, AB, [LDAB], D, E Q
[LDQ, PT, [LDPT], C, [LDC], [WORK], [RWORK], [INFQ])

CHARACTER(LEN=1) :: VECT

COWPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: AB, Q PT, C

INTEGER :: M N, NCC, KL, KU, LDAB, LDQ LDPT, LDC, |NFO
REAL, DIMENSION(:) :: D, E, RWORK

SUBROUTI NE GBBRD 64(VECT, M [N, [NCC], KL, KU, AB, [LDAB], D, E
Q [LDQ, PT, [LDPT], C [LDC], [WORK], [RWORK], [INFQ)

CHARACTER(LEN=1) :: VECT

COWVPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: AB, Q PT, C

INTEGER(8) :: M N, NCC, KL, KU, LDAB, LDQ LDPT, LDC, |INFO
REAL, DIMENSION(:) :: D, E, RWORK

Page 252 of 4153

C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgbbrd(char vect, int m int n, int ncc, int kI, int
ku, conmplex *ab, int |Idab, float *d, float *e,
conplex *q, int Idgq, conplex *pt, int |dpt, com
plex *c, int ldc, int *info);

voi d cgbbrd_64(char vect, long m long n, long ncc, |ong KI,
long Kku, conplex *ab, long | dab, float *d, float
*e, conplex *qg, long ldg, conplex *pt, long |dpt,
conplex *c, long ldc, long *info);

PURPOSE

cgbbrd reduces a conplex general mby-n band matrix A to
real upper bidiagonal formB by a unitary transformation: Q
A P =B

The routine conputes B, and optionally forms Q or P, or
conputes Q *C for a given matrix C.

ARGUMENTS
VECT (i nput)
Speci fies whether or not the matrices Q and P are
to be formed. = "'N: do not formQor P ;

'Q: formQ only;
"P': formP only;
'B': form both.

M (i nput) The nunber of rows of the matrix A. M >= 0.

N (i nput) The nunber of colums of the matrix A N >= 0.

NCC (i nput)
The nunber of colums of the matrix C. NCC >= 0.
KL (input)
The nunber of subdi agonals of the matrix A KL >=
0.
KU (i nput)
The nunber of superdi agonals of the matrix A KU
>= 0.

AB (i nput/out put)
On entry, the mby-n band nmatrix A, stored in rows
1 to KL+KU+1l. The j-th colum of Ais stored in
the j-th colum of the array AB as follows:
AB(ku+1+i-j,j) = A(i L) for max(1,j -
ku)<=i<=min(mj+kl). On exit, Ais overwitten by
val ues generated during the reduction.

LDAB (i nput)
The | eading dinmension of the array A LDAB >=
KL+KU+1.

Page 253 of 4153

D (out put)
The di agonal el enents of the bidiagonal matrix B.

E (output)
The superdi agonal elements of the bi di agonal
matrix B.

Q (out put)
If VECT ='Q or 'B, the mby-munitary matrix Q
If VECT = 'N or '"P, the array Qis not refer-
enced.

LDQ (i nput)

The | eading dimension of the array Q LDQ >=
max(1, M if VECT ='Q or 'B; LDQ >= 1 otherw se.

PT (out put)
If VECT ='P" or 'B', the n-by-n wunitary matrix
P . If VECT = 'N or 'Q, the array PT is not
ref erenced.

LDPT (i nput)
The | eadi ng di mension of the array PT. LDPT >=
max(1,N) if VECT ='P or 'B; LDPT >= 1 other-
Wi se.

C (i nput/out put)

On entry, an mby-ncc matrix C On exit, C is
overwitten by Q*C. Cis not referenced if NCC =
0.

LDC (i nput)

The | eading di mension of the array C LDC >=
max(1,M if NCC > 0; LDC >= 1 if NCC = 0.

WORK (wor kspace)
di nensi on(MAX(M N))

RWORK (wor kspace)
di nensi on(MAX(M N))

I NFO (out put)
= 0: successful exit.
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.

Page 254 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgbcon - estimate the reciprocal of the condition nunber of
a conpl ex general band matrix A, in either the 1-normor the
infinity-norm

SYNOPSIS

SUBROUTI NE CGBCON(NORM N, KL, KU, A, LDA, |PIVOl, ANORM
RCOND, WORK, WORK2, | NFO)

CHARACTER * 1 NORM

COVPLEX A(LDA, *), WORK(*)
INTEGER N, KL, KU, LDA, |NFO
| NTEGER | PI VOT(*)

REAL ANORM RCOND

REAL WORK2(*)

SUBROUTI NE CGBCON_64(NORM N, KL, KU, A, LDA, |[PIVOT, ANORM
RCOND, WORK, WORK2, | NFO)

CHARACTER * 1 NORM

COWPLEX A(LDA, *), WORK(*)
INTEGER*8 N, KL, KU, LDA |INFO
| NTEGER*8 | Pl VOT(*)

REAL ANORM RCOND

REAL WORK2(*)

F95 | NTERFACE
SUBROUTI NE GBCON(NORM [N], KL, KU, A [LDA], IPIVOT, ANORM
RCOND, [WORK], [WORK2], [INFQ])

CHARACTER(LEN=1) :: NORM
COVPLEX, DI MENSION(:) :: WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: N, KL, KU, LDA, INFO
I NTEGER, DI MENSION(:) :: |PIVOT
REAL :: ANORM RCOND

REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GBCON _64(NORM [N, KL, KU, A, [LDA], I|PIVOl, ANORM
RCOND, [WORK], [WORK2], [INFQ)

Page 255 of 4153

CHARACTER(LEN=1) :: NORM
COVPLEX, DI MENSION(:) :: WORK
COWPLEX, DIMENSION(:,:) :: A
I NTECER(8) :: N, KL, KU, LDA, INFO
| NTEGER(8), DIMENSION(:) :: IPIVOT
REAL :: ANORM RCOND
REAL, DI MENSI ON(:) :: WORK2

C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgbcon(char norm int n, int kl, int ku, conplex *a,
int lda, int *ipivot, float anorm float *rcond,
int *info);

voi d cgbcon_64(char norm long n, long kl, long ku, conplex
*a, long lda, long *ipivot, float anorm fl oat

*rcond, long *info);

PURPOSE

cgbcon estimates the reciprocal of the condition nunmber of a
conpl ex general band matrix A, in either the 1-normor the
infinity-norm using the LU factorization conputed by
CGBTRF.

An estimate is obtained for norn(inv(A)), and the reciprocal
of the condition nunber is computed as
RCOND = 1/ (norn{A) * norm(inv(A))).

ARGUMENTS

NORM (i nput)
Speci fi es whether the 1-normconditi on nunber or
the infinity-normcondition nunber is required:
‘1" or 'O 1- norm
B Infinity-norm

N (i nput) The order of the matrix A. N >= 0.

KL (input)
The nunber of subdiagonals within the band of A
KL >= 0.

KU (i nput)
The nunber of superdi agonals within the band of A
KU >= 0.

A (input) Details of the LU factorization of the band matri x
A, as conputed by CGBTRF. U is stored as an upper
triangul ar band matrix with KL+KU superdi agonal s
in rows 1 to KL+KU+1, and the nultipliers used
during the factorization are stored in r ows
KL+KWH2 to 2* KL+KU+1.

LDA (i nput)
The | eading dimension of the array A LDA >=

Page 256 of 4153

2* KL+KU+1.
| PI VOT (i nput)
The pivot indices; for 1 <=i <= N, rowi of the
matri x was i nterchanged with row | PIVOT(i).
ANORM (i nput)

If NORM="'1" or 'O, the 1-normof the original
matri x A If NORM="1["'

, the infinity-norm of the
original matrix A
RCOND (out put)

The reciprocal of the condition nunber of the
mat ri x A, conputed as RCOND =

= 1/ (norm A *
norm(inv(A))).
WORK (wor kspace)
di mensi on(2*N)

WORK2 (wor kspace)
di mensi on (N)

I NFO (out put)

= 0: successful exit
<0: if INFO= -i,

the i-th argunment had an
gal val ue

ille-

Page 257 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgbequ - conpute row and colum scalings intended to equili -
brate an Mby-N band matrix A and reduce its condition
nunber

SYNOPSIS

SUBRQUTI NE CGBEQU(M N, KL, KU, A, LDA R C, ROACND,
COLCND, AMAX, | NFO

COWPLEX A(LDA, *)

INTEGER M N, KL, KU, LDA, INFO
REAL ROWCND, COLCND, ANAX

REAL R(*), C(*)

SUBROUTI NE CGBEQU_64(M N, KL, KU, A, LDA, R C,
ROACND, COLCND, AMNAX, | NFO)

COWPLEX A(LDA, *)

INTEGER*8 M N, KL, KU, LDA |NFO
REAL ROWCND, COLCND, ANAX

REAL R(*), C(*)

F95 | NTERFACE
SUBROUTI NE GBEQU([M, [N, KL, KU, A [LDA], R C,
ROWCND, COLCND, AMAX, [INFQ|)

COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, KL, KU, LDA |NFO
REAL :: ROACND, COLCND, AMAX

REAL, DIMENSION(:) :: R C

SUBROUTI NE GBEQU 64([M, [N, KL, KU A [LDA], R G
ROWCND, COLCND, AMAX, [INFQ|)

COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, KL, KU, LDA [|NFO
REAL :: ROACND, COLCND, AMAX

REAL, DIMENSION(:) :: R C

C | NTERFACE

Page 258 of 4153

#i ncl ude <sunperf.h>

voi d cgbequ(int m int n, int kl, int ku, conmplex *a, int
lda, float *r, float *c, float *rowcnd, fl oat
*col cnd, float *amax, int *info);

voi d cgbequ_64(long m long n, long kI, long ku, conplex *a,
long lda, float *r, float *c, float *rowcnd, fl oat
*col cnd, float *amax, |ong *info);

PURPOSE

cgbequ conputes row and col um scalings intended to equili-
brate an Mby-N band matrix A and reduce its condition
nunber. R returns the row scale factors and C the colum
scale factors, chosen to try to make the | argest elenment in
each row and colum of the matrix B wth el enent s
B(i,j)=R(i)*A(i,j)*C(j) have absol ute val ue 1.

R(i) and C(j) are restricted to be between SMLNUM = snal | est
safe nunber and BI GNUM = | argest safe nunber. Use of these

scaling factors is not guaranteed to reduce the condition
nunber of A but works well in practice.

ARGUMENTS

M (i nput) The nunber of rows of the matrix A. M >= 0.

N (i nput) The nunber of colums of the matrix A N >= 0.

KL (input)
The nunber of subdi agonals within the band of A
KL >= 0.

KU (i nput)
The nunber of superdi agonals within the band of A
KU >= 0.

A (input) The band matrix A, stored inrows 1 to KL+KU+1.
The j-th colum of Ais stored in the j-th colum
of the array A as follows: A(ku+l+i-j,j) = A(i,j)
for max(1,j-ku)<=i<=mn(mj+kl).

LDA (i nput)
The | eading dimension of the array A LDA >=
KL+KU+1.

R (out put)

If INFO=0, or INFO> M R contains the row scal e
factors for A

C (out put)
If INFO=0, Ccontains the colum scale factors
for A

ROANCND (out put)

If INFO=0 or INFO> M ROAND contains the ratio
of the smallest R(i) to the largest R(i). |If

Page 259 of 4153

ROACND >= 0.1 and AMAX is neither too large nor
too small, it is not worth scaling by R

COLCND (out put)
If INFO =0, COCND contains the ratio of the

smallest C(i) to the largest C(i). |If COLCND >=
0.1, it is not worth scaling by C.

AVAX (out put)
Absol ute val ue of |argest matrix elenment. [|f AMAX

is very close to overflow or very close to under-
flow, the matrix shoul d be scal ed.

I NFO (out put)

= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue
>0: if INFO=1i, andi is

<=M thei-th rowof Ais exactly zero
> M the (i-M-th colum of A is exactly zero

Page 260 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME
cgbmy - performone of the matrix-vector operations y =
al pha*A*x + beta*y, or y := al pha*A *x + beta*y, or y i =

al pha*conjg(A)*x + beta*y

SYNOPSIS

SUBROUTI NE CGBMV(TRANSA, M N, KL, KU, ALPHA, A LDA, X, INCX
BETA, Y, INCY)

CHARACTER * 1 TRANSA
COWPLEX ALPHA, BETA

COWPLEX A(LDA *), X(*), Y(*)

INTEGER M N, KL, KU, LDA, INCX, INCY

SUBROUTI NE CGBW_64(TRANSA, M N, KL, KU, ALPHA, A, LDA X
I NCX, BETA, Y, INCY)

CHARACTER * 1 TRANSA
COWPLEX ALPHA, BETA

COWPLEX A(LDA, *), X(*), Y(*)

INTEGER*8 M N, KL, KU, LDA, INCX, |NCY

F95 | NTERFACE
SUBROUTI NE GBW([TRANSA], [M, [N, KL, KU ALPHA, A [LDA], X
[INCX], BETA, Y, [INCY])

CHARACTER(LEN=1) :: TRANSA

COWPLEX :: ALPHA, BETA

COWPLEX, DIMENSION(:) :: X, Y

COWPLEX, DIMENSION(:,:) :: A

INTEGER :: M N, KL, KU, LDA INCX, |INCY

SUBROUTI NE GBW_64([TRANSA], [M, [N, KL, KU, ALPHA A, [LDA],
X, [INCX], BETA, Y, [INCY])

CHARACTER(LEN=1) :: TRANSA

COWPLEX :: ALPHA, BETA

COWPLEX, DIMENSION(:) :: X, Y

COWPLEX, DIMENSION(:,:) :: A

INTEGER(8) :: M N, KL, KU, LDA, INCX, INCY

Page 261 of 4153

C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgbnv(char transa, int m int n, int kl, int ku, com
pl ex *al pha, conplex *a, int |lda, conplex *x, int
i ncx, conplex *beta, conplex *y, int incy);

voi d cgbnv_64(char transa, long m long n, long kl, |ong ku,

conpl ex *al pha, conplex *a, |long |da, conplex *x,
| ong i ncx, conplex *beta, conplex *y, long incy);

PURPOSE

cgbmv perforns one of the matrix-vector operations vy

al pha*A*x + beta*y, or y := al pha*A *x + beta*y, or y
are

al pha*conjg(A)*x + beta*y where alpha and beta

scalars, x and y are vectors and Ais an mby n band matri x,

with kl sub-diagonals and ku super-di agonal s.

ARGUMENTS

TRANSA (i nput)
On entry, TRANSA specifies the operation to
perforned as foll ows:

TRANSA = 'N or 'n y := al pha*A*x + beta*y.
TRANSA = 'T" or 't' y := al pha*A' *x + beta*y.
TRANSA = 'C or 'c' y := al pha*conjg(A")*x
bet a*y.

Unchanged on exit.
TRANSA is defaulted to "N for F95 | NTERFACE.

M (i nput)
On entry, Mspecifies the nunber of rows of

be

+

t he

matrix A Mnust be at |east zero. Unchanged on

exit.

N (i nput)

On entry, N specifies the nunber of colums of the
matrix A. N nust be at |east zero. Unchanged on

exit.

KL (input)

On entry, KL specifies the nunmber of sub-diagonals

of the matrix A KL nust satisfy 0 .le.
Unchanged on exit.

KU (i nput)

KL.

On entry, KU specifies the nunber of super-
di agonal s of the matrix A KU nust satisfy O .le.

KU. Unchanged on exit.

ALPHA (i nput)

On entry, ALPHA specifies the scalar al pha.

Unchanged on exit.

Page 262 of 4153

A (input)

Before entry, the leading (kI + ku + 1) by n
part of the array A nust contain the matrix of
coefficients, supplied colum by colum, with the
| eading diagonal of the matrix in row (ku + 1)
of the array, the first super-diagonal starting at
position 2 in row ku, the first sub-diagonal
starting at position 1 inrow (ku + 2), and so
on. El enent s in the array A that do not
correspond to elements in the band matri x (such as
the top left ku by ku triangle) are not refer-
enced. The follow ng program segnent will
transfer a band matrix from conventional ful
matri x storage to band storage:

DO20, J =1, N
K=KU+1-1J
DO10, | = MAX(1, J - KU), MN(M J + KL

)

ACK+1, J) =matrix(I, J)
10 CONTI NUE
20 CONTI NUE

Unchanged on exit.

LDA (i nput)
On entry, LDA specifies the first dinmension of A
as declared in the calling (sub) program LDA nust
be at least (kIl + ku + 1). Unchanged on exit.

X (i nput)
(1 +(n-1)*abs(INCX)) when TRANSA = 'N or
'n" and at least (1 + (m- 1)*abs(INCX))
otherwi se. Before entry, the incremented array X
must contain the vector x. Unchanged on exit.

I NCX (i nput)
On entry, INCX specifies the increment for the
elenents of X [INCX nmust not be zero. Unchanged
on exit.

BETA (i nput)

On entry, BETA specifies the scalar beta. Wen
BETA is supplied as zero then Y need not be set on
i nput. Unchanged on exit.

Y (i nput/output)
(1 +(m- 1)*abs(INCY)) when TRANSA = 'N or
'n" and at least (1 + (n- 1)*abs(INCY))
otherwi se. Before entry, the incremented array Y
must contain the vector y. On exit, Y is overwit-
ten by the updated vector y.

I NCY (input)
On entry, INCY specifies the increment for the
elenents of Y. INCY nust not be zero. Unchanged
on exit.

Page 263 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgbrfs - inprove the conputed solution to a system of |inear
equations when the coefficient matrix is banded, and pro-
vides error bounds and backward error estinates for the
sol ution

SYNOPSIS

SUBROUTI NE CGBRFS(TRANSA, N, KL, KU, NRHS, A LDA, AF, LDAF,
I PIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, |NFO

CHARACTER * 1 TRANSA

COWPLEX A(LDA *), AF(LDAF, *), B(LDB,*), X(LDX *), WORK(*)
INTEGER N, KL, KU, NRHS, LDA, LDAF, LDB, LDX, |NFO

| NTEGER | PI VOT(*)

REAL FERR(*), BERR(*), WORK2(*)

SUBROUTI NE CGBRFS_64(TRANSA, N, KL, KU, NRHS, A LDA, AF, LDAF,
I PIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, |NFO

CHARACTER * 1 TRANSA

COWPLEX A(LDA *), AF(LDAF, *), B(LDB,*), X(LDX *), WORK(*)
INTEGER*8 N, KL, KU, NRHS, LDA, LDAF, LDB, LDX, |NFO

| NTEGER*8 | Pl VOT(*)

REAL FERR(*), BERR(*), WORK2(*)

F95 | NTERFACE
SUBROUTI NE GBRFS([TRANSA], [N], KL, KU, [NRHS], A [LDA], AF,
[LDAF], IPIVOT, B, [LDB], X [LDX, FERR BERR [WORK], [WORK2],
[1NFO)

CHARACTER(LEN=1) :: TRANSA

COWPLEX, DI MENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: A AF, B X

INTEGER :: N, KL, KU, NRHS, LDA, LDAF, LDB, LDX, |NFO
I NTEGER, DI MENSION(:) :: |PIVOT

REAL, DI MENSI ON(:) :: FERR BERR WORK2

SUBROUTI NE GBRFS 64([TRANSA], [N, KL, KU, [NRHS], A [LDA],

AF, [LDAF], IPIVOT, B, [LDB], X [LDX, FERR BERR [WORK],
[WORK2], [INFQ)

Page 264 of 4153

CHARACTER(LEN=1) :: TRANSA

COWPLEX, DI MENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: A AF, B X

INTEGER(8) :: N, KL, KU, NRHS, LDA, LDAF, LDB, LDX, |NFO

I NTEGER(8), DIMENSION(:) :: |PIVOT
REAL, DI MENSI ON(:) :: FERR BERR, WORK2
C | NTERFACE
#i ncl ude <sunperf.h>
voi d cgbrfs(char transa, int n, int kl, int ku, int nrhs,
conplex *a, int |da, conplex *af, int I|daf, int

*jpivot, conplex *b, int |db, conplex *x, int |dx,
float *ferr, float *berr, int *info);

voi d cgbrfs_64(char transa, long n, long kl, long ku, |ong
nrhs, conplex *a, long |I|da, conplex *af, |ong
| daf, long *ipivot, conplex *b, long |db, conplex
*x, long |ldx, float *ferr, float *berr, |ong
*info);
PURPOSE
cgbrfs inproves the conmputed solution to a systemof |inear

equations when the coefficient matrix is banded, and pro-
vides error bounds and backward error estimates for the
sol uti on.

ARGUMENTS

TRANSA (i nput)
Specifies the formof the system of equations

='N: A* X=B (No transpose)
='T: A**T* X =B (Transpose)
='C: A**H* X =B (Conjugate transpose)

TRANSA is defaulted to 'N for F95 | NTERFACE.

N (i nput) The order of the matrix A. N >= 0.

KL (input)
The nunber of subdi agonals within the band of A
KL >= 0.

KU (i nput)
The nunber of superdi agonals within the band of A
KU >= 0.

NRHS (i nput)

The nunber of right hand sides, i.e., the nunber
of colums of the matrices B and X. NRHS >= 0.

A (input) The original band matrix A stored in rows 1 to
KL+KU+1. The j-th colum of Ais stored in the
j-th colum of the array A as foll ows: A(ku+1+i -
ivi) = A(i,j) for max(1,j-ku)<=i<=m n(n,j+kl).

Page 265 of 4153

LDA (i nput)
The | eading dimension of the array A LDA >=
KL+KU+1.

AF (i nput)
Details of the LU factorization of the band matrix
A, as conputed by CGBTRF. U is stored as an upper
triangul ar band matrix with KL+KU superdi agonal s
in rows 1 to KL+KU+1, and the nultipliers used
during the factorization are stored in r ows
KL+KU+2 to 2* KL+KU+1.

LDAF (i nput)
The | eadi ng di mension of the array AF. LDAF >=
2* KL* KU+1.

| PIVOT (i nput)
The pivot indices from CGBTRF; for 1<=i<=N, row i
of the matrix was interchanged with row I PIVOT(i).

B (input) The right hand side natrix B.

LDB (i nput)
The | eading di mension of the array B. LDB >=
max(1, N).

X (i nput/out put)
On entry, the solution matrix X, as conputed by
CGBTRS. On exit, the inproved solution matrix X

LDX (i nput)
The | eading di mension of the array X LDX >=
max(1, N).

FERR (out put)

The estinmated forward error bound for each solu-
tion vector X(j) (the j-th colum of the solution
matrix X). If XTRUE is the true sol ution
corresponding to X(j), FERR(j) 1is an estimted
upper bound for the nagnitude of the |argest ele-
ment in (X(j) - XTRUE) divided by the nagnitude of
the largest elenent in X(j). The estimate is as
reliable as the estinmate for RCOND, and is al npbst
al ways a slight overestimate of the true error.

BERR (out put)
The conponentw se rel ative backward error of each
solution wvector X(j) (i.e., the snallest relative
change in any element of A or B that makes X(j) an
exact sol ution).

WORK (wor kspace)
di mensi on(2*N)

WORK2 (wor kspace)
di mensi on(N)

I NFO (out put)
0: successful exit
0:

< if INFO=-i, the i-th argunent had an ille-

Page 266 of 4153

gal val ue

Page 267 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME
cgbsv - compute the solution to a conplex system of |inear
equations A * X =B, where Ais a band matrix of order N

with KL subdi agonal s and KU superdi agonals, and X and B are
N-by- NRHS matri ces

SYNOPSIS

SUBROUTI NE CGBSV(N, KL, KU, NRHS, A, LDA, |PIVOI, B, LDB, |NFQ

COVPLEX A(LDA, *), B(LDB, *)
INTEGER N, KL, KU, NRHS, LDA, LDB, |NFO
| NTEGER | PI VOT(*)

SUBROUTI NE CGBSV_64(N, KL, KU, NRHS, A, LDA |PIVOT, B, LDB,
| NFO)

COVPLEX A(LDA, *), B(LDB, *)
INTEGER*8 N, KL, KU, NRHS, LDA, LDB, |NFO
| NTEGER*8 | Pl VOT(*)

F95 | NTERFACE
SUBROUTI NE GBSV([N], KL, KU, [NRHS], A, [LDA], IPIVOT, B, [LDB],
[1NFO)

COWPLEX, DIMENSION(:,:) :: A B
INTEGER :: N, KL, KU, NRHS, LDA, LDB, |INFO
I NTECER, DI MENSION(:) :: |PIVOT

SUBROUTI NE GBSV_64([N], KL, KU, [NRHS], A [LDA], IPIVOT, B,
[LDB], [INFQ)

COWPLEX, DIMENSION(:,:) :: A B
INTEGER(8) :: N, KL, KU NRHS, LDA LDB, |NFO
| NTEGER(8), DIMENSION(:) :: I|PIVOT

C | NTERFACE
#i ncl ude <sunperf. h>

Page 268 of 4153

void cgbsv(int n, int kl, int ku, int nrhs, conplex *a, int
I da, int *ipivot, conplex *b, int Idb, int *info);

voi d cgbsv_64(long n, long kl, long ku, long nrhs, conplex
*a, long lda, long *ipivot, conplex *b, |ong |db,
long *info);
PURPOSE
cgbsv conputes the solution to a conplex system of linear

equations A * X =B, where Ais a band matrix of order N
with KL subdi agonal s and KU superdi agonals, and X and B are
N- by- NRHS matri ces.

The LU deconposition with partial pivoting and row inter-
changes is used to factor Aas A=L * U where L is a pro-
duct of pernutation and unit lower triangular matrices wth
KL subdi agonals, and U is upper triangular with KL+KU super -
di agonals. The factored formof A is then used to solve the
system of equations A* X = B.

ARGUMENTS

N (i nput) The nunber of |inear equations, i.e., the order of
the matrix A N >= 0.

KL (i nput)
The nunber of subdi agonals within the band of A
KL >= 0.

KU (i nput)
The nunber of superdi agonals within the band of A
KU >= 0.

NRHS (i nput)

The nunber of right hand sides, i.e., the nunber
of colums of the matrix B. NRHS >= 0.

A (i nput/output)

On entry, the matrix A in band storage, in rows
KL+1 to 2*KL+KU+1; rows 1 to KL of the array need
not be set. The j-th colum of Ais stored in the
j-th col um of t he array A as follows:
A(KL+KU+L+i -, j) = A(i L)) f or max(1,j -
KU)<=i <=mi n(N,j+KL) On exit, details of the fac-
torization: Uis stored as an upper triangular
band matrix with KL+KU superdi agonals in rows 1 to
KL+KU+1, and the multipliers used during the fac-
torization are stored in rows KL+KU+2 to
2*KL+KU+1. See bel ow for further details.

LDA (i nput)
The | eadi ng di mension of the array A LDA >=
2* KL+KU+1.

| PI VOT (out put)
The pivot indices that define the permutation

Page 269 of 4153

matrix P; row i of the matrix was interchanged
with row | PIVOT(i).

B (i nput/out put)
On entry, the N-by-NRHS right hand side matrix B.

On exit, if INFO = 0, the N by-NRHS solution
matri x X

LDB (i nput)
The | eading di mension of the array B. LDB >=
max(1, N).

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue
>0: if INNO=1i, Uii,i) is exactly zero. The

factorization has been conpl eted, but the factor U
is exactly singular, and the solution has not been
conput ed.

FURTHER DETAILS

The band storage schenme is illustrated by the follow ng
exanple, when M= N =6, KL = 2, KU = 1:

On entry: On exit:

2 ki 2 + + + ki 2 ki ul4 u25
u36

* * + + + + * * ul3d u24 u35
u46

* al2 a23 a34 a45 ab6 * ul2 u23 u34 u4s
u56

all a22 a33 a44 ab5 a66 ull w22 u33 u44 u55
u66

a2l a32 a43 ab54 a65 * m1 nmB2 m3 nb4 65
*

a3l a42 ab53 ab4 2 ki M1 mi2 nb3 n64 ki

Array el ements marked * are not used by the routine; ele-
ments marked + need not be set on entry, but are required by
the routine to store elements of U because of fill-in
resulting fromthe row i nterchanges

Page 270 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgbsvx - use the LU factorization to conpute the solution to
a conplex systemof linear equations A * X = B, A**T * X =
B, or A**H* X = B,

SYNOPSIS

SUBROUTI NE CGBSVX(FACT, TRANSA, N, KL, KU, NRHS, A, LDA, AF,
LDAF, | PIVOT, EQUED, R C, B, LDB, X LDX, RCOND, FERR
BERR, WORK, WORK2, | NFO

CHARACTER * 1 FACT, TRANSA, EQUED

COWPLEX A(LDA *), AF(LDAF, *), B(LDB,*), X(LDX *), WORK(*)
INTEGER N, KL, KU, NRHS, LDA, LDAF, LDB, LDX, |NFO

| NTEGER | PI VOT(*)

REAL RCOND

REAL R(*), C(*), FERR(*), BERR(*), WORK2(*)

SUBROUTI NE CGBSVX_64(FACT, TRANSA, N, KL, KU, NRHS, A, LDA, AF,
LDAF, | PIVOT, EQUED, R C, B, LDB, X LDX, RCOND, FERR
BERR, WORK, WORK2, | NFO

CHARACTER * 1 FACT, TRANSA, EQUED

COWPLEX A(LDA *), AF(LDAF, *), B(LDB,*), X(LDX *), WORK(*)
INTEGER*8 N, KL, KU, NRHS, LDA, LDAF, LDB, LDX, |NFO

| NTEGER*8 | Pl VOT(*)

REAL RCOND

REAL R(*), C(*), FERR(*), BERR(*), WORK2(*)

F95 | NTERFACE
SUBROUTI NE GBSVX(FACT, [TRANSA], [N, KL, KU, [NRHS], A [LDA],
AF, [LDAF], IPIVOT, EQUED, R C B, [LDB], X, [LDX,
RCOND, FERR, BERR [WORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: FACT, TRANSA, EQUED

COWPLEX, DIMENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: A AF, B X

INTEGER :: N, KL, KU, NRHS, LDA, LDAF, LDB, LDX, |NFO

I NTEGER, DI MENSION(:) :: |PIVOT
REAL :: RCOND
REAL, DIMENSION(:) :: R C, FERR BERR WORK2

Page 271 of 4153

SUBROUTI NE GBSVX _64(FACT, [TRANSA], [N}, KL, KU, [NRHS], A
[LDA], AF, [LDAF], IPIVOT, EQUED, R, C, B, [LDB], X
RCOND, FERR, BERR, [WORK], [WORK2], [INFQ)

CHARACTER(LEN=1) FACT, TRANSA, EQUED

COWPLEX, DI MENSI O\(:) WORK

COWPLEX, DI MENSI O\(:, :) A AF, B, X

I NTEGER(8) N, KL, KU, NRHS, LDA, LDAF, LDB, LDX, |NFO

I NTEGER(8), DI MENSI O\(:) | PI VOT

REAL :: RCOND

REAL, DI MENSI O\(:) R, C, FERR, BERR, WORK2

C | NTERFACE

#i ncl ude <sunperf.h>

voi d cgbsvx(char fact, char transa, int n, int kl, int Kku,
int nrhs, conplex *a, int Ilda, complex *af, int
| daf, int *ipivot, char equed, float *r, float *c,
conplex *b, int |db, conplex *x, int |dx, float
*rcond, float *ferr, float *berr, int *info);

voi d cgbsvx_64(char fact, char transa, long n, long kl, |ong
ku, long nrhs, conplex *a, long |Ida, conmplex *af,
Il ong ldaf, long *ipivot, char equed, float *r,
float *c, conplex *b, long |db, conplex *x, |ong
| dx, float *rcond, float *ferr, float *berr, |ong
*info);

PURPOSE

cgbsvx uses the LU factorization to conpute the solution to
a conplex systemof linear equations A * X = B, A**T * X =
B, or A*x*H* X = B, where Ais a band matrix of order N wth
KL subdiagonals and KU superdi agonals, and X and B are N
by- NRHS matri ces.

Error bounds on the solution and a condition estimate are
al so provi ded.

The followi ng steps are perfornmed by this subroutine:

1. If FACT = 'E, real scaling factors are conputed to

equilibrate
t he system

TRANS = 'N : diag(R) *A*di ag(C) *inv(diag(Q)*X =
diag(R *B
TRANS = 'T': (diag(R *A*diag(C))**T *inv(diag(R))*X =
diag(C*B
TRANS = 'C: (diag(R *A*diag(C))**H *inv(diag(R))*X =
diag(C*B
Whet her or not the systemw ||l be equilibrated depends on
t he
scaling of the matrix A, but if equilibration is used, A
is
overwitten by diag(R) *A*diag(C) and B by diag(R*B (if
TRANS=" N)

or diag(Q*B (if TRANS ='T" or 'C).

[LDX],

Page 272 of 4153

2. If FACT ='N or '"E', the LU deconposition is wused to
factor the
matrix A (after equilibration if FACT = 'E') as

A=L* U,
where L is a product of pernutation and unit |ower tri-
angul ar
matrices with KL subdi agonals, and U is upper triangular

with
KL+KU super di agonal s.

3. If some Wi,i)=0, so that Uis exactly singular, then the
routine

returns with INFO=1i. OQherwise, the factored formof A
i s used

to estimate the condition nunber of the matrix A If the

reci procal of the condition nunber is less than nachine

pr eci si on

INFO = N+1 is returned as a warning, but the routine
still goes on

to solve for X and conpute error bounds as described
bel ow.

4. The system of equations is solved for X using the fac-
tored form
of A

5. lterative refinenent is applied to inprove the conputed
sol ution

matrix and calculate error bounds and backward error
esti mat es

for it.

6. If equilibration was used, the matrix X is premultiplied
by

diag(C) (if TRANS = 'N) or diag(R) (if TRANS = 'T or
'C) so

that it solves the original system before equilibration.

ARGUMENTS

FACT (i nput)

Speci fi es whether or not the factored formof the
matrix Ais supplied on entry, and if not, whether
the matrix A should be equilibrated before it is
factored. ="'F: On entry, AF and IPIVOT contain
the factored formof A If EQUED is not "N, the
matrix A has been equilibrated with scaling fac-
tors given by Rand C. A AF, and IPIVOT are not
modi fi ed. ='N: The matrix A wll be copied to
AF and fact ored.

='E: The matrix A wll be equilibrated if
necessary, then copied to AF and factored.

TRANSA (i nput)
Specifies the formof the systemof equations. =
"N: A* X=B (No transpose)

'"T': A**T * X = B (Transpose)

'C: A**H* X =B (Conjugate transpose)

Page 273 of 4153

TRANSA is defaulted to 'N for F95 | NTERFACE.

N (i nput) The nunber of linear equations, i.e., the order of
the matrix A N >= 0.

KL (i nput)
The nunber of subdiagonals within the band of A
KL >= 0.

KU (i nput)
The nunber of superdi agonals within the band of A
KU >= 0.

NRHS (i nput)

The nunber of right hand sides, i.e., the nunber
of colums of the matrices B and X. NRHS >= 0.

A (i nput/output)

On entry, the matrix Ain band storage, in rows 1
to KL+KU+1. The j-th colum of Ais stored in the
j-th colum of the array A as foll ows: A(KU+1+i -
ivi) = A(i,j) for max(1,j-KU <=i<=m n(N,j+kl)

If FACT ="'F and EQEED is not "N, then A nust
have been equilibrated by the scaling factors in R
and/or C Ais not nodified if FACT ="'F or 'N,
or if FACT ='E and EQUED = 'N on exit.

On exit, if EQED .ne. 'N, Ais scaled as fol-
lows: EQUED = 'R: A:=diag(R * A

EQED='C: A:=A* diag(C
EQUED = 'B': A :=diag(R * A * diag(Q.
LDA (i nput)

The | eadi ng di nension of the array A LDA >=
KL+KU+1.

AF (input or output)
If FACT = 'F', then AF is an input argunent and on
entry contains details of the LU factorization of
the band matrix A, as conputed by CGBTRF. U is
stored as an upper triangular band matrix with
KL+KU superdi agonals in rows 1 to KL+KU+1, and the
multipliers used during the factorization are
stored in rows KL+KU+2 to 2*KL+KU+1. If EQUED
.ne. 'N, then AF is the factored formof the
equilibrated matrix A
If FACT = 'N, then AF is an output argunent and
on exit returns details of the LU factorization of
A
If FACT = 'E', then AF is an output argunent and
on exit returns details of the LU factorization of
the equilibrated matrix A (see the description of
A for the formof the equilibrated matrix).

LDAF (i nput)

The | eadi ng di nension of the array AF. LDAF >=
2* KL+KU+1.

| PI VOT (i nput)

Page 274 of 4153

If FACT ="'F', then IPIVOT is an input argunent
and on entry contains the pivot indices fromthe
factorization A = L*U as conputed by CGBTRF;, row i
of the matrix was interchanged with row I PIVOT(i).

If FACT ='N, then IPIVOT is an output argunent
and on exit contains the pivot indices fromthe
factorization A = L*U of the original natrix A

If FACT = 'E', then IPIVOT is an output argunent
and on exit contains the pivot indices fromthe
factorization A = L*U of the equilibrated matrix
A

EQUED (i nput or output)
Specifies the formof equilibration that was done.

= 'N: No equilibration (always true if FACT =
"N).

= 'R: Row equilibration, i.e., A has been
prenultiplied by diag(R. ="'C: Colum equili-
bration, i.e., A has been postnultiplied by
di ag(C). = 'B: Both row and colum equili bra-
tion, i.e., A has been replaced by diag(R) * A *
di ag(© . EQUED is an input argunment if FACT =

"F'; otherwise, it is an output argunent.

R (i nput or output)
The row scale factors for A If EQED = 'R or
'B', A is nultiplied on the left by diag(R); if
EQUED = 'N or 'C, Ris not accessed. R is an
input argument if FACT = 'F'; otherwise, Ris an
output argunent. |If FACT ='F and EQUED = 'R or
"B, each elenent of R nust be positive.

C (i nput or output)
The columm scale factors for A. If EQUED = "'C or
'B', A is nmultiplied on the right by diag(C; if
EQUED = 'N or 'R, Cis not accessed. C is an
input argurment if FACT = 'F; otherwise, Cis an
output argunent. |If FACT ='F and EQUED = 'C or
"B, each elenent of C nust be positive.

B (i nput/out put)
On entry, the right hand side matrix B. On exit,
if EQIED = 'N, Bis not mdified; if TRANSA = 'N
and EQED = 'R or 'B', B is overwitten by
diag(R*B; if TRANSA='T or 'C and EQUED = 'C
or 'B, Bis overwitten by diag(C) *B.

LDB (i nput)
The | eading di mension of the array B. LDB >=
max(1, N).

X (out put)

If INFO= 0 or INFO = N+1, the N-by-NRHS sol ution
matrix X to the original systemof equations.
Note that A and B are nodified on exit if EQUED
.ne. 'N, and the solution to the equilibrated
systemis inv(diag(CQ)*X if TRANSA = 'N and EQUED
='C or 'B, or inv(diag(R)*X if TRANSA = "'T' or
'C and EQUED = 'R or 'B'.

Page 275 of 4153

LDX (i nput)
The | eading dimension of the array X LDX >=
max(1, N).

RCOND (out put)
The estinmate of the reciprocal condition nunber of

the matrix A after equilibration (if done). |If
RCOND i s | ess than the machi ne precision (in par-
ticular, if RCOND = 0), the matrix is singular to

wor ki ng precision. This condition is indicated by
a return code of INFO > 0.

FERR (out put)

The estinmated forward error bound for each solu-
tion vector X(j) (the j-th colum of the solution
matrix X). If XTRUE is the true sol ution
corresponding to X(j), FERR(j) 1is an estimted
upper bound for the nagnitude of the |argest ele-
ment in (X(j) - XTRUE) divided by the nmagnitude of
the largest elenent in X(j). The estimate is as
reliable as the estinmate for RCOND, and is al npbst
al ways a slight overestimate of the true error

BERR (out put)
The conponentw se rel ati ve backward error of each
solution wvector X(j) (i.e., the snmallest relative
change in any elenment of A or B that makes X(j) an
exact sol ution).

WORK (wor kspace)
di mensi on(2*N)

WORK2 (wor kspace)

dimension(N) On exit, WORK2(1) cont ai ns t he
reci procal pivot growth factor norn(A)/nornU)
The "nmax absolute elenment” norm is wused. |If
WORK2(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated)
matrix A could be poor. This also neans that the
solution X, condition estimator RCOND, and forward
error bound FERR could be unreliable. If factori-
zation fails with O<INFO<=N, then WORK2(1l) con-
tains the reciprocal pivot growth factor for the
| eadi ng | NFO col ums of A

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue
>0: if INFO=1i, andi is

<= N Ui,i) is exactly zero. The factorization
has been conpleted, but the factor Uis exactly
singul ar, so the solution and error bounds could
not be conputed. RCOND = 0 is returned. = N+1: U
is nonsingular, but RCOND is less than nachine
precision, nmeaning that the matrix is singular to
wor ki ng preci sion. Nevertheless, the solution and
error bounds are conputed because there are a
nunber of situations where the conputed solution
can be nore accurate than the val ue of RCOND woul d

Page 276 of 4153

suggest .

Page 277 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgbtf2 - conpute an LU factorization of a conplex mby-n
band matrix A using partial pivoting with row interchanges

SYNOPSIS

SUBROUTI NE CGBTF2(M N, KL, KU, AB, LDAB, IPIV, |INFQ

COVPLEX AB(LDAB, *)
INTEGER M N, KL, KU, LDAB, |NFO
| NTEGER | PI V/(*)

SUBROUTI NE CGBTF2_64(M N, KL, KU, AB, LDAB, |PIV, |NFO

COVPLEX AB(LDAB, *)
INTEGER*8 M N, KL, KU, LDAB, |NFO
| NTEGER*8 | Pl V(*)

F95 | NTERFACE
SUBROUTI NE GBTF2([M, [N, KL, KU, AB, [LDAB], IPIV, [INFQ)

COWPLEX, DIMENSION(:,:) :: AB
INTEGER :: M N, KL, KU, LDAB, |NFO
I NTEGER, DIMENSION(:) :: IPIV

SUBROUTI NE GBTF2_64([M, [N, KL, KU AB, [LDAB], IPIV, [INFQO)

COWPLEX, DIMENSION(:,:) :: AB
INTEGER(8) :: M N, KL, KU, LDAB, |NFO
I NTEGER(8), DIMENSION(:) :: IPIV

C | NTERFACE
#i ncl ude <sunperf. h>

void cgbtf2(int m int n, int kl, int ku, conplex *ab, int
I dab, int *ipiv, int *info);

void cgbtf2_64(long m long n, long kI, 1long ku, conplex
*ab, long ldab, long *ipiv, long *info);

Page 278 of 4153

PURPOSE

cgbtf2 conputes an LU factorization of a conplex mby-n band
matri x A using partial pivoting with row interchanges.

This is the unblocked version of the algorithm calling
Level 2 BLAS.

ARGUMENTS

M (i nput) The nunber of rows of the matrix AL M >= 0.

N (i nput) The nunber of colums of the matrix A. N >= 0.

KL (i nput)
The nunber of subdi agonals within the band of A
KL >= 0.

KU (i nput)
The nunber of superdi agonals within the band of A
KU >= 0.

AB (i nput/out put)
On entry, the matrix A in band storage, in rows
KL+1 to 2*KL+KU+1; rows 1 to KL of the array need
not be set. The j-th colum of Ais stored in the
j-th col um of t he array AB as follows:
AB(Kkl +ku+1+i-j,j) = A(iLj) f or max(1,j -
ku) <=i <=mi n(m j +kl)

On exit, details of the factorization: Uis stored
as an upper triangular band matrix with KL+KU
superdi agonals in rows 1 to KL+KU+1, and the rul -
tipliers wused during the factorization are stored
inrows KL+KU+2 to 2*KL+KU+1. See below for
further details.

LDAB (i nput)
The | eadi ng di mensi on of the array AB. LDAB >=
2* KL+KU+1.

| PI'V (output)
The pivot indices; for 1 <= i <= mn(MN), row i
of the matrix was interchanged with row I PI'V(i).

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argument had an ille-
gal val ue
>0: if INFO= +i, U(i,i) 1is exactly zero. The
factorizati on has been conpl eted, but the factor U
is exactly singular, and division by zero wll
occur if it is wused to solve a system of equa-
tions.

Page 279 of 4153

FURTHER DETAILS

The band storage schene is illustrated by the follow ng
exanmple, when M= N =6, KL = 2, KU = 1:

On entry: On exit:

& @ & + + + 2 2 2 uls u25
u36

& @ + + + + * * ul3 u24 u35
u46

* al2 a23 a34 a45 ab6 * ul2 u23 u34 u45
ub6

all a22 a33 a44 ab5 a66 ull w22 u33 u44 u55
u66

a2l a32 a43 ab4 a65 * m1l nmB2 mi3 nb4 n65
*

a3l a42 ab3 ab4 * * ml mi2 nb3 n64 *

Array el ements narked * are not used by the routine; ele-
ments marked + need not be set on entry, but are required by
the routine to store elenents of U because of fill-in
resulting fromthe row

i nt er changes.

Page 280 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgbtrf - conpute an LU factorization of a conplex mby-n
band matrix A using partial pivoting with row interchanges

SYNOPSIS

SUBROUTI NE CGBTRF(M N, KL, KU, A, LDA, |PIVOT, |NFOQ

COWPLEX A(LDA, N)
INTEGER M N, KL, KU, LDA, |NFO
| NTEGER | PI VOT(M N(M N))

SUBROUTI NE CGBTRF_64(M N, KL, KU, A, LDA, |PIVOT, |NFO

COWPLEX A(LDA, N)
INTEGER*8 M N, KL, KU, LDA, |INFO
| NTEGER*8 | Pl VOT(M N(M N))

F95 | NTERFACE
SUBROUTI NE GBTRF(M [N], KL, KU, A [LDA], IPIVOT, [INFQ)

COWPLEX, DIMENSION(:,:) :: A
INTEGER :© M N, KL, KU, LDA, |NFO
I NTEGER, DI MENSION(:) :: |PIVOT

SUBROUTI NE GBTRF_64(M [N, KL, KU, A [LDA], IPIVOT, [INFQ)

COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, KL, KU, LDA, I|NFO
| NTEGER(8), DIMENSION(:) :: I|PIVOT

C | NTERFACE
#i ncl ude <sunperf. h>

void cgbtrf(int m int n, int kl, int ku, conplex *a, int
Ida, int *ipivot, int *info);

void cgbtrf_64(long m long n, long kI, long ku, conplex *a,
long I da, long *ipivot, |long *info);

Page 281 of 4153

PURPOSE

cgbtrf conputes an LU factorization of a conplex mby-n band
matri x A using partial pivoting with row interchanges.

This is the bl ocked version of the algorithm calling Level
3 BLAS.

ARGUMENTS

M (i nput) Integer
The nunber of rows of the matrix AL M >= 0.

N (input) Integer
The nunber of columms of the matrix A N >= 0.

KL (input) Integer
The nunber of subdi agonals within the band of A
KL >= 0.

KU (input) Integer
The nunber of superdi agonals within the band of A
KU >= 0.

A (input/output) Conplex array of dinension (LDA N).
On entry, the matrix A in band storage, in rows
KL+1 to 2*KL+KU+1; rows 1 to KL of the array need
not be set. The J-th colum of Ais stored in the
J-th col um of t he array A as follows:
A(KL+KU+1+1 - J, J) = A(l, J) for MAX(1, J-
KU) <=l <=M N(M J+KL)

On exit, details of the factorization: Uis stored
as an upper triangular band matrix with KL+KU
superdi agonals in rows 1 to KL+KU+1, and the rul -
tipliers wused during the factorization are stored
inrows KL+KU+2 to 2*KL+KU+1. See below for
further details.

LDA (i nput) Integer
The | eadi ng di mension of the array A LDA >=
2* KL+KU+1.

| Pl VOT (output) Integer array of dimension MNMN)
The pivot indices; for 1 <=1 <= MNMN), row I
of the matrix was interchanged with row | PIVOT(I).

I NFO (out put) Integer

= 0: successful exit

<0: if INFO= -1, the I-th argument had an ille-
gal val ue

>0: if INFO= +, U(l,l) is exactly zero. The
factorizati on has been conpl eted, but the factor U
is exactly singular, and division by zero wll
occur if it is wused to solve a system of equa-

Page 282 of 4153

tions.

FURTHER DETAILS

The band storage scheme is illustrated by the follow ng
exanple, when M= N =6, KL = 2, KU = 1:

On entry: On exit:

2 ki 2 + + + ki 2 ki ul4 u25
u36

* * + + + + * * ul3d u24 u35
u46

* al2 a23 a34 a45 ab6 * ul2 u23 u34 u4s
u56

all a22 a33 a44 ab5 a66 ull u22 wu33 u44 u55
u66

a2l a32 a43 ab54 a65 * m1 nmB2 m3 nb4 65
*

a3l a42 ab53 ab4 2 ki M1 mi2 nb3 n64 ki

Array el ements marked * are not used by the routine; ele-
ments marked + need not be set on entry, but are required by
the routine to store elements of U because of fill-in
resulting fromthe row i nterchanges

Page 283 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgbtrs - solve a systemof |linear equations A * X = B, A**T
* X =B or A**H* X =B with a general band matri x A using
the LU factorizati on conputed by CGBTRF

SYNOPSIS

SUBROUTI NE CGBTRS(TRANSA, N, KL, KU, NRHS, A, LDA, |PIVOT, B,
LDB, | NFO)

CHARACTER * 1 TRANSA

COWPLEX A(LDA, *), B(LDB,*)

INTEGER N, KL, KU, NRHS, LDA, LDB, |NFO
| NTEGER | PI VOT(*)

SUBROUTI NE CGBTRS_64(TRANSA, N, KL, KU, NRHS, A LDA, |PIVOT,
B, LDB, |INFO

CHARACTER * 1 TRANSA

COWPLEX A(LDA, *), B(LDB,*)

INTEGER*8 N, KL, KU, NRHS, LDA, LDB, |INFO
| NTEGER*8 | Pl VOT(*)

F95 | NTERFACE
SUBROUTI NE GBTRS([TRANSA], [N], KL, KU, [NRHS], A, [LDA],
IPIVOT, B, [LDB], [INFQ)

CHARACTER(LEN=1) :: TRANSA

COWPLEX, DIMENSION(:,:) :: A B

INTEGER :: N, KL, KU, NRHS, LDA LDB, INFO
I NTEGER, DI MENSION(:) :: |PIVOT

SUBROUTI NE GBTRS 64([TRANSA], [N, KL, KU, [NRHS], A [LDA],
IPIVOT, B, [LDB], [INFQ)

CHARACTER(LEN=1) :: TRANSA

COWPLEX, DIMENSION(:,:) :: A B

INTEGER(8) :: N, KL, KU, NRHS, LDA LDB, |NFO
| NTEGER(8), DIMENSION(:) :: I|PIVOT

C | NTERFACE

Page 284 of 4153

#i ncl ude <sunperf.h>

void cgbtrs(char transa, int n, int kl, int ku, int nrhs,
conplex *a, int lda, int *ipivot, conplex *b, int
I db, int *info);

voi d cgbtrs_64(char transa, long n, long kl, long ku, |ong
nrhs, conplex *a, long I da, |ong *ipivot, conplex
*b, long Idb, long *info);

PURPOSE

cgbtrs solves a system of |inear equations

A* X=B A*T* X=B, or A*H* X=Bwth a gen-
eral band matrix A using the LU factorization conputed by
CGBTRF.

ARGUMENTS

TRANSA (i nput)
Specifies the formof the system of equations. =

'"N: A* X=B (No transpose)
='T: A**T* X =B (Transpose)
='C: A**H* X =B (Conjugate transpose)

TRANSA is defaulted to 'N for F95 | NTERFACE.

N (i nput) The order of the matrix A. N >= 0.

KL (input)
The nunber of subdiagonals within the band of A
KL >= 0.

KU (i nput)
The nunber of superdi agonals within the band of A
KU >= 0.

NRHS (i nput)

The nunber of right hand sides, i.e., the nunber
of colums of the matrix B. NRHS >= 0.

A (input) Details of the LU factorization of the band matrix
A, as conputed by CGBTRF. U is stored as an upper
triangul ar band matrix with KL+KU superdi agonal s
in rows 1 to KL+KU+1l, and the nultipliers used
during the factorization are stored in r ows
KL+KWH2 to 2* KL+KU+1.

LDA (i nput)
The | eading di mension of the array A LDA >=
2* KL+KU+1.

| PIVOT (i nput)
The pivot indices; for 1 <=i <= N, rowi of the

matri x was i nterchanged with row | PIVOT(i).

B (i nput/out put)
On entry, the right hand side matrix B. On exit,

Page 285 of 4153

the solution matrix X

LDB (i nput)
The | eading di mension of the array B. LDB >=
max(1, N).

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue

Page 286 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgebak - formthe right or left eigenvectors of a conplex
general matrix by backward transformation on the conputed
ei genvectors of the balanced matri x out put by CGEBAL

SYNOPSIS

SUBROUTI NE CGEBAK(JOB, SIDE, N, ILO IH, SCALE, M V, LDV, |INFO

CHARACTER * 1 JOB, SIDE

COWPLEX V(LDV, *)

INTEGER N, ILO, IH, M LDV, INFO
REAL SCALE(*)

SUBROUTI NE CGEBAK_64(JOB, SIDE, N, ILO IH, SCALE, M V, LDV, INFO

CHARACTER * 1 JOB, SIDE

COWPLEX V(LDV, *)

INTEGER*8 N, 1LO, IH, M LDV, INFO
REAL SCALE(*)

F95 | NTERFACE
SUBROUTI NE GEBAK(JOB, SIDE, [N, ILO IH, SCALE, [M, V, [LDV],
[1NFO)

CHARACTER(LEN=1) :: JOB, SIDE
COWPLEX, DIMENSION(:,:) :: V
INTEGER :: N, ILO, IH, M LDV, INFO
REAL, DI MENSION(:) :: SCALE

SUBROUTI NE GEBAK 64(JOB, SIDE, [N], ILO, IH, SCALE, [M, V, [LDV],
[1NFO)

CHARACTER(LEN=1) :: JOB, SIDE

COWPLEX, DIMENSION(:,:) :: V

INTEGER(8) :: N, ILO, IH, M LDV, INFO
REAL, DI MENSION(:) :: SCALE

C | NTERFACE
#i ncl ude <sunperf.h>

Page 287 of 4153

voi d cgebak(char job, char side, int n, int ilo, int ihi,

float *scale, int m conmplex *v, int ldv, int
*info);

voi d cgebak_64(char job, char side, long n, long ilo, |ong
ihi, float *scale, long m conplex *v, long |dv,

| ong *info);

PURPOSE

cgebak forms the right or left eigenvectors of a conplex
general matrix by backward transformation on the conputed
ei genvectors of the balanced matri x output by CGEBAL.

ARGUMENTS

JOB (i nput)

Specifies the type of backward transfornation
required: = 'N, do nothing, return i mmediately;
= 'P, do backward transformation for pernutation
only; ='S, do backward transformation for scal -
ing only; = 'B'", do backward transformations for
both permutation and scaling. JOB nust be the
sane as the argunent JOB supplied to CGEBAL.

SI DE (i nput)
='R: V contains right eigenvectors;
='L': Vcontains |eft eigenvectors.

N (i nput) The nunber of rows of the matrix V. N >= 0.

I LO (input)
The integer |LO determined by CGEBAL. 1 <= |LO <=
IH <= N, if N> 0; ILO=1 and IH =0, if N=O.

IH (input)
The integer |H determined by CGEBAL. 1 <= |LO <=
IH <= N, if N> 0; ILO=1 and IH =0, if N=O0.

SCALE (i nput)
Details of the pernutation and scaling factors, as
returned by CGEBAL.

M (i nput) The nunber of colums of the matrix V. M>= 0.

V (i nput/out put)
On entry, the matrix of right or |eft eigenvectors
to be transforned, as returned by CHSEIN or
CTREVC. On exit, V is overwitten by t he
transforned ei genvectors.

LDV (i nput)
The | eading dinmension of the array V. LDV >=
max(1, N).

I NFO (out put)

Page 288 of 4153

Al

g

0:
0:
a

successful exit

if INFO= -i,
val ue.

the i-th argunent had an ille-

Page 289 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME
cgebal - balance a general conplex matrix A
SYNOPSIS
SUBROUTI NE CGEBAL(JOB, N, A, LDA, I1LO IH, SCALE, |NFO
CHARACTER * 1 JOB
COVPLEX A(LDA, *)
I NTEGER N, LDA, ILO IH, INFO
REAL SCALE(*)
SUBROUTI NE CGEBAL_64(JOB, N, A, LDA, ILO IH, SCALE, |NFO
CHARACTER * 1 JOB
COVPLEX A(LDA, *)
I NTEGER*8 N, LDA, ILO IH, INFO
REAL SCALE(*)
F95 | NTERFACE
SUBROUTI NE GEBAL(JOB, [N], A, [LDA], ILO IH, SCALE, [INFQ)
CHARACTER(LEN-=1) JOoB
COWPLEX, DI MENSI ON(:, :) A
INTEGER :: N, LDA, ILO I1H, INFO
REAL, DI MENSI ON(:) SCALE
SUBROUTI NE GEBAL_64(JOB, [N}, A [LDA], ILO IH, SCALE, [INFQ)
CHARACTER(LEN-=1) JOoB
COWPLEX, DIMENSION(:,:) :: A
| NTECGER(8) N, LDA, ILO IH, INFO
REAL, DI MENSI ON(:) SCALE
C | NTERFACE
#i ncl ude <sunperf. h>
voi d cgebal (char job, int n, conplex *a, int lda, int *ilo,
int *ihi, float *scale, int *info);

Page 290 of 4153

voi d cgebal _64(char job, long n, conplex *a, long lda, |ong
*ilo, long *ihi, float *scale, |long *info);

PURPOSE

cgebal bal ances a general conplex matrix A This involves,
first, permuting A by a simlarity transformation to isolate
eigenvalues in the first 1 to ILO1 and last IH+1 to N
elements on the diagonal; and second, applying a di agonal
simlarity transformation to rows and colums ILOto IH to
make the rows and colums as close in normas possible.
Both steps are optional.

Bal anci ng may reduce the 1-normof the matrix, and inprove
the accuracy of the conputed ei genval ues and/ or ei genvec-

tors.
ARGUMENTS

JOB (i nput)
Specifies the operations to be perforned on A
='N: none: sinmply set ILO = 1, IH = N
SCALE(l1) = 1.0 for i =1,...,N ="'P: pernute
only;
='S: scale only;
= 'B': both pernute and scal e.

N (input) The order of the matrix A. N >= 0.

A (i nput/output)
On entry, the input matrix A On exit, A is
overwitten by the balanced matrix. If JOB ="'N,
A is not referenced. See Further Details.

LDA (i nput)
The | eadi ng di mension of the array A LDA >=
max(1, N).

| LO (out put)
ILO and IH are set to integers such that on exit

A(i,j) = 0 if i >j andj =1,...,1LO1 or I =
IH+1,...,N If JOB='N or 'S, ILO=1 and IH
= N

I H (output)
ILO and IH are set to integers such that on exit
A(i,j) = 0 if i >j andj =1,...,1LO1 or I =
IH+1,...,N If JOB='N or 'S, ILO=1 and IH
= N

SCALE (out put)
Details of the pernutations and scaling factors
applied to A. If P(j) is the index of the row and
colum interchanged with row and colum j and D(j)
is the scaling factor applied to row and colum j,

Page 291 of 4153

then SCALE(j) = P(j) for j =1,...,1LO1 = D(j)
for j =I1LO ..., IH = P(j) for j = 1H+1,...,N
The order in which the interchanges are made is N
to IH+1, then 1 to |ILO 1.

I NFO (out put)
= 0: successful exit.
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.

FURTHER DETAILS

The pernmutations consist of row and columm interchanges
whi ch put the matrix in the form

(TL X Y)
PAP=(0 B Z)
(0 0 T2)

where T1 and T2 are upper triangular matrices whose eigen-
values lie along the diagonal. The colum indices ILO and
IH mark the starting and ending col ums of the submatrix B.
Bal anci ng consi sts of applying a diagonal simlarity
transformation inv(D) * B* Dto nake the 1-norns of each
row of B and its corresponding columm nearly equal. The
output matrix is

(Tl X*D Y)
(0 inv(D*B*D inv(D*Z).
(0 0 T2)

I nformati on about the pernutations P and the diagonal matri x
Dis returned in the vector SCALE.

This subroutine is based on the EI SPACK routi ne CBAL.
Modi fi ed by Tzu-Yi Chen, Conputer Science Division, Univer-

sity of
California at Berkel ey, USA

Page 292 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgebrd - reduce a general complex Mby-N matrix A to upper
or | ower bidiagonal formB by a unitary transformation

SYNOPSIS

SUBROUTI NE CGEBRD(M N, A, LDA, D, E, TAUQ TAUP, WORK, LWORK, | NFO

COVPLEX A(LDA, *), TAUQ*), TAUP(*), WORK(*)
INTEGER M N, LDA, LWORK, |NFO
REAL D(*), E(*)

SUBROUTI NE CGEBRD 64(M N, A, LDA, D, E TAUQ TAUP, WORK, LWORK,
| NFO)

COVPLEX A(LDA, *), TAUQ*), TAUP(*), WORK(*)
INTEGER*8 M N, LDA, LWORK, |NFO
REAL D(*), E(*)

F95 | NTERFACE
SUBROUTI NE GEBR([M, [N, A [LDA], D, E TAUQ TAUP, [WORK], [LWORK],
[1NFQ)

COWPLEX, DIMENSION(:) :: TAUQ TAUP, WORK
COWPLEX, DIMENSION(:,:) :: A

INTEGER :: M N, LDA LWORK, |NFO

REAL, DIMENSION(:) :: D, E

SUBROUTI NE GEBRD 64([M, [N, A [LDA], D, E, TAUQ TAUP, [WORK],
[LVWORK], [INFQO)

COWPLEX, DIMENSION(:) :: TAUQ TAUP, WORK
COWPLEX, DIMENSION(:,:) :: A

INTEGER(8) :: M N, LDA LWORK, |INFO
REAL, DIMENSION(:) :: D, E

C | NTERFACE
#i ncl ude <sunperf. h>

Page 293 of 4153

void cgebrd(int m int n, conplex *a, int I|da, float *d,
fl oat *e, conplex *tauq, conplex *taup, int
*info);

voi d cgebrd_64(long m long n, conplex *a, long Ilda, float

*d, float *e, conplex *tauq, conplex *taup, |ong
*info);

PURPOSE

cgebrd reduces a general conplex Mby-N matrix A to upper or
| ower bidiagonal formB by a unitary transformation: Qv *H *

A* P =B
If m>=n, Bis upper bidiagonal; if m<n, Bis |ower bidi-
agonal .

ARGUMENTS

M (i nput) The nunber of rows in the matrix AL M >= 0.
N (i nput) The nunber of colums in the matrix AL N >= 0.

A (i nput/output)

On entry, the Mby-N general matrix to be reduced.
On exit, if m >=n, the diagonal and the first
superdi agonal are overwitten with the upper bidi-
agonal matrix B; the el ements bel ow t he di agonal ,
with the array TAUQ represent the unitary matrix
Q as a product of elenentary reflectors, and the
el ements above the first superdiagonal, wth the
array TAUP, represent the unitary matrix P as a
product of elenmentary reflectors; if m < n, the
di agonal and the first subdi agonal are overwitten
with the | ower bidiagonal matrix B; the elenents
bel ow the first subdiagonal, with the array TAUQ
represent the unitary matrix Q as a product of
elementary reflectors, and the el ements above the
di agonal, with the array TAUP, represent the uni-
tary matrix P as a product of elementary reflec-
tors. See Further Details.

LDA (i nput)
The | eadi ng di mension of the array A LDA >=
max(1, M.

D (out put)
The di agonal el ements of the bidiagonal matrix B:
D(i) = A(i,i).

E (out put)
The of f-di agonal el ements of the bidiagonal matrix
B: if m>=n, E(i) = A(i,i+1) for i =1,2,...,n-
1; if m<n, E(i) = A(i+1,i) for i =1,2,..., m1.

TAUQ (out put)
The scal ar factors of the elenmentary reflectors

Page 294 of 4153

which represent the unitary matrix Q See Further
Det ai | s.

TAUP (out put)
The scal ar factors of the elenentary reflectors
which represent the unitary matrix P. See Further
Details.

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal

LWORK.

LWORK (i nput)
The length of the array WORK. LMWORK >=
max(1, M N). For optinmm performance LWORK >=

(M:N) *NB, where NB is the optimal bl ocksize.

If LMORK = -1, then a workspace query is assuned;
the routine only calculates the optinal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LWORK i s issued by XERBLA.

I NFO (out put)
= 0: successful exit.

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.

FURTHER DETAILS

The matrices Q and P are represented as products of el enen-
tary reflectors:

If m>=n,
Q=H1 HZ2) . . . Hn and P=31) 2 .. . En-1)

Each H(i) and Qi) has the form

Hi) =1 - taug * v * v' and Gi) =1 - taup * u * u'
where tauq and taup are conplex scalars, and v and u are
conplex wvectors; v(1:i-1) = 0, v(i) =1, and v(i+l:m is
stored on exit in A(i+1:mi); u(l:i) =0, u(i+l) = 1, and

u(i+2:n) is stored on exit in A(i,i+2:n); tauqg is stored in
TAUQ(i) and taup in TAUP(i).

If m<n,

Q=H1) H2) .. . Hm1l) and P=¢1l) g2 .. . m
Each H(i) and Qi) has the form

Hi) =1 - taug * v * v' and Gi) =1 - taup * u * u'
where tauq and taup are conplex scalars, and v and u are
conplex vectors; v(1:i) = 0, v(i+l) =1, and v(i+2:m is
stored on exit in A(i+2:mi); u(l:i-1) =0, u(i) = 1, and

u(i+l:n) is stored on exit in A(i,i+1:n); tauqg is stored in
TAUQ(i) and taup in TAUP(i).

Page 295 of 4153

The contents of A on
exanpl es:

m=6andn=5(m>
(d e ul ul
ul)
(vi d e u2
u2)
(vi v2 d e
u3)
(vi v2 v3 d
usd)
(vi v2 v3 v4
u5)

(vi v2 v3 v4

where d and e denote

exit are illustrated by

v5)

di agonal

m=5and n =6 (m< n):

(

d

vl

vl

vl

ul

d

v2

v2

and of f - di agonal
B, vi denotes an el enent of the vector defining H(i),
an el ement of the vector defining Gi).

t he

foll owi ng

ul ul ul
u2 u2 u2
d u3 u3
e d u4
v3 e d
elements of
and ui

Page 296 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgecon - estimate the reciprocal of the condition nunber of
a general conplex matrix A in either the 1-normor the
infinity-norm using the LU factorization conputed by CCGETRF

SYNOPSIS

SUBROUTI NE CGECON(NORM N, A, LDA, ANORM RCOND, WORK, WORK2, | NFO)

CHARACTER * 1 NORM
COVWPLEX A(LDA, *), WORK(*)
INTEGER N, LDA, |NFO
REAL ANORM RCOND

REAL WORK2(*)

SUBROUTI NE CGECON 64(NORM N, A, LDA, ANORM RCOND, WORK, WORK2,
I NFO)

CHARACTER * 1 NORM
COWPLEX A(LDA, *), WORK(*)
INTEGER*8 N, LDA, |NFO
REAL ANORM RCOND

REAL WORK2(*)

F95 | NTERFACE
SUBROUTI NE GECON(NORM [N, A, [LDA], ANORM RCOND, [WORK], [WORK2],
[1NFO)

CHARACTER(LEN=1) :: NORM
COWPLEX, DI MENSION(:) :: WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: N, LDA, |NFO

REAL :: ANORM RCOND

REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GECON 64(NORM [N], A, [LDA], ANORM RCOND, [WORK], [WORK2],
[1NFO)

CHARACTER(LEN=1) :: NORM

COVPLEX, DI MENSION(:) :: VORI
COWPLEX, DIMENSION(:,:) :: A

Page 297 of 4153

I NTEGER(8) N, LDA, | NFO
REAL :: ANORM RCOND

REAL, DI MENSI O\(:) VORK2
C | NTERFACE
#i ncl ude <sunperf.h>
voi d cgecon(char norm int n, conplex *a, int Ilda, float
anorm float *rcond, int *info);
voi d cgecon_64(char norm long n, conplex *a, long |da,

float anorm float *rc

PURPOSE

cgecon estimates the reciprocal

general conplex matrix A in
infinity-norm using the LU
CGETRF.

ond, long *info);

of the condition nunber of a
either the 1-normor the
factorization conputed by

An estimate is obtained for norn(inv(A)), and the reciprocal

of the condition nunmber is conpu
RCOND = 1/ (norn(A) * norm(

ARGUMENTS

NORM (i nput)
Speci fi es whet her the
the infinity-normcond
‘1" or 'O 1- norm
B Infinit

N (i nput) The order of the matri

A (input) The factors L and U fr

ted as
inv(A))).

1-normcondition nunber or
ition nunber is required:

y-norm
x A N >= 0.

om the factorization A =

P*L*U as conputed by CGETRF.

LDA (i nput)
The | eadi ng di nensi on
max(1, N).

ANORM (i nput)
If NORM="'1" or 'O,
matrix A If NORM ="
original matrix A

RCOND (out put)
The reciprocal of the
mat ri x A, conput ed

norm(inv(A))).

WORK (wor kspace)
di mensi on(2*N)

WORK2 (wor kspace)
di mensi on(2*N)

of the array A LDA >=

the 1-normof the original
I', the infinity-norm of the

nunber of the
1/ (norm(A) *

condi ti on
as RCOND =

Page 298 of 4153

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue

Page 299 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgeequ - conpute row and colum scalings intended to equili -
brate an Mby-N matrix A and reduce its condition nunber

SYNOPSIS

SUBROUTI NE CGEEQUM N, A, LDA, R C, ROACND, COLCND, AMAX,
I NFO)

COWPLEX A(LDA, *)

INTEGER M N, LDA, |NFO
REAL ROWCND, COLCND, ANAX
REAL R(*), C(*)

SUBROUTI NE CGEEQU_64(M N, A LDA, R C, ROACND, COLCND,
AVAX, | NFO)

COWPLEX A(LDA, *)
INTEGER*8 M N, LDA, |NFO
REAL ROWCND, COLCND, ANAX
REAL R(*), C(*)

F95 | NTERFACE

SUBROUTI NE GEEQU([M, [N, A [LDA], R C, ROACND, COLCND,
AVAX, [INFQ)

COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, LDA [|NFO
REAL :: ROACND, COLCND, AMAX
REAL, DIMENSION(:) :: R C

SUBROUTI NE GEEQU 64([M, [N], A [LDA], R C, ROACND, COLCND,
AMAX, [INFQ)

COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, LDA |NFO
REAL :: ROACND, COLCND, AMAX
REAL, DIMENSION(:) :: R C

C | NTERFACE
#i ncl ude <sunperf.h>

Page 300 of 4153

voi d cgeequ(int m int n, conplex *a, int |Ida, float *r,
float *c, float *rownd, float *colcnd, float
*amax, int *info);

voi d cgeequ_64(long m long n, conplex *a, long Ilda, float
*r, float *c, float *rowcnd, float *colcnd, float
*amax, |ong *info);

PURPOSE

cgeequ conputes row and colum scalings intended to equili-
brate an Mby-N matrix A and reduce its condition nunber. R
returns the row scale factors and C the colum scale fac-
tors, chosen to try to make the | argest elenent in each row
and col um of t he mat ri x B with el enent s
B(i,j)=R(i)*A(i,j)*C(j) have absol ute val ue 1.

R(i) and C(j) are restricted to be between SMLNUM = snal | est
safe nunber and BI GNUM = | argest safe nunber. Use of these

scaling factors is not guaranteed to reduce the condition
nunber of A but works well in practice.

ARGUMENTS

M (i nput) The nunber of rows of the matrix A. M >= 0.
N (i nput) The nunber of colums of the matrix A N >= 0.

A (input) The Mby-N nmatrix whose equilibration factors are
to be conputed.

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, M.

R (out put)

If INFO=0 or INFO> M R contains the row scale
factors for A

C (out put)
If INFO=0, Ccontains the colunmm scale factors
for A

ROANCND (out put)
If INFO=0 or INFO> M ROAND contains the ratio

of the smallest R(i) to the largest R(i). |If
ROACND >= 0.1 and AMAX is neither too large nor
too small, it is not worth scaling by R

COLCND (out put)
If INFO= 0, COLCND contains the ratio of the
smallest C(i) to the largest C(i). |f COLCND >=
0.1, it is not worth scaling by C.

AVAX (out put)

Page 301 of 4153

Absol ute val ue of |argest matrix elenment. |[|f AMAX
is very close to overflow or very close to under-
flow, the matrix shoul d be scal ed.

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue
>0: if INFO=i, andi is

<=M thei-th rowof Ais exactly zero
> M the (i-M-th colum of A is exactly zero

Page 302 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgees - conpute for an N-by-N conpl ex nonsymetric matrix A,
the eigenvalues, the Schur form T, and, optionally, the
matri x of Schur vectors Z

SYNOPSIS

SUBROUTI NE CGEES(JOBZ, SORTEV, SELECT, N, A LDA, NOUT, W Z, LDZ,
WORK, LDWORK, WORK2, WORK3, | NFO)

CHARACTER * 1 JOBZ, SORTEV

COWPLEX A(LDA, *), W*), Z(LDZ *), WORK(*)
INTEGER N, LDA, NOUT, LDZ, LDWORK, |NFO
LOG CAL SELECT

LOG CAL WORK3(*)

REAL WORK2(*)

SUBROUTI NE CGEES 64(J0BZ, SORTEV, SELECT, N, A, LDA NOUT, W Z, LDz,
WORK, LDWORK, WORK2, WORK3, | NFO)

CHARACTER * 1 JOBZ, SORTEV

COWPLEX A(LDA, *), W*), Z(LDZ *), WORK(*)
INTEGER8 N, LDA, NOUT, LDZ, LDWORK, |NFO
LOG CAL*8 SELECT

LOGI CAL*8 WORK3(*)

REAL WORK2(*)

F95 | NTERFACE
SUBROUTI NE GEES(JOBZ, SORTEV, [SELECT], [N, A [LDA], [NOUT], W Z [LDZ],
[WORK], [LDWORK], [WORK2], [WORK3], [INFQ)

CHARACTER(LEN=1) :: JOBZ, SORTEV

COWPLEX, DIMENSION(:) :: W WORK

COWPLEX, DIMENSION(:,:) :: A Z

INTEGER :: N, LDA, NOUT, LDZ, LDWORK, |NFO
LOGI CAL :: SELECT

LOG CAL, DI MENSI ON(:) :: WORK3

REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GEES 64(JOBZ, SORTEV, [SELECT], [N], A [LDA], [NouT], W Z
[LDZ], [WORK], [LDWORK], [WORK2], [WORK3], [INFQ)

Page 303 of 4153

CHARACTER(LEN=1) :: JOBZ, SORTEV
COWPLEX, DI MENSION(:) :: W WORK
COWPLEX, DIMENSION(:,:) :: A Z
I NTECER(8) :: N, LDA, NOUT, LDZ, LDWORK, I NFO
LOd CAL(8) :: SELECT
LOG CAL(8), DI MENSION(:) :: WORK3
REAL, DI MENSI ON(:) :: WORK2
C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgees(char jobz, char sortev, int(*select)(conplex),
int n, conmplex *a, int lda, int *nout, conplex *w,
conplex *z, int ldz, int *info);

voi d cgees_64(char j obz, char sortev,
| ong(*sel ect) (conplex), long n, conmplex *a, |ong
I da, long *nout, conplex *w, conplex *z, long |dz,
| ong *info);

PURPOSE

cgees conputes for an N-by-N conpl ex nonsymretric matrix A,
the eigenvalues, the Schur form T, and, optionally, the
matri x of Schur vectors Z. This gives the Schur factoriza-
tion A = Z*T*(Z**H).

Optionally, it also orders the eigenvalues on the diagonal
of the Schur formso that sel ected eigenval ues are at the
top left. The |eading colums of Z then form an orthonor nal
basis for the invariant subspace corresponding to the
sel ect ed ei genval ues.

A conplex matrix is in Schur formif it is upper triangular.

ARGUMENTS

JOBZ (i nput)
= "N : Schur vectors are not conputed;
= 'V : Schur vectors are conputed.

SORTEV (i nput)
Speci fies whether or not to order the eigenval ues
on the diagonal of the Schur form = "'N: Eigen-
val ues are not ordered:
= 'S : Eigenvalues are ordered (see SELECT).

SELECT (i nput)
LOG CAL FUNCTI ON of one COWLEX argunment SELECT
must be declared EXTERNAL in the calling subrou-
tine. If SORTEV = 'S, SELECT is used to select
eigenvalues to order to the top left of the Schur
form |If SORTEV = 'N, SELECT is not referenced.
The eigenvalue Wj) is selected if SELECT(Wj)) is
true.

N (i nput) The order of the matrix A. N >= 0.

Page 304 of 4153

A (i nput/output)
COWLEX array, dinmension(LDA/N) On entry, the N
by-N matrix A. On exit, A has been overwitten by
its Schur formT.

LDA (i nput)
The | eading di mension of the array A LDA >=
max(1, N).

NOUT (out put)

If SORTEV = "N, NOUT = 0. |If SORTEV ="'S', NOUT
= nunber of eigenvalues for which SELECT is true.

W (out put)
COWLEX array, dinmension(N) W contains the com
puted eigenvalues, in the same order that they
appear on the diagonal of the output Schur formT.

Z (output)
COWLEX array, dinmension(LDZ,N) If JOBZ = 'V, Z
contains the wunitary matrix Z of Schur vectors.
If JOBZ ="'N, Zis not referenced.

LDZ (i nput)
The | eadi ng di mension of the array Z. LDZ >= 1;
if JOBZ ="'V, LDZ >= N.

WORK (wor kspace)
COWLEX array, dinmension(LWORK) On exit, if INFO =
0, WORK(1) returns the optinal LDWORK.

LDWORK (i nput)
The dinmension of the array WRK LDWORK >=
max(1, 2*N). For good performance, LDWORK nust
general ly be larger.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK is issued by XERBLA.

WORK2 (wor kspace)
REAL array, dinmension(N)

WORK3 (wor kspace)
LOG CAL array, dinmension(N) Not referenced if SOR-
TEV = "N .

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunment had an ille-
gal val ue.
>0: if INNO=i, and i is

<= N the QR algorithmfailed to conpute all the
ei genval ues; elenents 1:1LO-1 and i +1: N of W con-
tain those eigenvalues which have converged; if
JOBZ = 'V, Z contains the matrix which reduces A
toits partially converged Schur form = N+1: the
ei genval ues could not be reordered because sone
ei genvalues were too close to separate (the prob-

Page 305 of 4153

lemis very ill-conditioned); = N+2: after reord-
ering, roundoff changed values of sone conpl ex
ei genval ues so that |eading eigenvalues in the
Schur form no |longer satisfy SELECT = .TRUE..

This could also be caused by wunderflow due to
scal i ng.

Page 306 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgeesx - conpute for an N-by-N conplex nonsymmetric matrix
A, the eigenvalues, the Schur formT, and, optionally, the
matri x of Schur vectors Z

SYNOPSIS

SUBROUTI NE CGEESX(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOQUT, W Z,
LDZ, RCONE, RCONV, WORK, LDWORK, WORK2, BWORK3, | NFO)

CHARACTER * 1 JOBZ, SORTEV, SENSE
COWPLEX A(LDA, *), W*), Z(LDZ *), WORK(*)
INTEGER N, LDA, NOUT, LDZ, LDWORK, |NFO
LOG CAL SELECT

LOG CAL BWORK3(*)

REAL RCONE, RCONV

REAL WORK2(*)

SUBROUTI NE CGEESX_64(J0BZ, SORTEV, SELECT, SENSE, N, A LDA, NOUT, W
Z, LDZ, RCONE, RCONV, WORK, LDWORK, WORK2, BWORK3, | NFO

CHARACTER * 1 JOBZ, SORTEV, SENSE
COWPLEX A(LDA, *), W*), Z(LDZ *), WORK(*)
INTEGER8 N, LDA, NOUT, LDZ, LDWORK, |NFO
LOG CAL*8 SELECT

LOGI CAL*8 BWORK3(*)

REAL RCONE, RCONV

REAL WORK2(*)

F95 | NTERFACE
SUBROUTI NE GEESX(JOBZ, SORTEV, [SELECT], SENSE, [N], A [LDA], NOUT, W
Z, [LDZ], RCONE, RCONV, [WORK], [LDWORK], [WORK2], [BWORK3],
[1NFO)

CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
COWPLEX, DIMENSION(:) :: W WORK

COWPLEX, DIMENSION(:,:) :: A Z

INTEGER :: N, LDA, NOUT, LDZ, LDWORK, |NFO
LOGI CAL :: SELECT

LOG CAL, DI MENSION(:) :: BWORK3

REAL :: ROONE, RCONV

Page 307 of 4153

REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GEESX_64(JOBZ, SORTEV, [SELECT], SENSE, [N, A [LDA], NOUT,
W Z, [LDZ], RCONE, RCONV, [WORK], [LDWORK], [WORK2], [BWORK3],
[1NFO)

CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
COWPLEX, DIMENSION(:) :: W WORK

COWPLEX, DIMENSION(:,:) :: A Z

INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, |NFO
LOGI CAL(8) :: SELECT

LOGI CAL(8), DIMENSION(:) :: BWORK3

REAL :: ROONE, RCONV

REAL, DI MENSION(:) :: WORK2

C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgeesx(char jobz, char sortev, int(*select)(conplex),
char sense, int n, complex *a, int Ida, int *nout,
conplex *w, complex *z, int |dz, float *rcone,

float *rconv, int *info);

voi d cgeesx_64(char j obz, char sortev,
| ong(*sel ect) (conpl ex), char sense, long n, com
plex *a, long Ida, |ong *nout, conplex *w, conplex
*z, long |dz, float *rcone, float *rconv, |ong
*info);

PURPOSE

cgeesx conputes for an N-by-N conpl ex nonsymetric matrix A,
the eigenvalues, the Schur form T, and, optionally, the
matri x of Schur vectors Z. This gives the Schur factoriza-
tion A = Z*T*(Z**H).

Optionally, it also orders the eigenvalues on the diagonal
of the Schur formso that sel ected eigenval ues are at the
top left; conputes a reciprocal condition nunmber for the
average of the sel ected eigenval ues (RCONDE); and conputes a
reci procal condition number for the right invariant subspace
corresponding to the selected eigenvalues (RCONDV). The
| eading colums of Z form an orthonornal basis for this
i nvari ant subspace.

For further explanation of the reciprocal condition nunbers
RCONDE and RCONDV, see Section 4.10 of the LAPACK Users'
Cui de (where these quantities are called s and sep respec-
tively).

A conplex matrix is in Schur formif it is upper triangular.

ARGUMENTS

JOBZ (i nput)
= "N : Schur vectors are not conputed;

Page 308 of 4153

= 'V : Schur vectors are conputed.

SORTEV (i nput)
Speci fi es whether or not to order the eigenval ues
on the diagonal of the Schur form = "'N: Eigen-
val ues are not ordered;
= 'S : Eigenvalues are ordered (see SELECT).

SELECT (i nput)
LOG CAL FUNCTI ON of one COWLEX argunment SELECT
must be declared EXTERNAL in the calling subrou-
tine. If SORTEV ='S', SELECT is used to select
eigenvalues to order to the top left of the Schur
form |If SORTEV = 'N, SELECT is not referenced.
An eigenvalue Wj) is selected if SELECT(Wj)) is
true.

SENSE (i nput)
Det er mi nes whi ch reci procal condition nunbers are
conputed. = 'N: None are conputed;
= 'E: Conputed for average of selected eigen-
val ues only;
="'V : Conputed for selected right invariant sub-
space only;
= 'B': Conputed for both. |If SENSE ="'E, 'V or
"B, SORTEV nust equal 'S'.

N (i nput) The order of the matrix A. N >= 0.

A (i nput/output)
COWLEX array, dinmension(LDA/N) On entry, the N
by-N matrix A On exit, Ais overwitten by its
Schur formT.

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, N).

NOUT (out put)
If SORTEV = "N, NOUT = 0. |If SORTEV ="'S', NOUT
= nunber of eigenvalues for which SELECT is true.

W (out put)
COWPLEX array, dimension(N) W contains the com
puted eigenvalues, in the sanme order that they
appear on the diagonal of the output Schur formT.
Z (output)
COWLEX array, dinmension(LDZ,N) If JOBZ = 'V, Z
contains the wunitary matrix Z of Schur vectors.
If JOBZ ="'N, Zis not referenced.

LDZ (i nput)
The | eadi ng di mension of the array Z. LDZ >= 1,
and if JOBZ = 'V, LDZ >= N.

RCONE (out put)
If SENSE = 'E' or 'B', RCONE contains the recipro-
cal condition nunber for the average of the
sel ected ei genvalues. Not referenced if SENSE =
"N or 'V.

RCONV (out put)

Page 309 of 4153

If SENSE = 'V or 'B, RCO\NV contains the recipro-

cal condition nunmber for the selected right
i nvari ant subspace. Not referenced if SENSE = 'N
or 'E.

WORK (wor kspace)
COWPLEX array, dimensi on(LDWORK) On exit, if |NFO
= 0, WORK(1) returns the optimal LDWORK

LDWORK (i nput)
The dinmension of the array WRK LDWORK >=
max(1, 2*N). Also, if SENSE="'E or 'V or 'B',
LDWORK >= 2*NOUT*(N-NOUT), where NOUT is the
nunber of selected eigenvalues conputed by this
routine. Note that 2*NOUT*(N-NOUT) <= N*N 2. For
good perfornmance, LDWORK nust generally be |arger.

WORK2 (wor kspace)
REAL array, dinension(N)

BWORK3 (wor kspace)
LOG CAL array, dinmension(N) Not referenced if SOR-
TEV = "N .

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunment had an ille-
gal val ue.
>0: if INNO=i, and i is

<= N the QR algorithmfailed to conpute all the
ei genval ues; elenents 1:1LO-1 and i +1: N of W con-
tain those eigenvalues which have converged; if
JOBZ = 'V, Z contains the transformation which
reduces A to its partially converged Schur form
= N+1: the eigenvalues could not be reordered
because sone ei genvalues were too close to
separate (the problemis very ill-conditioned); =
N+2: after reordering, roundoff changed val ues of
some conpl ex eigenvalues so that |eading eigen-
val ues in the Schur form no |longer satisfy
SELECT=. TRUE. This could al so be caused by under -
flow due to scaling.

Page 310 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgeev - conpute for an N-by-N conpl ex nonsymetric matrix A,
the eigenvalues and, optionally, the left and/or right
ei genvectors

SYNOPSIS

SUBROUTI NE CGEEV(JOBVL, JOBVR, N, A LDA, W VL, LDVL, VR LDVR
WORK, LDWORK, WORK2, | NFO)

CHARACTER * 1 JOBVL, JOBVR

COWPLEX A(LDA *), W*), VL(LDVL,*), VR(LDVR *), WORK(*)
INTEGER N, LDA, LDVL, LDVR LDWORK, |NFO

REAL WORK2(*)

SUBROUTI NE CGEEV_64(JOBVL, JOBVR, N, A, LDA, W VL, LDVL, VR LDVR
WORK, LDWORK, WORK2, | NFO)

CHARACTER * 1 JOBVL, JOBVR

COWPLEX A(LDA *), W*), VL(LDVL,*), VR(LDVR *), WORK(*)
INTEGER8 N, LDA, LDVL, LDVR LDWORK, |NFO

REAL WORK2(*)

F95 | NTERFACE
SUBROUTI NE GEEV(JOBVL, JOBVR, [N, A [LDA], W VL, [LDVL], VR [LDVR],
[WORK], [LDWORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: JOBVL, JOBVR

COWPLEX, DIMENSION(:) :: W WORK

COWPLEX, DIMENSION(:,:) :: A VL, VR
INTEGER :: N, LDA, LDVL, LDVR LDWORK, |NFO
REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GEEV_64(JOBVL, JOBVR, [N, A [LDA], W VL, [LDWL], VR
[LDVR], [WORK], [LDWORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: JOBVL, JOBVR

COVPLEX, DIMENSION(:) :: W WORK

COWPLEX, DIMENSION(:,:) :: A VL, VR
INTEGER(8) :: N, LDA, LDVL, LDVR LDWORK, |NFO
REAL, DI MENSION(:) :: WORK2

Page 311 of 4153

C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgeev(char jobvl, char jobvr, int n, complex *a, int
| da, conplex *w, conplex *vl, int ldvl, conplex
*vr, int ldvr, int *info);

voi d cgeev_64(char jobvl, char jobvr, long n, conplex *a,
|l ong I da, conplex *w, conplex *vl, long ldvl, com
plex *vr, long ldvr, long *info);

PURPOSE

cgeev conputes for an N-by-N conpl ex nonsymretric matrix A,
the eigenvalues and, optionally, the left and/or right
ei genvectors.

The right eigenvector v(j) of A satisfies
A* v(j) = lanmbda(j) * v(j)
where |lanbda(j) is its eigenval ue.
The | eft eigenvector u(j) of A satisfies
u(j)**H* A = lanbda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).

The conput ed eigenvectors are nornalized to have Euclidean
normequal to 1 and | argest conponent real.

ARGUMENTS

JOBVL (i nput)
= 'N: left eigenvectors of A are not conputed;
="'V . left eigenvectors of are conputed.

JOBVR (i nput)
= "'N: right eigenvectors of A are not conputed;
'"V': right eigenvectors of A are conputed.

N (i nput) The order of the matrix A. N >= 0.

A (i nput/output)
On entry, the NNby-N matrix A On exit, A has
been overwitten.

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, N).

W (out put)

W cont ai ns the conputed ei genval ues.

VL (i nput)
If JOBVL = 'V, the |left eigenvectors u(j) are
stored one after another in the colums of VL, in
the sanme order as their eigenvalues. |If JOBVWL =
"N, VL is not referenced. wu(j) = VL(:,j), the
j-th colum of VL.

Page 312 of 4153

LDVL (i nput)
The | eadi ng di mension of the array VL. LDVL >= 1;
if JOBVL ="'V, LDVL >= N.

VR (i nput)
If JOBVR = 'V, the right eigenvectors v(j) are
stored one after another in the colums of VR in
the sanme order as their eigenvalues. |If JOBVR =
"N, VR is not referenced. v(j) = VR(:,j), the
j-th colum of VR

LDVR (i nput)
The | eadi ng di mension of the array VR LDVR >= 1;
if JOBVR ="'V, LDVR >= N.

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal
L DWORK.

LDWORK (i nput)
The dinmension of the array WRK LDWORK >=
max(1, 2*N). For good performance, LDWORK nust
general ly be larger.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK is issued by XERBLA.

WORK2 (wor kspace)
di mensi on(2*N)

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.
>0: if INNO=i, the QR algorithmfailed to com

pute all the eigenval ues, and no ei genvectors have
been conputed; elements and i+1:N of W contain
ei genval ues whi ch have conver ged.

Page 313 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgeevx - conpute for an N-by-N conplex nonsynmetric matrix
A, the eigenvalues and, optionally, the left and/or right
ei genvectors

SYNOPSIS

SUBROUTI NE CGEEVX(BALANC, JOBVL, JOBVR, SENSE, N, A LDA, W VL,
LDVL, VR LDVR ILO IH, SCALE, ABNRM RCONE, RCONV, WORK,
LDWORK, WORK2, | NFO

CHARACTER * 1 BALANC, JOBVL, JOBVR SENSE

COWPLEX A(LDA *), W*), VL(LDVL,*), VR(LDVR *), WORK(*)
INTEGER N, LDA, LDVL, LDVR ILO, IH, LDWORK, |NFO
REAL ABNRM

REAL SCALE(*), RCONE(*), RCONV(*), WORK2(*)

SUBROUTI NE CGEEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A LDA W VL,
LDVL, VR LDVR, ILO IH, SCALE, ABNRM RCONE, RCONV, WORK,
LDWORK, WORK2, | NFO

CHARACTER * 1 BALANC, JOBVL, JOBVR SENSE

COWPLEX A(LDA *), W*), VL(LDVL,*), VR(LDVR *), WORK(*)
INTEGER*8 N, LDA, LDVL, LDVR ILO I|H, LDWORK, |INFO
REAL ABNRM

REAL SCALE(*), RCONE(*), RCONV(*), WORK2(*)

F95 | NTERFACE
SUBROUTI NE GEEVX(BALANC, JOBVL, JOBVR, SENSE, [N, A [LDA], W WL,

[LDVL], VR [LDVR], ILO IH, SCALE, ABNRM RCONE, RCONV, [WORK],
LDWORK, [WORK2], [INFQ)

CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
COWPLEX, DIMENSION(:) :: W WORK

COWLEX, DIMENSION(:,:) :: A VL, VR

INTEGER :: N, LDA, LDVL, LDVR, |ILO IH, LDWRK, |NFO
REAL :: ABNRM

REAL, DI MENSI ON(:) :: SCALE, RCONE, RCONV, WORK2

SUBROUTI NE GEEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A [LDA], W
VL, [LDVL], VR [LDVR], ILO IH, SCALE, ABNRM RCONE, RCONV,

Page 314 of 4153

[WORK], LDWORK, [WORK2], [INFQ)

CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
COWPLEX, DI MENSION(:) :: W WORK
COWPLEX, DIMENSION(:,:) :: A VL, VR
I NTECER(8) :: N, LDA, LDVL, LDVR, ILO IH, LDWORK, INFO
REAL :: ABNRM
REAL, DI MENSI ON(:) :: SCALE, RCONE, RCONV, WORK2
C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgeevx (char, char, char, <char, int, conplex*, int,
conpl ex*, conplex*, int, conplex*, int, int*,
int*, float*, float*, float*, float*, int*);

voi d cgeevx_64 (char, char, char, char, Ilong, conplex*,
| ong, conplex*, conplex*, |ong, conplex*, |ong,
| ong*, long*, float*, float*, float*, float*,
long*);
PURPOSE

cgeevx conputes for an N-by-N conpl ex nonsymetric matrix A,
the eigenvalues and, optionally, the left and/or right
ei genvectors.

Optionally also, it computes a balancing transformation to
i nprove the conditioning of the eigenval ues and ei genvectors
(ILO IH, SCALE, and ABNRM, reciprocal condition nunbers
for the eigenvalues (RCONDE), and reciprocal condition
nunbers for the right
ei genvectors (RCONDV) .

The right eigenvector v(j) of A satisfies
A* v(j) = lanmbda(j) * v(j)
where |lanbda(j) is its eigenval ue.
The | eft eigenvector u(j) of A satisfies
u(j)**H* A = lanbda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).

The conput ed ei genvectors are nornalized to have Euclidean
normequal to 1 and | argest conponent real.

Bal ancing a matri x means pernuting the rows and colums to
make it nmore nearly upper triangular, and applying a diago-
nal simlarity transformation D* A * D**(-1), where Dis a
di agonal matrix, to nake its rows and col ums cl oser in norm
and the condition nunbers of its eigenvalues and eigenvec-

tors smaller. The conputed reciprocal condition nunbers
correspond to the balanced matrix. Permuting rows and
colums will not change the condition nunbers (in exact
arithnetic) but diagonal scaling will. For further expl ana-
tion of balancing, see section 4.10.2 of the LAPACK Users'
Gui de.

ARGUMENTS

Page 315 of 4153

BALANC (i nput)

I ndi cates how the i nput mat ri x shoul d be
di agonally scaled and/or pernuted to inprove the
conditioning of its eigenvalues. = 'N: Do not

di agonal | y scal e or pernute;

='P: Performpermutations to nake the matrix
nore nearly wupper triangular. Do not diagonally
scale; ='S' : Dhagonally scale the matrix, ie.
replace A by D*A*D**(-1), where Dis a diagonal
matri x chosen to nmake the rows and colums of A
nore equal in norm Do not pernute; = 'B': Both
di agonal | y scal e and permute A

Conput ed reciprocal condition nunmbers will be for
the matrix after bal ancing and/or pernuting. Per-
mut i ng does not change condition nunbers (in exact
arithnetic), but bal anci ng does.

JOBVL (i nput)
= "'N: left eigenvectors of A are not conputed;
="'V . left eigenvectors of A are conputed. | f
SENSE = 'E' or 'B', JOBVL nust = 'V .

JOBVR (i nput)
= "'N: right eigenvectors of A are not conputed;
="'V : right eigenvectors of A are conputed. | f
SENSE = 'E' or 'B', JOBVR nust = 'V .

SENSE (i nput)
Det er mi nes whi ch reci procal condition nunbers are
conputed. = "N : None are conputed;
"E': Conputed for eigenval ues only;
'V': Conputed for right eigenvectors only;
'"B': Conputed for eigenvalues and right eigen-
vectors.

If SENSE = '"E' or 'B, both left and right eigen-
vectors must also be conmputed (JOBVL = 'V and
JOBVR = 'V').

N (i nput) The order of the matrix A. N >= 0.

A (i nput/output)
On entry, the NNby-N matrix A On exit, A has
been overwitten. If JOBVL ="'V or JOBVR ="'V,
A contains the Schur form of the bal anced version
of the matrix A

LDA (i nput)
The | eading di mension of the array A LDA >=
max(1, N).

W (out put)

W cont ai ns the conputed ei genval ues.

VL (i nput)
If JOBVL = 'V, the |left eigenvectors u(j) are
stored one after another in the colums of VL, in
the sanme order as their eigenvalues. |If JOBVWL =
"N, VL is not referenced. wu(j) = VL(:,j), the
j-th colum of VL.

Page 316 of 4153

LDVL (i nput)
The | eadi ng di mension of the array VL. LDVL >= 1;
if JOBVL ="'V, LDVL >= N.

VR (i nput)
If JOBVR = 'V, the right eigenvectors v(j) are
stored one after another in the colums of VR in
the sanme order as their eigenvalues. |If JOBVR =
"N, VR is not referenced. v(j) = VR(:,j), the
j-th colum of VR

LDVR (i nput)
The | eadi ng di mension of the array VR LDVR >= 1;
if JOBVR ="'V, LDVR >= N.

I LO (out put)
ILO and IH are integer values determined when A

was bal anced. The balanced A(i,j) =0if I >
and J =1,...,ILO1or | =1H+1,...,N

I H (output)
ILO and IH are integer values determined when A
was bal anced. The balanced A(i,j) =0if | >
and J =1,...,ILO1or | =1H+1,...,N

SCALE (out put)

Details of the permutations and scaling factors
appl i ed when balancing A. If P(j) is the index of
the row and colum interchanged with row and
colum j, and D(j) is the scaling factor applied
to row and colum j, then SCALE(J) = P(J), f or
J = 1,...,1LO01 = DJ), for J =I1LO,...,IH =
P(J) for J =IH+1,...,N. The order in which
the interchanges are made is Nto IH +1, then 1 to
I LO 1.

ABNRM (out put)
The one-norm of the bal anced matrix (the maxinmm
of the sum of absolute values of elenments of any
col um).

RCONE (out put)
RCONE(j) is the reciprocal condition nunber of the
j-th eigenval ue.

RCONV (out put)
RCONV(j) is the reciprocal condition nunber of the
j-th right eigenvector.

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal
L DWORK.

LDWORK (out put)
The di mension of the array WORK. |If SENSE = 'N
or 'E', LDWRK >= max(1,2*N), and if SENSE = 'V
or 'B', LDWORK >= N*N+2*N. For good performance,
LDWORK nust generally be | arger.

If LDWORK = -1, then a workspace query is assuned;

Page 317 of 4153

the routine only calculates the optinal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK is issued by XERBLA.

WORK2 (wor kspace)
di mensi on(2*N)

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.

>0: if INNO=1i, the QRalgorithmfailed to com
pute all the eigenvalues, and no eigenvectors or

condi tion nunbers have been conputed; elenents
1:1LO1 and i+1:N of Wcontain eigenval ues which
have conver ged.

Page 318 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgegs - routine is deprecated and has been repl aced by rou-
ti ne CGCES

SYNOPSIS

SUBROUTI NE CGEGS(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, VSL,
LDVSL, VSR LDVSR WORK, LDWORK, WORK2, | NFO

CHARACTER * 1 JOBVSL, JOBVSR

COWPLEX A(LDA, *), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*),
VSR(LDVSR, *), WORK(*)

INTEGER N, LDA, LDB, LDVSL, LDVSR LDWORK, |NFO

REAL WORK2(*)

SUBROUTI NE CGEGS_64(JOBVSL, JOBVSR, N, A LDA B, LDB, ALPHA, BETA,
VSL, LDVSL, VSR, LDVSR, WORK, LDWORK, WORK2, | NFO)

CHARACTER * 1 JOBVSL, JOBVSR

COWPLEX A(LDA, *), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*),
VSR(LDVSR, *), WORK(*)

INTEGER*8 N, LDA, LDB, LDVSL, LDVSR LDWORK, |NFO

REAL WORK2(*)

F95 | NTERFACE
SUBROUTI NE GEGS(JOBVSL, JOBVSR, [N], A [LDA], B, [LDB], ALPHA, BETA,
VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: JOBVSL, JOBVSR

COWPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
COWPLEX, DIMENSION(:,:) :: A B, VSL, VSR

INTEGER :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, |NFO
REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GEGS 64(JOBVSL, JOBVSR, [N, A [LDA], B, [LDB], ALPHA
BETA, VSL, [LDVSL], VSR [LDVSR], [WORK], [LDWORK], [WORK2],
[1NFO)

CHARACTER(LEN=1) :: JOBVSL, JOBVSR

COWPLEX, DI MENSI ON(:) :: ALPHA, BETA, WORK
COWLEX, DIMENSION(:,:) :: A B, VSL, VSR

Page 319 of 4153

INTEGER(8) :: N, LDA, LDB, LDVSL, LDVSR LDWORK, |NFO
REAL, DI MENSION(:) :: WORK2

C | NTERFACE
#i ncl ude <sunperf.h>
voi d cgegs(char jobvsl, char jobvsr, int n, conplex *a, int
| da, conplex *b, int |Idb, conplex *al pha, conplex
*peta, complex *vsl, int |ldvsl, conplex *vsr, int

| dvsr, int *info);

voi d cgegs_64(char jobvsl, char jobvsr, long n, conplex *a,
long lda, conplex *b, long |db, conplex *al pha,
conpl ex *beta, complex *vsl, long Idvsl, conplex
*vsr, long ldvsr, long *info);

PURPOSE

cgegs routine is deprecated and has been replaced by routine
CGGES.

CCGEGS conputes for a pair of Nby-N conplex nonsymretric
matrices A, B: the generalized eigenval ues (al pha, beta),
the conpl ex Schur form (A B), and optionally left and/or
right Schur vectors (VSL and VSR).

(I'f only the generalized eigenval ues are needed, wuse the
driver CCEGV instead.)

A generalized eigenvalue for a pair of matrices (A B) is,
roughly speaking, a scalar wor aratio alpha/beta = w,

such that A - wBis singular. It is wusually represented
as the pair (al pha,beta), as there is a reasonabl e interpre-
tation for beta=0, and even for both being zero. A good

begi nning reference is the book, "Matrix Conputations", by
G Golub & C. van Loan (Johns Hopkins U. Press)

The (generalized) Schur formof a pair of matrices is the
result of multiplying both nmatrices on the |left by one uni-
tary matrix and both on the right by another unitary matrix,
these two wunitary matrices being chosen so as to bring the
pair of matrices into upper triangular formw th the diago-
nal elements of B being non-negative real nunbers (this is
al so call ed conpl ex Schur form)

The | eft and right Schur vectors are the colums of VSL and
VSR, respectively, where VSL and VSR are the wunitary
matrices

whi ch reduce A and B to Schur form

Schur formof (A B) = ((VSL)**H A (VSR), (VSL)**H B (VSR))

ARGUMENTS

JOBVSL (i nput)
"N : do not conpute the left Schur vectors;
"V': conpute the left Schur vectors.

Page 320 of 4153

JOBVSR (i nput)
"N : do not conpute the right Schur vectors;
'"V': conpute the right Schur vectors.

N (input) The order of the matrices A B, VSL, and VSR N
>= 0.

A (i nput/output)
On entry, the first of the pair of matrices whose
generalized eigenvalues and (optionally) Schur
vectors are to be conputed. On exit, the general -
i zed Schur form of A

LDA (i nput)
The | eadi ng di mension of A LDA >= max(1,N).

B (i nput/out put)
On entry, the second of the pair of matrices whose
generalized eigenvalues and (optionally) Schur
vectors are to be conputed. On exit, the general -
i zed Schur formof B

LDB (i nput)
The | eadi ng di mension of B. LDB >= max(1,N).

ALPHA (out put)

On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
general i zed eigenvalues. ALPHA(j), j=1,...,N and
BETA(j), j=1,...,N are the diagonals of the com

plex Schur form (A B) output by CGEGS. The
BETA(j) will be non-negative real

Note: the quotients ALPHA(j)/BETA(j) may easily
over- or underflow, and BETA(j) nay even be zero
Thus, the user should avoid naively conputing the
rati o al phal bet a. However, ALPHA will be al ways
| ess than and usually conparable with nornm(A) in
magni tude, and BETA always | ess than and usually
conpar abl e with norn(B)

BETA (out put)
See the description of ALPHA

VSL (i nput)
If JOBVSL ="'V, VSL will contain the |left Schur
vectors. (See "Purpose", above.) Not referenced
if JOBVSL = 'N .

LDVSL (i nput)
The | eadi ng di mension of the matrix VSL. LDVSL >=
1, and if JOBVSL = 'V, LDVSL >= N.

VSR (i nput)
If JOBVYSR ="'V, VSR will contain the right Schur
vectors. (See "Purpose", above.) Not referenced
if JOBVSR = 'N .

LDVSR (i nput)
The | eadi ng di mension of the matrix VSR LDVSR >=
1, and if JOBVSR = 'V, LDVSR >= N.

Page 321 of 4153

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal
L DWORK.

LDWORK (i nput)
The dinmension of the array WORK LDWORK >=

max(1, 2*N). For good performance, LDWORK nust
general ly be larger. To conpute the optinmal val ue
of LDWORK, «call |ILAENV to get blocksizes (for

CCGEQRF, CUNMQR, and CUNGQR.) Then conpute: NB as
the MAX of the bl ocksizes for CGEQRF, CUNMQR, and
CUNGQR, the optinmal LDWORK is N*(NB+1).

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK is issued by XERBLA.

WORK2 (wor kspace)
di mensi on(3*N)

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.
=1,...,N The QZ iteration failed. (A B) are not
in Schur form but ALPHA(j) and BETA(j) should be
correct for j=INFO+1, ..., N > N errors that
usual | y i ndi cate LAPACK probl ens:
=N+1: error return from CGGBAL
=N+2: error return from CGEQRF
=N+3: error return from CUNMR
=N+4: error return from CUNGQR
=N+5: error return from CGGHRD
=N+6: error return from CHGEQZ (other than failed
iteration) =N+7: error return from CGEBAK (conput -
i ng VSL)
=N+8: error return from CGEBAK (conputing VSR)
=N+9: error return from CLASCL (various pl aces)

Page 322 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgegv - routine is deprecated and has been replaced by rou-
ti ne CGGEV

SYNOPSIS

SUBROUTI NE CGEGV(JOBVL, JOBVR, N, A LDA B, LDB, ALPHA, BETA, VL,
LDVL, VR, LDVR, WORK, LDWORK, WORK2, |NFO

CHARACTER * 1 JOBVL, JOBVR

COVPLEX A(LDA, *), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
VR(LDVR *), WORK(*)

INTEGER N, LDA, LDB, LDVL, LDVR LDWORK, |NFO

REAL WORK2(*)

SUBROUTI NE CGEGV_64(JOBVL, JOBVR, N, A LDA, B, LDB, ALPHA, BETA, VL,
LDVL, VR, LDVR, WORK, LDWORK, WORK2, |NFO

CHARACTER * 1 JOBVL, JOBVR

COWPLEX A(LDA, *), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
VR(LDVR *), WORK(*)

INTEGER*8 N, LDA, LDB, LDVL, LDVR LDWORK, |NFO

REAL WORK2(*)

F95 | NTERFACE
SUBROUTI NE GEGV(JOBVL, JOBVR [N, A [LDA], B, [LDB], ALPHA BETA
VL, [LDVL], VR [LDVR], [WORK], [LDWORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: JOBVL, JOBVR

COWPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
COWPLEX, DIMENSION(:,:) :: A B, VL, WR

INTEGER :: N, LDA, LDB, LDVL, LDVR LDWORK, |NFO
REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GEGV_64(JOBVL, JOBVR, [N, A [LDA], B, [LDB], ALPHA
BETA, VL, [LDVL], VR [LDVR], [WORK], [LDWORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: JOBVL, JOBVR
COWPLEX, DI MENSION(:) :: ALPHA, BETA, WORK

Page 323 of 4153

COWLEX, DIMENSION(:,:) :: A B, VL, WR
I NTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LDWORK, | NFO
REAL, DI MENSI ON(:) :: WORK2

C | NTERFACE
#i ncl ude <sunperf. h>

voi d cgegv(char jobvl, char jobvr, int n, conplex *a, int
Ida, conplex *b, int Idb, conplex *al pha, conplex
*peta, conplex *vl, int Idvl, conmplex *vr, int

I dvr, int *info);

voi d cgegv_64(char jobvl, char jobvr, long n, conplex *a,
long lda, conplex *h, long |db, conplex *al pha,
conpl ex *beta, conplex *vl, long Idvl, conplex
*vr, long Idvr, long *info);

PURPOSE

cgegv routine is deprecated and has been replaced by routine
CGGEV.

CCGEGV conputes for a pair of Nby-N conplex nonsymmetric
matrices A and B, the generalized ei genval ues (al pha, beta),
and optionally, the left and/or right generalized eigenvec-
tors (VL and VR).

A generalized eigenvalue for a pair of matrices (A B) s,
roughly speaking, a scalar wor aratio alpha/beta = w,

such that A - wBis singular. It is wusually represented
as the pair (al pha,beta), as there is a reasonable interpre-
tation for beta=0, and even for both being zero. A good

begi nning reference is the book, "Matrix Conputations", by
G Golub & C. van Loan (Johns Hopkins U. Press)

A right generalized eigenvector corresponding to a general-
i zed eigenvalue w for a pair of matrices (A B) is a vector
r suchthat (A- wB) r =0. Aleft generalized eigen-
vector is a vector | such that I**H* (A- wB) = 0, where
I**H is the

conj ugat e-transpose of |.

Note: this routine perforns "full balancing® on A and B.
See "Further Details", bel ow.

ARGUMENTS

JOBVL (i nput)

="'N: do not compute the left generalized eigen-
vectors;
="'V : conmpute the left generalized eigenvectors.

JOBVR (i nput)

="'N: do not <conpute the right generalized
ei genvectors;
="'V : conmpute the right generalized eigenvec-

Page 324 of 4153

tors.

N (input) The order of the matrices A, B, VL, and VR N >=
0.

A (i nput/output)
On entry, the first of the pair of matrices whose
general i zed eigenvalues and (optionally) general -
i zed eigenvectors are to be conputed. O exit,
the contents wll have been destroyed. (For a
description of the contents of A on exit, see
"Further Details", below)

LDA (i nput)
The | eadi ng di mension of A LDA >= max(1,N).

B (i nput/out put)
On entry, the second of the pair of matrices whose
general i zed eigenvalues and (optionally) general -
i zed eigenvectors are to be conputed. O exit,
the contents wll have been destroyed. (For a
description of the contents of B on exit, see
"Further Details", below)

LDB (i nput)
The | eadi ng di mension of B. LDB >= max(1,N).

ALPHA (out put)
On exit, ALPHA(j)/VL(j), j=1,...,N, wll be the
general i zed ei genval ues.

Note: the quotients ALPHA(j)/VL(j) may easily
over- or underflow, and VL(j) nay even be zero.
Thus, the user should avoid naively conputing the
rati o al phal bet a. However, ALPHA will be al ways
| ess than and usually conparable with nornm(A) in
magni tude, and VL always |ess than and usually
conparabl e with norn(B).

VL (output)
If JOBVL = 'V, the left generalized ei genvectors.
(See "Purpose", above.) Each eigenvector will be
scal ed so the | argest conponent w |l have abs(real
part) + abs(inmag. part) =1, *except* that for
ei genval ues with al pha=beta=0, a zero vector wll
be returned as the correspondi ng ei genvector. Not
referenced if JOBVL = 'N .

BETA (out put)
If JOBVL = 'V, the left generalized ei genvectors.
(See "Purpose", above.) Each eigenvector will be
scal ed so the | argest conponent w |l have abs(real
part) + abs(inmag. part) =1, *except* that for
ei genval ues with al pha=beta=0, a zero vector wll
be returned as the correspondi ng ei genvector. Not
referenced if JOBVL = 'N .

LDVL (i nput)
The | eadi ng di mension of the matrix VL. LDVL >= 1,
and if JOBVL ="'V, LDVL >= N.

VR (out put)

Page 325 of 4153

LDVR (i np

WORK ((wor

LDVWORK (i

WORK2 (o

I NFO (out

If JOBVR = 'V, the right generalized eigenvec-
tors. (See "Purpose", above.) Each eigenvector
will be scaled so the | argest conmponent will have
abs(real part) + abs(inmag. part) = 1, *except*
that for eigenvalues with alpha=beta=0, a zero
vector will be returned as the corresponding
ei genvector. Not referenced if JOBVR = 'N .

ut)

The | eadi ng di mension of the matrix VR LDVR >= 1,
and if JOBVR = 'V, LDVR >= N

kspace)

On exit, if INFO =0, WORK(1) returns the optinal
L DWORK.

nput)

The dinmension of the array WRK LDWORK >=
max(1, 2*N). For good performance, LDWORK nust
generally be larger. To conpute the optinal val ue
of LDWORK, <call |ILAENV to get blocksizes (for
CCGEQRF, CUNMQR, and CUNGQR.) Then conpute: NB as
the MAX of the bl ocksizes for CGEQRF, CUNMQR, and
CUNGQR;, The optimal LDWORK is MAX(2*N, N+(NB+1)
).

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK is issued by XERBLA.

rkspace)

di nensi on(8*N)

put)

= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.

=1,...,N The QZ iteration failed. No eigenvec-
tors have been cal cul ated, but ALPHA(j) and VL(j)
should be correct for j=INFO+1, , N. > N:

errors that usually indicate LAPACK pr obI ens:
=N+1: error return from CGGBAL

=N+2: error return from CGEQRF

=N+3: error return from CUNMR

=N+4: error return from CUNGQR

=N+5: error return from CGGHRD

=N+6: error return from CHGEQZ (other than failed
iteration) =N+7: error return from CTGEVC
=N+8: error return from CGEBAK (conputing VL)
=N+9: error return from CGEBAK (conputing VR)
=N+10: error return from CLASCL (various calls)

FURTHER DETAILS

Bal anci ng

This driv
col ums

er calls CGGBAL to both pernmute and scale rows and
of A and B. The pernmutations PL and PR are chosen

Page 326 of 4153

so that PL*A*PR and PL*B*R wi || be upper triangular except
for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), withi
and j as close together as possible. The diagonal scaling
matrices DL and DR are chosen so that the pair
DL*PL* A*PR*DR, DL*PL*B*PR*DR have elenents close to one
(except for the elenents that start out zero.)

After the eigenvalues and eigenvectors of the balanced
matri ces have been conputed, CGEBAK transforns the ei genvec-
tors back to what they would have been (in perfect arith-
metic) if they had not been bal anced.

Contents of A and B on Exit

If any eigenvectors are conputed (either JOBVL='V or
JOBVR="V" or both), then on exit the arrays A and B wll
contain the conplex Schur forni*] of the "bal anced" versions
of A and B. |f no eigenvectors are conputed, then only the
di agonal bl ocks will be correct.

[*] I'n other words, upper triangular form

Page 327 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgehrd - reduce a conplex general matrix A to upper Hessen-
berg formH by a unitary simlarity transformation

SYNOPSIS

SUBROUTI NE CGEHRD(N, 1LO, IH, A LDA TAU WORKIN, LWORKIN, |NFO

COWPLEX A(LDA, *), TAU(*), WORKI N(*)
INTEGER N, ILO, IH, LDA, LWORKIN, |NFO

SUBROUTI NE CGEHRD 64(N, 1LO IH, A LDA TAU WORKIN, LWORKIN, |NFO

COWPLEX A(LDA, *), TAU(*), WORKI N(*)
INTEGER*8 N, 1LO, IH, LDA LWORKIN, |INFO

F95 | NTERFACE
SUBROUTI NE GEHRD([N], ILO, IH, A [LDA], TAU, [WORKIN], [LWORKIN],
[1NFQ)

COWPLEX, DI MENSION(:) :: TAU, WORKIN
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: N, I1LO IH, LDA LWORKIN, INFO

SUBROUTI NE GEHRD 64([N], ILO, IH, A [LDA], TAU [WORKIN], [LWORKIN],
[1NFO)

COWPLEX, DI MENSION(:) :: TAU, WORKIN
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: N, ILO, IH, LDA, LWORKIN, |NFO

C | NTERFACE
#i ncl ude <sunperf. h>

void cgehrd(int n, int ilo, int ihi, conplex *a, int Ida
conmplex *tau, int *info);

voi d cgehrd_64(long n, long ilo, long ihi, conmplex *a, |ong
| da, conplex *tau, |long *info);

Page 328 of 4153

PURPOSE

cgehrd reduces a conplex general matrix A to upper Hessen-
berg formHUby a unitary simlarity transformation: Q@ * A

* Q=H.

ARGUMENTS

N (input) The order of the matrix A. N >= 0.

I LO (i nput)
It is assumed that Ais already wupper triangular
in rows and colums 1:1LO-1 and IH +1: N. ILO and
IH are normally set by a previous call to CGEBAL;
otherwise they should be set to 1 and N respec-
tively. See Further Details.

I H (input)
See the description of ILO

A (i nput/output)

On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdi ag-
onal of A are overwitten with the upper Hessen-
berg matrix H, and the elements bel ow the first
subdi agonal, with the array TAU represent the
unitary matrix Q as a product of elementary
reflectors. See Further Details.

LDA (i nput)
The | eadi ng di mension of the array A LDA >=
max(1, N).

TAU (out put)
The scal ar factors of the elenmentary reflectors
(see Fur t her Details). Elenents 1:1LO1 and
IH :N-1 of TAU are set to zero.

WORKI N (wor kspace)
On exit, if INFO = 0, WORKIN(1) returns the
optimal LWORKI N.

LWORKI N (i nput)
The Ilength of the array WORKIN LWORKIN >=
max(1, N). For optimm performance LWORKIN >=
N*NB, where NB is the optimal bl ocksize.

If LWORKIN = -1, then a workspace query is
assunmed; the routine only calculates the opti nmal
size of the WORKIN array, returns this value as
the first entry of the WORKIN array, and no error
message related to LWORKIN is issued by XERBLA.
I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argunent had an ille-

Page 329 of 4153

gal val ue.

FURTHER DETAILS

The matrix Qis represented as a product of (ihi-ilo) ele-
mentary reflectors

Q=H(ilo) Hilo+1l) . . . H(ihi-1).
Each H(i) has the form

Hi) =1 - tau * v * V'
where tau is a conplex scalar, and v is a conplex vector
with v(1:i) =0, v(i+l) =1 and v(ihi+1:n) = 0; v(i+2:ihi)
is stored on exit in A(i+2:ihi,i), and tau in TAU).

The contents of A are illustrated by the following exanple,
withn=7, ilo=2andihi = 6:

on entry, on exit,

(a a a a a a a) (a a h h h h
a) (a a a a a a) (a h h h
h a) (a a a a a a) (h h h
h h h) (a a a a a a) (v2 h
h h h h) (a a a a a a) (v2
v3 h h h h) (a a a a a a) (
v2 v3 v4 h h h) (a) (
a)

where a denotes an elenent of the original mtrix A h
denotes a nodified el ement of the upper Hessenberg matrix H,
and vi denotes an el enent of the vector defining H(i).

Page 330 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgel gf - conpute an LQ factorization of a conplex Mby-N

matrix A

SYNOPSIS

SUBROUTI NE CGELQF(M N, A, LDA, TAU, WORK, LDWORK, | NFO

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER M N, LDA, LDWORK, |NFO

SUBROUTI NE CGELQF_64(M N, A, LDA TAU, WORK, LDWORK, |NFO

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER*8 M N, LDA, LDWORK, |NFO

F95 | NTERFACE
SUBROUTI NE GELQF([M, [N, A [LDA], TAU, [WORK], [LDWORK],

COWPLEX, DIMENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, LDA, LDWORK, |NFO

SUBROUTI NE GELQF_64([M, [N, A [LDA], TAU, [WORK], [LDWORK],

COWPLEX, DI MENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, LDA, LDWORK, |NFO

C | NTERFACE
#i ncl ude <sunperf. h>

void cgelgf(int m int n, conplex *a, int |lda, conplex *tau,
int *info);

voi d cgel gf _64(long m long n, conplex *a, long |da, conplex
*tau, long *info);

[INFQ)

Page 331 of 4153

PURPOSE

cgel gf conputes an LQ factorization of a conplex Mby-N
matrix A A=L* Q

ARGUMENTS

M (i nput) The nunber of rows of the matrix AL M >= 0.
N (i nput) The nunber of colums of the matrix A. N >= 0.

A (i nput/output)

On entry, the Mby-N matrix A On exit, the ele-
ments on and bel ow the di agonal of the array con-
tain the mby-min(mn) |ower trapezoidal matrix L
(L is lower triangular if m<= n); the el enents
above the diagonal, with the array TAU, represent
the wunitary matrix Q as a product of elenentary
reflectors (see Further Details).

LDA (i nput)
The | eadi ng di nension of the array A LDA >=
max(1, M.

TAU (out put)
The scal ar factors of the elenentary reflectors
(see Further Details).

WORK (wor kspace)
On exit, if INFO= 0, WORK(1) returns the optinal
L DWORK.

LDWORK (i nput)
The dinension of the array WORK LDWORK >=
max(1, M. For optinmm performance LDWORK >= M NB,
where NB is the optinmal bl ocksize.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK i s issued by XERBLA.

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue

FURTHER DETAILS

The matrix Qis represented as a product of elenmentary
reflectors

Q=Hk)" . . . HZ2"'" H1)', where k = mn(mn).

Each H(i) has the form
Hi) =1 - tau * v * Vv’

Page 332 of 4153

where tau is a conplex scalar, and v is a conplex vector
with v(1:i-1) =0 and v(i) = 1; conjg(v(i+1l:n)) is stored on
exit in A(i,i+1l:n), and tau in TAU(i).

Page 333 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgels - solve overdetermned or underdeterm ned conplex
|'i near systens involving an Mby-N matrix A or its
conj ugat e-transpose, using a QR or LQ factorization of A

SYNOPSIS

SUBROUTI NE CGELS(TRANSA, M N, NRHS, A LDA B, LDB, WORK, LDWORK,
I NFO)

CHARACTER * 1 TRANSA
COVPLEX A(LDA, *), B(LDB,*), WORK(*)
INTEGER M N, NRHS, LDA, LDB, LDWORK, |NFO

SUBROUTI NE CGELS 64(TRANSA, M N, NRHS, A LDA B, LDB, WORK, LDWORK,
I NFO)

CHARACTER * 1 TRANSA
COVPLEX A(LDA, *), B(LDB,*), WORK(*)
INTEGER*8 M N, NRHS, LDA, LDB, LDWORK, |NFO

F95 | NTERFACE
SUBROUTI NE GELS([TRANSA], [M, [N, [NRHS], A [LDA], B, [LDB], [WORK],
LDWORK, [I NFQ)

CHARACTER(LEN=1) :: TRANSA

COWPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A B

INTEGER :: M N, NRHS, LDA LDB, LDWORK, |NFO

SUBROUTI NE GELS 64([TRANSA], [M, [N, [NRHS], A [LDA], B, [LDB],
[WORK], LDWORK, [INFQ|)

CHARACTER(LEN=1) :: TRANSA

COVPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A B

INTEGER(8) :: M N, NRHS, LDA LDB, LDWORK, |NFO

C | NTERFACE
#i ncl ude <sunperf.h>

Page 334 of 4153

void cgels (char, int, int, int, conplex*, int, conplex*,
int, int*);

voi d cgels_64 (char, long, long, long, complex*, |long, com
pl ex*, long, |ong*);

PURPOSE

cgels solves overdeterm ned or underdetern ned conpl ex
I'i near systens involving an Mby-N matrix A or its
conj ugat e-transpose, using a QR or LQ factorization of A
It is assumed that A has full rank.

The followi ng options are provided:

1. If TRANS ='N and m>= n: find the | east squares solu-

tion of
an overdeterm ned system i.e., solve the |east squares
pr obl em
mnimze || B- A*X|].
2. If TRANS ='N and m< n: find the m ni mum norm sol ution
of

an underdeterm ned systemA * X = B.

3. If TRANS ='C and m>=n: find the mnimum norm sol u-
tion of
an undeterm ned system A**H * X = B.

4. If TRANS = 'C and m< n: find the |east squares sol u-
tion of
an overdeterm ned system i.e., solve the |east squares
pr obl em
mnimze || B- A**H* X |]|.

Several right hand side vectors b and sol ution vectors x can
be handled in a single call; they are stored as the col unms
of the Mby-NRHS right hand side matrix B and the N-by-NRHS
solution matrix X

ARGUMENTS

TRANSA (i nput)
"N : the linear systeminvolves A;
"C: the linear systeminvolves A**H.

TRANSA is defaulted to 'N for F95 | NTERFACE.
M (i nput) The nunber of rows of the matrix A. M >= 0.
N (i nput) The nunber of colums of the matrix A N >= 0.
NRHS (i nput)

The nunber of right hand sides, i.e., the nunber

of colums of the matrices B and X. NRHS >= 0.
A (i nput/output)

Page 335 of 4153

On entry, the Mby-Nmatrix A. if M> N, A is
overwitten by details of its QR factorization as
returned by CGEQRF; if M< N, Ais overwitten by
details of its LQ factorization as returned by
CGELQF.

LDA (input)
The | eading dimension of the array A LDA >=
max(1, M.

B (i nput/out put)
On entry, the matrix B of right hand side vectors,
stored columwi se; B is Mby-NRHS if TRANSA = 'N',

or NNby-NRHS if TRANSA = 'C. On exit, B is
overwitten by the solution vectors, stored
columwise: if TRANSA='N and m>=n, rows 1 to

n of B contain the | east squares solution vectors;
the residual sumof squares for the solution in
each columm is given by the sum of squares of ele-
ments N#1 to Min that colum; if TRANSA = 'N and
m < n, rows 1 to N of B contain the m ni mnum norm
solution vectors; if TRANSA = 'C and m>= n, rows
1 to Mof B contain the m ni mrum norm sol ution vec-
tors; if TRANSA='C and m<n, rows 1 to Mof B
contain the |east squares solution vectors; the
residual sum of squares for the solution in each
colum is given by the sum of squares of elenents
Mtl to N in that col um.

LDB (i nput)
The | eading dinmension of the array B. LDB >=
MAX(1, M N) .

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal
L DWORK.

LDWORK (out put)
The di mension of the array WORK. LDWORK >= nax(
1, M + max(M\, NRHS)). For optinmal perfor-
mance, LDWORK >= max(1, MN + max(MN, NRHS)*NB
). where MN = mn(MN and NB is the optinmm
bl ock si ze.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK is issued by XERBLA.

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue

Page 336 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgel sd - conpute the mni mumnorm solution to a real |inear
| east squares problem

SYNOPSIS

SUBROUTI NE CGELSD(M N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
LWORK, RWORK, | WORK, | NFO

COWPLEX A(LDA, *), B(LDB,*), WORK(*)

INTEGER M N, NRHS, LDA, LDB, RANK, LWORK, |NFO
| NTEGER | WORK(*)

REAL RCOND

REAL S(*), RWORK(*)

SUBROUTI NE CGELSD 64(M N, NRHS, A LDA B, LDB, S, RCOND, RANK,
WORK, LWORK, RWORK, |WORK, | NFO

COWPLEX A(LDA, *), B(LDB,*), WORK(*)

INTEGER*8 M N, NRHS, LDA, LDB, RANK, LWORK, |NFO
| NTEGER*8 | WORK(*)

REAL RCOND

REAL S(*), RWORK(*)

F95 | NTERFACE
SUBROUTI NE GELSD([M, [N, [NRHS], A [LDA], B, [LDB], S, RCOND,
RANK, [WORK], [LWORK], [RWORK], [IWORK], [INFQ)

COVWPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A B

INTEGER :: M N, NRHS, LDA, LDB, RANK, LWORK, | NFO
| NTEGER, DI MENSION(:) :: |WORK

REAL :: RCOND

REAL, DI MENSION(:) :: S, RWORK

SUBROUTI NE GELSD 64([M, [N, [NRHS], A [LDA], B, [LDB], S, RCOND,
RANK, [WORK], [LWORK], [RWORK], [IWORK], [INFQ)

COVPLEX, DI MENSION(:) :: WORK

Page 337 of 4153

COWLEX, DIMENSION(:,:) :: A B

INTEGER(8) :: M N, NRHS, LDA, LDB, RANK, LWORK, | NFO
| NTEGER(8), DIMENSION(:) :: |WORK

REAL :: RCOND

REAL, DI MENSION(:) :: S, RWORK

C | NTERFACE
#i ncl ude <sunperf. h>
void cgelsd(int m int n, int nrhs, conplex *a, int |Ida,
conplex *h, int |I|db, float *s, float rcond, int

*rank, int *info);

voi d cgelsd_64(long m long n, long nrhs, conplex *a, |ong
Ida, conplex *b, long Idb, float *s, float rcond,
I ong *rank, long *info);

PURPOSE

cgel sd conputes the mnimumnormsolution to a real linear
| east squares problem

mnimze 2-norn(| b - A*x |)
usi ng the singular val ue deconposition (SVD) of A A is an
M by-N matri x which may be rank-deficient.

Several right hand side vectors b and sol ution vectors x can
be handled in a single call; they are stored as the col umms
of the Mby-NRHS right hand side matrix B and the N-by-NRHS
solution matrix X

The problemis solved in three steps:

(1) Reduce the coefficient matrix A to bidiagonal formwth
Househol der tranformations, reducing the original prob-

I em
into a "bidiagonal |east squares problent (BLS)

(2) Solve the BLS using a divide and conquer approach.

(3) Apply back all the Househol der tranformati ons to sol ve
the original |east squares problem

The effective rank of Ais determined by treating as zero
those singular values which are less than RCOND tinmes the
| argest singul ar val ue.

The divide and conquer al gorithm nakes very mild assunptions
about floating point arithnmetic. It will work on nachines
with a guard digit in add/subtract, or on those binary
machi nes without guard digits which subtract |ike the Cray
X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
fail on hexadecimal or decinmal nmachines without guard
digits, but we know of none.

ARGUMENTS

M (i nput) The nunber of rows of the matrix A M>= 0.

N (i nput) The nunber of colums of the matrix A. N >= 0.

Page 338 of 4153

NRHS (i nput)
The nunber of right hand sides, i.e., the nunber
of colums of the matrices B and X. NRHS >= 0.

A (i nput/output)
On entry, the Mby-N matrix A On exit, A has
been destroyed.

LDA (input)
The | eading dinmension of the array A LDA >=
max(1, M.

B (i nput/out put)
On entry, the Mby-NRHS right hand side matrix B.
On exit, Bis overwitten by the N by-NRHS sol u-
tion matrix X. If m>= n and RANK = n, the resi-
dual sumof-squares for the solution in the i-th
colum is given by the sumof squares of elenents
n+l:min that colum.

LDB (i nput)
The | eading di mension of the array B. LDB >=
max(1, M N).

S (out put)
The singular values of A in decreasing order. The
condi tion nunber of A in t he 2-norm =

S(1)/S(mn(mn)).

RCOND (i nput)
RCOND is used to deternmine the effective rank of
A. Singular values S(i) <= RCOND*S(1) are treated
as zero. |If RCOND < 0, machine precision is used
i nst ead.

RANK (out put)
The effective rank of A i.e., the nunber of
si ngul ar val ues which are greater than RCOND*S(1).

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal
LWWORK.

LWORK (i nput)
The di mension of the array WORK. LWORK >= 1. The
exact mnimum anmount of workspace needed depends
on M Nand NRHS. [If M >= N, LWRK >= 2*N +

N* NRHS. If M < N LWRK >= 2*M+ MNRHS. For
good performance, LWORK should general ly be
| arger.

If LMORK = -1, then a workspace query is assuned;

the routine only calculates the optinal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LWORK i s issued by XERBLA.

RWORK (wor kspace)
If M>= N, LRAMORK >= 8*N + 2*N*SMLSI Z + 8*N*NLVL +
N* NRHS. If M <N LRWRK >= 8*M+ 2*MSM.SI Z +
8*MNLVL + MFNRHS. SMLSIZ is returned by |LAENV

Page 339 of 4153

and is equal to the maxi num size of the subprob-

|l ens at the bottom of the conputation
ally about 25), and NLVL

)/ (SM.SIZ+1))) + 1

| WORK (wor kspace)

LIWORK >= 3 * MNW * NLVL + 11 * MNW, where
MNW = MN(MN).
I NFO (out put)
= 0: successful exit
<0: if INFNO=-i, the i-th argument had an ille-
gal val ue.
> 0: the algorithmfor conputing the SVD failed
to converge; if INFO=1i, i off-diagonal elenents
of an internedi ate bidiagonal form did not con-
verge to zero.
FURTHER DETAILS
Based on contri butions by
Mng Gu and Ren-Cang Li, Conputer Science Division,

Uni versity of California at Berkel ey,
GCsni Marques, LBNL/ NERSC, USA

USA

tree (usu-
= INT(LOG 2(MN(MN

Page 340 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgelss - conpute the minimum norm solution to a conplex
| i near | east squares problem

SYNOPSIS

SUBROUTI NE CGELSS(M N, NRHS, A, LDA, B, LDB, SING RCOND, | RANK,
WORK, LDWORK, WORK2, | NFO)

COWPLEX A(LDA, *), B(LDB,*), WORK(*)

INTEGER M N, NRHS, LDA, LDB, |RANK, LDWORK, |NFO
REAL RCOND

REAL SING(*), WORK2(*)

SUBROUTI NE CGELSS _64(M N, NRHS, A, LDA, B, LDB, SING RCOND, | RANK,
WORK, LDWORK, WORK2, | NFO)

COWPLEX A(LDA, *), B(LDB,*), WORK(*)

INTEGER*8 M N, NRHS, LDA, LDB, |RANK, LDWORK, |NFO
REAL RCOND

REAL SING(*), WORK2(*)

F95 | NTERFACE
SUBROUTI NE GELSS([M, [N, [NRHS], A [LDA], B, [LDB], SING RCOND,
| RANK, [WORK], [LDWORK], [WORK2], [INFQ])

COWPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A B

INTEGER :: M N, NRHS, LDA LDB, |RANK, LDWORK, |NFO
REAL :: RCOND

REAL, DIMENSION(:) :: SING WORK2

SUBROUTI NE GELSS 64([M, [N], [NRHS], A [LDA], B, [LDB], SING
RCOND, |RANK, [WORK], [LDWORK], [WORK2], [INFQ)

COVPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A B

INTEGER(8) :: M N, NRHS, LDA, LDB, |RANK, LDWORK, |NFO
REAL :: RCOND

REAL, DIMENSION(:) :: SING WORK2

Page 341 of 4153

C | NTERFACE
#i ncl ude <sunperf.h>

void cgelss(int m int n, int nrhs, conplex *a, int |da,
conplex *b, int Idb, float *sing, float rcond, int
*irank, int *info);

voi d cgel ss_64(long m long n, long nrhs, conplex *a, |ong
| da, conplex *b, long Idb, float *sing, float
rcond, long *irank, |long *info);

PURPOSE

cgel ss conputes the mnimum norm solution to a conplex
|l i near | east squares problem

Mnimze 2-nornm(| b - A*x |).

usi ng the singular val ue deconmposition (SVD) of A. A is an
M by-N matrix which may be rank-deficient.

Several right hand side vectors b and sol ution vectors x can
be handled in a single call; they are stored as the col umms
of the Mby-NRHS right hand side matrix B and the N-by-NRHS
solution matrix X

The effective rank of Ais determined by treating as zero
those singular values which are less than RCOND tinmes the
| argest singul ar val ue.

ARGUMENTS

M (i nput) The nunber of rows of the matrix A. M>= 0.
N (i nput) The nunber of colums of the matrix A N >= 0.

NRHS (i nput)
The nunber of right hand sides, i.e., the nunber
of colums of the matrices B and X. NRHS >= 0.

A (i nput/output)
On entry, the Mby-N matrix A On exit, the first
mn(mn) rows of A are overwitten with its right
si ngul ar vectors, stored rowm se.

LDA (i nput)
The | eading dinmension of the array A LDA >=
max(1, M.

B (i nput/output)
On entry, the Mby-NRHS right hand side matrix B.
On exit, Bis overwitten by the N by-NRHS sol u-
tion matrix X. If m>= n and IRANK = n, the
residual sumof-squares for the solution in the
i-th colum is given by the sum of squares of ele-
ments n+l: min that colum.

Page 342 of 4153

LDB (i nput)
The | eading di mension of the array B. LDB >=
max(1, M N).

SI NG (out put)
The singular values of A in decreasing order. The
condi tion nunber of A in t he 2-norm =

SING(1)/SINGmn(mn)).

RCOND (i nput)
RCOND is used to deternmine the effective rank of
A Si ngul ar values SINGi) <= RCOND*SI NG 1) are
treated as zero. |If RCOND < O, nachine precision
i s used instead.

| RANK (out put)

The effective rank of A i.e., the nunber of
si ngul ar val ues whi ch are greater t han
RCOND* SI NG(1) .

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal
L DWORK.

LDWORK (i nput)
The di mension of the array WORK. LDWORK >= 1, and
al so: LDWORK >= 2*min(M N + max(M N, NRHS) For
good performance, LDWORK should generally be
| arger.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK is issued by XERBLA.

WORK2 (wor kspace)
di mensi on(5*m n(M N))

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.

> 0: the algorithmfor conputing the SVD failed
to converge; if INFO=1i, i off-diagonal elenents

of an internedi ate bidiagonal form did not con-
verge to zero.

Page 343 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgel sx - routine is deprecated and has been repl aced by rou-
ti ne CGELSY

SYNOPSIS

SUBROUTI NE CGELSX(M N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND, | RANK,
WORK, WORK2, | NFO)

COWPLEX A(LDA, *), B(LDB,*), WORK(*)
INTEGER M N, NRHS, LDA, LDB, |RANK, |NFO
| NTEGER JPI VOT(*)

REAL RCOND

REAL WORK2(*)

SUBROUTI NE CGELSX_64(M N, NRHS, A, LDA, B, LDB, JPIVOI, RCOND,
I RANK, WORK, WORK2, | NFO)

COWPLEX A(LDA, *), B(LDB,*), WORK(*)
INTEGER*8 M N, NRHS, LDA, LDB, |RANK, I|NFO
| NTEGER*8 JPI VOT(*)

REAL RCOND

REAL WORK2(*)

F95 | NTERFACE
SUBROUTI NE GELSX([M, [N, [NRHS], A [LDA], B, [LDB], JPIVOT, RCOND,
I RANK, [WORK], [WORK2], [INFQ])

COVPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A B

INTEGER :: M N, NRHS, LDA LDB, |RANK, |NFO
I NTEGER, DI MENSI ON(:) :: JPIVOT

REAL :: RCOND

REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GELSX 64([M, [N, [NRHS], A [LDA], B, [LDB], JPIVOT,
RCOND, |RANK, [WORK], [WORK2], [INFQ)

COWPLEX, DI MENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: A B
INTEGER(8) :: M N, NRHS, LDA LDB, |RANK, |INFO

Page 344 of 4153

| NTEGER(8), DIMENSION(:) :: JPIVOT
REAL :: RCOND
REAL, DI MENSION(:) :: WORK2

C | NTERFACE

#i ncl ude <sunperf.h>

void cgelsx(int m int n, int nrhs, conplex *a, int |da,
conplex *b, int Idb, int *jpivot, float rcond, int
*irank, int *info);

voi d cgel sx_64(long m long n, long nrhs, conplex *a, |ong
| da, conplex *b, Ilong Idb, long *jpivot, float
rcond, long *irank, |long *info);

PURPOSE

cgel sx routine is deprecated and has been replaced by rou-
ti ne CGELSY.

CCGELSX conputes the mninmumnorm solution to a conplex
|l i near | east squares problem

mnimze || A* X- B||
using a conpl ete orthogonal factorization of A Ais an M
by-N matri x which may be rank-deficient.

Several right hand side vectors b and sol ution vectors x can
be handled in a single call; they are stored as the col unms
of the Mby-NRHS right hand side matrix B and the N-by-NRHS
solution matrix X

The routine first computes a QR factorization wth colum
pi voti ng:
A* P=Q* [RI1 R12]
[0 R22]
with R11 defined as the largest |eading submatrix whose
estimated condition nunber is |l ess than 1/ RCOND. The order
of R11, RANK, is the effective rank of A

Then, R22 is considered to be negligible, and R12 is anni hi -
lated by unitary transformations fromthe right, arriving at
the conpl ete orthogonal factorization:
A*P=Q* [T11 0] * Z
[0 0]
The m ni mum norm sol ution is then
X=P* Z [inv(T1l1l)*QL' *B]
[0]
where QL consists of the first RANK columms of Q

ARGUMENTS

M (i nput) The nunber of rows of the matrix A. M >= 0.
N (i nput) The nunber of colums of the matrix A N >= 0.

NRHS (i nput)
The nunber of right hand sides, i.e., the nunber

Page 345 of 4153

of colums of matrices B and X. NRHS >= 0.

A (i nput/output)
On entry, the Mby-N matrix A On exit, A has
been overwitten by details of its conplete
ort hogonal factorization.

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, M.

B (i nput/out put)
On entry, the Mby-NRHS right hand side matrix B.
On exit, the NNby-NRHS solution matrix X. |If m>=
n and | RANK = n, the residual sumof-squares for
the solution in the i-th colum is given by the
sum of squares of elenents N+1:Min that col um.

LDB (i nput)
The | eading dinmension of the array B. LDB >=
max(1, M N).

JPI VOT (i nput/out put)

On entry, if JPIVOI(i) .ne. 0, the i-th colum of
A is an initial colum, otherwise it is a free
colum. Before the QR factorization of A all
initial colums are pernuted to the |eading posi-
tions; only the remaining free colums are noved
as a result of colum pivoting during the factori -
zation. On exit, if JPIVOT(i) =k, then the i-th
colum of A*P was the k-th colum of A

RCOND (i nput)
RCOND is used to deternmine the effective rank of
A, which is defined as the order of the |argest
| eadi ng triangular submatrix R11 in the QR factor-
ization with pivoting of A whose estimated condi -
tion nunber < 1/ RCOND.

| RANK (out put)
The effective rank of A i.e., the order of the
submatrix R11. This is the same as the order of
the submatrix T11 in the conplete orthogonal fac-
torization of A

WORK (wor kspace)
(mMn(MN) + mx(N 2*min(MN) +NRHS)),

WORK2 (wor kspace)
di mensi on(2*N)

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue

Page 346 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgel sy - conpute the mninmumnorm solution to a conplex
| i near | east squares problem

SYNOPSIS

SUBROUTI NE CGELSY(M N, NRHS, A, LDA, B, LDB, JPVI, RCOND, RANK,
WORK, LWORK, RWORK, | NFOQ)

COWPLEX A(LDA, *), B(LDB,*), WORK(*)

INTEGER M N, NRHS, LDA, LDB, RANK, LWORK, |NFO
| NTEGER JPVT(*)

REAL RCOND

REAL RWORK(*)

SUBROUTI NE CGELSY_64(M N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
WORK, LWORK, RWORK, | NFOQ)

COWPLEX A(LDA, *), B(LDB,*), WORK(*)

INTEGER*8 M N, NRHS, LDA, LDB, RANK, LWORK, |NFO
| NTEGER*8 JPVT(*)

REAL RCOND

REAL RWORK(*)

F95 | NTERFACE
SUBROUTI NE GELSY([M, [N, [NRHS], A [LDA], B, [LDB], JPVT, RCOND,
RANK, [WORK], [LWORK], [RWORK], [INFQ)

COVWPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A B

INTEGER :: M N, NRHS, LDA, LDB, RANK, LWORK, | NFO
| NTEGER, DI MENSION(:) :: JPVT

REAL :: RCOND

REAL, DI MENSI ON(:) :: RWORK

SUBROUTI NE GELSY_64([M, [N, [NRHS], A [LDA], B, [LDB], JPVT,
RCOND, RANK, [WORK], [LWORK], [RWORK], [INFQ)

COVPLEX, DI MENSION(:) :: WORK

Page 347 of 4153

COWLEX, DIMENSION(:,:) :: A B

INTEGER(8) :: M N, NRHS, LDA, LDB, RANK, LWORK, | NFO
| NTEGER(8), DIMENSION(:) :: JPVT

REAL :: RCOND

REAL, DI MENSI ON(:) :: RWORK

C | NTERFACE
#i ncl ude <sunperf. h>
void cgelsy(int m int n, int nrhs, conplex *a, int |Ida,
complex *b, int Idb, int *jpvt, float rcond, int

*rank, int *info);

voi d cgelsy _64(long m long n, long nrhs, conplex *a, |ong
| da, conplex *b, long Idb, long *jpvt, float
rcond, long *rank, long *info);

PURPOSE

cgel sy conputes the mninumnorm solution to a conplex
| i near | east squares problem

mnimze || A* X - B |
using a conpl ete orthogonal factorization of A Ais an M
by-N matri x which may be rank-deficient.

Several right hand side vectors b and sol ution vectors x can
be handled in a single call; they are stored as the col umms
of the Mby-NRHS right hand side matrix B and the N-by-NRHS
solution matrix X

The routine first conputes a QR factorization wth colum
pi voti ng:
A* P=Q* [RI1 R12]
[0 R22]
with R11 defined as the largest |eading submatrix whose
estimated condition nunber is |less than 1/ RCOND. The order
of R11, RANK, is the effective rank of A

Then, R22 is considered to be negligible, and Rl2 is anni hi -
|lated by unitary transformations fromthe right, arriving at
the conpl ete orthogonal factorization:

A*P=Q* [T11 0] * Z

[0 0]

The m ni mum norm sol ution is then

X=P* Z [inv(T11)*QL' *B]

[0]

where QL consists of the first RANK col ums of Q

This routine is basically identical to the original xGELSX
except three differences:
0 The pernutation of matrix B (the right hand side) is
faster and
nore sinpl e.
0 The call to the subroutine xGEQPF has been substituted

by the
the call to the subroutine xCEQP3. This subroutine is a
Bl as- 3

version of the QR factorization with columm pivoting
o Matrix B (the right hand side) is updated with Bl as-3.

Page 348 of 4153

ARGUMENTS

M (i nput) The nunber of rows of the matrix AL M >= 0.
N (i nput) The nunber of colums of the matrix A. N >= 0.

NRHS (i nput)
The nunber of right hand sides, i.e., the nunber
of colums of matrices B and X. NRHS >= 0.

A (i nput/output)
On entry, the Mby-N matrix A On exit, A has
been overwitten by details of its conplete
ort hogonal factorization.

LDA (i nput)
The | eadi ng di mension of the array A LDA >=
max(1, M.

B (i nput/out put)
On entry, the Mby-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X

LDB (i nput)
The | eading dimension of the array B. LDB >=
max(1, M N).

JPVT (i nput/out put)
On entry, if JPVI(i) .ne. 0, the i-th colum of A
is pernuted to the front of AP, otherw se columm i
is afree colum. On exit, if JPVI(i) = k, then
the i-th colum of A*P was the k-th colum of A

RCOND (i nput)
RCOND is used to determne the effective rank of
A, which is defined as the order of the |argest
| eading triangular submatrix R11 in the QR factor-
ization with pivoting of A whose estimted condi -
tion nunber < 1/ RCOND.

RANK (out put)
The effective rank of A i.e., the order of the
submatrix R11. This is the sane as the order of
the submatrix T11 in the conplete orthogonal
factorization of A

WORK (wor kspace)
On exit, if INFO= 0, WORK(1) returns the optimnal
LWORK.

LWORK (i nput)

The di mension of the array WORK The unbl ocked
strategy requires that: LWORK >= M + MAX(2* MW\,
N+1, MMH+NRHS) where MN = min(MN). The bl ock
algorithmrequires that: LWORK >= M + MAX(2* MW\,
NB* (N+1), MH+MN*NB, M\+HNB*NRHS) where NB is an
upper bound on the bl ocksize returned by |LAENV
for the routines CCEQP3, CTZRZF, CTZRQF, CUNMOQR,
and CUNVRZ.

Page 349 of 4153

If LMORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WRK array, and no error nessage
related to LWORK is issued by XERBLA.

RWORK (wor kspace)
di mensi on(2*N)

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argument had an ille-
gal val ue

FURTHER DETAILS

Based on contributions by
A. Petitet, Conputer Science Dept., Univ. of Tenn., Knox-

ville, USA

E. Quintana-Oti, Depto. de Informatica, Universidad Jaime
I, Spain

G Qintana-Oti, Depto. de Infornatica, Universidad Jaine
I, Spain

Page 350 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgemm - performone of the nmatrix-matrix operations C :=
al pha*op(A)*op(B) + beta*C

SYNOPSIS

SUBROUTI NE CGEMM TRANSA, TRANSB, M N, K, ALPHA, A LDA B, LDB,
BETA, C, LDC)

CHARACTER * 1 TRANSA, TRANSB
COWPLEX ALPHA, BETA

COWPLEX A(LDA, *), B(LDB,*), C(LDC,*)
INTEGER M N, K, LDA LDB, LDC

SUBROUTI NE CGEMM 64(TRANSA, TRANSB, M N, K, ALPHA, A LDA, B, LDB,
BETA, C, LDC)

CHARACTER * 1 TRANSA, TRANSB
COWPLEX ALPHA, BETA

COWPLEX A(LDA *), B(LDB,*), C(LDC,*)
INTEGER*8 M N, K, LDA, LDB, LDC

F95 | NTERFACE
SUBROUTI NE GEMM([TRANSA], [TRANSB], [M, [N, [Kl, ALPHA, A [LDA],
B, [LDB], BETA, C, [LDC])

CHARACTER(LEN=1) :: TRANSA, TRANSB
COWPLEX :: ALPHA, BETA

COWLEX, DIMENSION(:,:) :: A B, C
INTEGER :: M N, K LDA, LDB, LDC

SUBROUTI NE GEMM 64([TRANSA], [TRANSB], [M, [N, [Kl, ALPHA A [LDA],
B, [LDB], BETA, C, [LDC])

CHARACTER(LEN=1) :: TRANSA, TRANSB
COWPLEX :: ALPHA, BETA

COWLEX, DIMENSION(:,:) :: A B, C
INTEGER(8) :: M N, K, LDA LDB, LDC

C | NTERFACE
#i ncl ude <sunperf.h>

Page 351 of 4153

voi d cgenmm(char transa, char transb, int m int n, int Kk,
conpl ex *al pha, conplex *a, int |da, conplex *b,
int 1db, complex *beta, conplex *c, int ldc);

voi d cgenm 64(char transa, char transb, long m long n, |ong
k, conplex *alpha, conplex *a, |ong |da, conplex

*b, long I db, conplex *beta, conmplex *c, |ong
| dc);

PURPOSE

cgemm perforns one of the matrix-matrix operations
C := al pha*op(A)*op(B) + beta*C
where op(X) is one of

op(X) = X or op(X) = X or op(X) = conjg(X), alpha
and beta are scalars, and A B and C are matrices, with
op(A) an mby k matrix, op(B) a k by n matrix and Can m
by n matri x.

ARGUMENTS

TRANSA (i nput)
On entry, TRANSA specifies the formof op(A) to
be used in the matrix nultiplication as follows:

TRANSA = 'N or 'n', op(A) = A
TRANSA = 'T" or 't', op(A) = A".
TRANSA = 'C or 'c', op(A) =conjg(A).

Unchanged on exit.
TRANSA is defaulted to 'N for F95 | NTERFACE.

TRANSB (i nput)
On entry, TRANSB specifies the formof op(B) to
be used in the matrix nultiplication as follows:

TRANSB = 'N or 'n', op(B) = B.
TRANSB = 'T" or 't', op(B) = B'.
TRANSB = 'C or 'c', op(B) =conjg(B).

Unchanged on exit.
TRANSB is defaulted to 'N for F95 | NTERFACE.
M (i nput)

On entry, M specifies the nunber of rows of
t he matrix op(A) and of the matrix C M>=

Page 352 of 4153

0. Unchanged on exit.

N (i nput)
On entry, N specifies the nunmber of colums of
the matrix op(B) and the nunber of columms of
the matrix C. N >= 0. Unchanged on exit.

K (input)

On entry, K specifies the nunber of colums of
the matrix op(A) and the nunber of rows of the
matrix op(B). K>= 0. Unchanged on exit.

ALPHA (i nput)
On entry, ALPHA specifies the scalar al pha.
Unchanged on exit.

A (input)
COWLEX array of DI MENSION (LDA, ka), where ka
is Kwhen TRANSA = 'N or 'n', and is M otherw se.
Before entry with TRANSA = 'N or 'n', the |eading
M by K part of the array A nust contain the matrix
A, otherwise the leading K by Mpart of the array
A nust contain the matrix A Unchanged on exit.

LDA (i nput)
On entry, LDA specifies the first dinmension of A
as declared in the calling (sub) program Wen
TRANSA = 'N or 'n' then LDA >= nmax(1, M, other-
wi se LDA >= max(1, K). Unchanged on exit.

B (input)

COWLEX array of DI MENSION (LDB, kb), where kb
is n when TRANSB ='N or 'n', andis k oth-
erwi se. Before entry with TRANSB ='N or 'n',
the |eading k by n part of the array B nust
contain the matrix B, otherw se the |eading n
by k part of the array B nmnust contain the
matri x B. Unchanged on exit.

LDB (i nput)
On entry, LDB specifies the first dinmension of B
as declared in the calling (sub) program Wen
TRANSB = 'N or 'n' then LDB >= max(1, k), oth-
erwise LDB >= max(1, n). Unchanged on exit.
BETA (i nput)
On entry, BETA specifies the scalar beta. Wen
BETA is supplied as zero then C need not be set
on input. Unchanged on exit.

C (i nput/out put)
COWLEX array of DIMENSION (LDC, n). Bef ore
entry, the leading mby n part of the array C
must contain the matrix C, except when beta is
zero, in which case C need not be set on entry.
On exit, the array C is overwitten by the m by
n matrix (al pha*op(A)*op(B) + beta*C).

LDC (i nput)
On entry, LDC specifies the first dimension of C
as declared in t he calling (sub) program
LDC >= max(1, m). Unchanged on exit.

Page 353 of 4153

Page 354 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME
cgenv - performone of the matrix-vector operations y =
al pha*A*x + beta*y, or y := al pha*A *x + beta*y, or y i =

al pha*conjg(A)*x + beta*y

SYNOPSIS

SUBROUTI NE CGEMV(TRANSA, M N, ALPHA, A, LDA, X, [|INCX, BETA, Y, INCY)

CHARACTER * 1 TRANSA

COWPLEX ALPHA, BETA

COWPLEX A(LDA, *), X(*), Y(*)
INTEGER M N, LDA, INCX, |NCY

SUBROUTI NE CGEMV_64(TRANSA, M N, ALPHA, A LDA, X, INCX, BETA Y,
I NCY)

CHARACTER * 1 TRANSA

COWPLEX ALPHA, BETA

COWPLEX A(LDA *), X(*), Y(*)
INTEGER*8 M N, LDA, INCX, INCY

F95 | NTERFACE
SUBROUTI NE GEMV([TRANSA], [M, [N, ALPHA, A [LDA], X, [INCX], BETA,
Y, [INCY])

CHARACTER(LEN=1) :: TRANSA
COWPLEX :: ALPHA, BETA

COWPLEX, DIMENSION(:) :: X, Y
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, LDA, INCX, INCY

SUBROUTI NE GEMV_64([TRANSA], [M, [N, ALPHA, A [LDA], X [INCX],
BETA, Y, [INCY])

CHARACTER(LEN=1) :: TRANSA

COWPLEX :: ALPHA, BETA

COWPLEX, DIMENSION(:) :: X, Y
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, LDA, INCX, |INCY

Page 355 of 4153

C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgenv(char transa, int m int n, conplex *alpha, com
plex *a, int |I|da, conmplex *x, int incx, conplex
*beta, complex *y, int incy);

voi d cgenv_64(char transa, long m long n, conplex *alpha,
conplex *a, long |da, conplex *x, long incx, com
pl ex *beta, conplex *y, long incy);

PURPOSE

cgenv perforns one of the matrix-vector operations vy =
al pha*A*x + beta*y, or y := al pha*A *x + beta*y, or y 1=
al pha*conjg(A")*x + beta*y where alpha and beta are
scalars, x and y are vectors and Ais an mby n matriXx.

ARGUMENTS

TRANSA (i nput)
On entry, TRANSA specifies the operation to be
perforned as foll ows:

TRANSA = 'N or 'n' y

al pha*A*x + beta*y.

TRANSA = 'T" or 't' y := al pha*A' *x + beta*y.
TRANSA = 'C or 'c' y := alpha*conjg(A)*x +
bet a*y.

Unchanged on exit.
TRANSA is defaulted to "N for F95 | NTERFACE.

M (i nput)
On entry, Mspecifies the nunber of rows of the
matrix A, M>= 0. Unchanged on exit.

N (i nput)
On entry, N specifies the nunber of colums of the
matrix A. N >= 0. Unchanged on exit.

ALPHA (i nput)
On entry, ALPHA specifies the scalar al pha.
Unchanged on exit.

A (input)
Before entry, the | eading mby n part of the array
A nust contain the matrix of coefficients.
Unchanged on exit.

LDA (i nput)
On entry, LDA specifies the first dinmension of A
as declared in the calling (sub) program LDA >=
max(1, m). Unchanged on exit.

Page 356 of 4153

X (i nput)
(1 +(n-1)*abs(INCX)) when TRANSA = 'N or
'n" and at least (1 + (m- 1)*abs(INCX))
otherwi se. Before entry, the incremented array X
must contain the vector x. Unchanged on exit.

I NCX (i nput)
On entry, INCX specifies the increment for the
elenents of X [INCX nmust not be zero. Unchanged
on exit.

BETA (i nput)
On entry, BETA specifies the scalar beta. Wen
BETA is supplied as zero then Y need not be set on
i nput. Unchanged on exit.

Y (i nput/output)
(1 +(m-1)*abs(INCY)) when TRANSA = 'N or
'n" and at least (1+ (n- 1)*abs(INCY))
otherwi se. Before entry with BETA non-zero, the
incremented array Y nust contain the vector y. On
exit, Yis overwitten by the updated vector y.

I NCY (i nput)
On entry, INCY specifies the increment for the
elenents of Y. INCY nust not be zero. Unchanged
on exit.

Page 357 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgeqglf - conpute a QL factorization of a conplex Mby-N

matrix A

SYNOPSIS

SUBROUTI NE CGEQLF(M N, A, LDA, TAU, WORK, LDWORK, | NFO

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER M N, LDA, LDWORK, |NFO

SUBROUTI NE CGEQLF_64(M N, A, LDA TAU, WORK, LDWORK, |NFOQ

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER*8 M N, LDA, LDWORK, |NFO

F95 | NTERFACE
SUBROUTI NE GEQLF([M, [N, A [LDA], TAU, [WORK], [LDWORK],

COWPLEX, DIMENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, LDA, LDWORK, |NFO

SUBROUTI NE GEQLF_64([M, [N, A [LDA], TAU, [WORK], [LDWORK],

COWPLEX, DI MENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, LDA, LDWORK, |NFO

C | NTERFACE
#i ncl ude <sunperf. h>

void cgeqlf(int m int n, conplex *a, int |lda, conplex *tau,
int *info);

voi d cgeqlf_64(long m long n, conplex *a, long | da, conplex
*tau, long *info);

[INFQ)

Page 358 of 4153

PURPOSE

cgeql f conputes a Q. factorization of a conplex Mby-N
matrix A A=Q* L.

ARGUMENTS

M (i nput) The nunber of rows of the matrix AL M >= 0.
N (i nput) The nunber of colums of the matrix A. N >= 0.

A (i nput/output)
On entry, the Mby-N matrix A On exit, if m >=
n, the lower triangle of the subarray A(m
n+l:m1l:n) contains the N-by-N |lower triangular
matrix L; if m<=n, the elenents on and bel ow t he
(n-nm)-th superdi agonal contain the Mby-N |ower
trapezoidal matrix L; the remaining elenents, with
the array TAU, represent the unitary matrix Q as a
product of elenentary reflectors (see Further

Details).

LDA (i nput)
The | eadi ng di nension of the array A LDA >=
max(1, M.

TAU (out put)
The scal ar factors of the elenentary reflectors
(see Further Details).

WORK (wor kspace)
On exit, if INFO= 0, WORK(1) returns the optinal
L DWORK.

LDWORK (i nput)
The dinension of the array WORK LDWORK >=
max(1, N). For optinmm performance LDWORK >= N*NB,
where NB is the optimal bl ocksize.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK i s issued by XERBLA.

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue

FURTHER DETAILS

The matrix Qis represented as a product of elenmentary
reflectors

Q=Hk) . . . HZ2 H1), where k = min(mn).
Each H(i) has the form

Page 359 of 4153

Hi) =1 - tau * v * V'
where tau is a conplex scalar, and v is a conplex vector

with v(mk+i+l:m) = 0 and v(mk+i) =1; v(l:mk+i-1) is
stored on exit in A(l:mk+i-1,n-k+i), and tau in TAU(i).

Page 360 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgegp3 - conpute a QR factorization with columm pivoting of
a matrix A

SYNOPSIS

SUBROUTI NE CGEQP3(M N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, | NFO

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER M N, LDA, LWORK, |NFO

| NTEGER JPVT(*)

REAL RWORK(*)

SUBROUTI NE CGEQP3_64(M N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
| NFO)

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER*8 M N, LDA, LWORK, |NFO
| NTEGER*8 JPVT(*)

REAL RWORK(*)

F95 | NTERFACE
SUBROUTI NE GEQP3([M, [N, A [LDA], JPVT, TAU, [WORK], [LWORK],
[RAORK], [NFQ)

COWPLEX, DIMENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, LDA, LWORK, |NFO
I NTEGER, DI MENSION(:) :: JPVT
REAL, DI MENSION(:) :: RWORK

SUBROUTI NE GEQP3_64([M, [N, A [LDA], JPVT, TAU, [WORK], [LWORK],
[RAORK], [NFQ)

COWPLEX, DIMENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, LDA LWORK, |INFO
| NTEGER(8), DIMENSION(:) :: JPVT
REAL, DI MENSION(:) :: RWORK

Page 361 of 4153

C | NTERFACE
#i ncl ude <sunperf. h>

void cgeqp3(int m int n, conplex *a, int Ilda, int *jpvt,
conmplex *tau, int *info);

voi d cgeqp3_64(long m long n, conplex *a, long Ilda, |ong
*jpvt, conmplex *tau, long *info);

PURPOSE

cgeqp3 conputes a QR factorization with colum pivoting of a
matrix A& A*P = @R using Level 3 BLAS.

ARGUMENTS

M (i nput) The nunber of rows of the matrix A M>= 0.
N (i nput) The nunber of colums of the matrix A. N >= 0.

A (i nput/output)
On entry, the Mby-N matrix A. On exit, the upper
triangle of the array contains the min(MN)-by-N
upper trapezoidal matrix R the el enents bel ow t he
di agonal, together wth the array TAU, represent
the unitary matrix Q as a product of min(MN) ele-
mentary reflectors.

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, M.

JPVT (i nput/output)
On entry, if JPVT(J).ne.0, the J-th colum of Ais
permuted to the front of A*P (a | eading col um);
if JPVT(J)=0, the J-th colum of A is a free
col um. On exit, if JPVI(J)=K then the J-th
colum of A*P was the the K-th colum of A

TAU (out put)
The scal ar factors of the elenentary reflectors.

WORK (wor kspace)
On exit, if INFO=0, WORK(1) returns the optinal
LWORK.

LWORK (i nput)
The di mension of the array WORK LWORK >= N+1.
For optimal performance LWORK >= (N+1)*NB, where
NB i s the optinmal bl ocksize.

If LMORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WRK array, and no error nessage

Page 362 of 4153

related to LWORK i s issued by XERBLA.

RWORK (wor kspace)
di mensi on(2*N)

I NFO (out put)
= 0: successful exit.
<0: if INFO=-i, the i-th argunment had an ille-
gal val ue.

FURTHER DETAILS
The matrix Qis represented as a product of elenmentary
reflectors
Q=H1) HZ2 . . . Hk), where k = mn(mn).
Each H(i) has the form
Hi) =1 - tau * v * V'
where tau is a real/conplex scalar, and v is a real/conplex
vector with v(1:i-1) =0 and v(i) =1; v(i+l:m is stored on
exit in A(i+1:mi), and tau in TAU(i).
Based on contri butions by
G Qintana-Oti, Depto. de Informatica, Universidad Jai ne

I, Spain
X. Sun, Conputer Science Dept., Duke University, USA

Page 363 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgegpf - routine is deprecated and has been repl aced by rou-
ti ne CCGEQP3

SYNOPSIS

SUBROUTI NE CGEQPF(M N, A, LDA, JPIVOT, TAU, WORK, WORK2, |NFOQ

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER M N, LDA, |NFO

| NTEGER JPI VOT(*)

REAL WORK2(*)

SUBROUTI NE CGEQPF_64(M N, A, LDA, JPIVOT, TAU, WORK, WORK2, | NFO

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER*8 M N, LDA, |INFO

| NTEGER*8 JPI VOT(*)

REAL WORK2(*)

FO95 | NTERFACE
SUBROUTI NE GEQPF([M, [N, A [LDA], JPIVOI, TAU, [WORK], [WORK2?],
[INFQ)

COWPLEX, DIMENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, LDA, |NFO

I NTEGER, DI MENSI ON(:) :: JPIVOT
REAL, DI MENSION(:) :: WORK2

SUBROUTI NE GEQPF_64([M, [N, A [LDA], JPIVOT, TAU, [WORK], [WORK2],
[INFQ)

COWPLEX, DIMENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, LDA |NFO

| NTEGER(8), DIMENSION(:) :: JPIVOT
REAL, DI MENSION(:) :: WORK2

Page 364 of 4153

C | NTERFACE
#i ncl ude <sunperf. h>

voi d cgegpf(int m int n, conplex *a, int lda, int *jpivot,
conpl ex *tau, int *info);

voi d cgeqpf_64(long m long n, conplex *a, long Ilda, |ong
*j pivot, conplex *tau, long *info);

PURPOSE

cgeqgpf routine is deprecated and has been replaced by rou-
tine CGEQPS3.

CCGEQPF conputes a QR factorization with colum pivoting of a
conplex Mby-N matrix A A*P = QR

ARGUMENTS

M (i nput) The nunber of rows of the matrix A M>= 0.
N (i nput) The nunber of colums of the matrix AL N >= 0

A (i nput/output)
On entry, the Mby-N matrix A. On exit, the upper
triangle of the array contains the min(MN)-by-N
upper triangular matrix R, the el enents below the
di agonal, together wth the array TAU, represent
the unitary matrix Q as a product of min(mn) ele-
mentary reflectors.

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, M.

JPI VOT (i nput/ out put)
On entry, if JPIVOI(i) .ne. 0, the i-th colum of
A is permuted to the front of A*P (a | eading
colum); if JPIVOT(i) =0, the i-th colum of Ais
a free colum. On exit, if JPIVOT(i) =k, then
the i-th colum of A*P was the k-th colum of A

TAU (out put)
The scal ar factors of the elenentary reflectors.

WORK (wor kspace)
di mensi on(N)

WORK2 (wor kspace)
di mensi on(2*N)

I NFO (out put)
= 0: successful exit
<0: if INNO= -i, the i-th argunent had an
illegal value

Page 365 of 4153

FURTHER DETAILS

The matrix Qis represented as a product of elenmentary
reflectors

Q=H(1) HZ2 . . . Hn
Each H(i) has the form

H=1 - tau * v * v'
where tau is a conplex scalar, and v is a conplex vector
with v(1:i-1) =0 and v(i) =1; v(i+1l:n) is stored on exit
in A(i+1:mi).
The matrix P is represented in jpvt as follows: If

jpvt(j) =i
then the jth colum of P is the ith canonical unit vector.

Page 366 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgegrf - conpute a QR factorization of a conplex Mby-N

matrix A

SYNOPSIS

SUBROUTI NE CGEQRF(M N, A, LDA, TAU, WORK, LDWORK, | NFO

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER M N, LDA, LDWORK, |NFO

SUBROUTI NE CGEQRF_64(M N, A, LDA TAU, WORK, LDWORK, |NFQ

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER*8 M N, LDA, LDWORK, |NFO

F95 | NTERFACE
SUBROUTI NE GEQRF([M, [N, A [LDA], TAU, [WORK], [LDWORK],

COWPLEX, DIMENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, LDA, LDWORK, |NFO

SUBROUTI NE GEQRF_64([M, [N, A [LDA], TAU, [WORK], [LDWORK],

COWPLEX, DI MENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, LDA, LDWORK, |NFO

C | NTERFACE
#i ncl ude <sunperf. h>

void cgeqrf(int m int n, conplex *a, int |lda, conplex *tau,
int *info);

voi d cgeqrf_64(long m long n, conplex *a, long |da, conplex
*tau, long *info);

[INFQ)

Page 367 of 4153

PURPOSE

cgeqrf conputes a QR factorization of a conplex Mby-N
matrix A A=Q* R

ARGUMENTS

M (i nput) The nunber of rows of the matrix AL M >= 0.
N (i nput) The nunber of colums of the matrix A. N >= 0.

A (i nput/output)

On entry, the Mby-N matrix A On exit, the ele-
ments on and above the diagonal of the array con-
tain the mn(MN)-by-N upper trapezoidal matrix R
(R is upper triangular if m>= n); the el enents
bel ow the di agonal, with the array TAU, represent
the unitary matrix Q as a product of mn(mn) ele-
mentary reflectors (see Further Details).

LDA (i nput)
The | eadi ng di nension of the array A LDA >=
max(1, M.

TAU (out put)
The scal ar factors of the elenentary reflectors
(see Further Details).

WORK (wor kspace)
On exit, if INFO= 0, WORK(1) returns the optinal
L DWORK.

LDWORK (i nput)
The dinension of the array WORK LDWORK >=
max(1, N). For optinmum performance LDWORK >= N*NB,
where NB is the optinmal bl ocksize.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK i s issued by XERBLA.

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue

FURTHER DETAILS

The matrix Qis represented as a product of elenmentary
reflectors

Q=H1) HZ2 . . . Hk), where k = min(mn).

Each H(i) has the form
Hi) =1 - tau * v * Vv’

Page 368 of 4153

where tau is a conplex scalar, and v is a conplex vector
with v(1:i-1) =0 and v(i) =1; v(i+l:n) is stored on exit
in A(i+l:mi), and tau in TAU(i).

Page 369 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME
cgerc - performthe rank 1 operation A := al pha*x*conj g(
y') +A
SYNOPSIS

SUBROUTI NE CGERC(M N, ALPHA, X, INCX, Y, INCY, A LDA)

COVPLEX ALPHA

COWPLEX X(*), Y(*), A(LDA *)

INTEGER M N, INCX, INCY, LDA

SUBROUTI NE CGERC 64(M N, ALPHA, X, INCX, Y, INCY, A LDA)

COVPLEX ALPHA

COWPLEX X(*), Y(*), A(LDA *)

INTECER*8 M N, INCX, INCY, LDA

F95 | NTERFACE

SUBROUTI NE GERC([M, [N, ALPHA, X, [INCX], Y, [INCY], A [LDA])

COWPLEX :: ALPHA

COVPLEX, DI MENSI O\(:) X, Y

COWPLEX, DIMENSION(:,:) :: A

INTECER :: M N, INCX, INCY, LDA

SUBROUTI NE GERC 64([M, [N, ALPHA, X, [INCX], Y, [INCY], A [LDA])

COWPLEX :: ALPHA

COVPLEX, DI MENSI O\(:) X, Y

COVPLEX, DIMENSION(:,:) :: A

| NTECGER(8) M N, INCX, INCY, LDA

C | NTERFACE

#i ncl ude <sunperf.h>

void cgerc(int m int n, complex *alpha, complex *x, int
incx, conplex *y, int incy, conplex *a, int lda);

voi d cgerc_64(long m long n, conplex *alpha, conplex *x,
I ong incx, conplex *y, long incy, conmplex *a, |ong

Page 370 of 4153

| da);

PURPOSE

cgerc perforns the rank 1 operation A := al pha*x*conjg(y')
+ A where alpha is a scalar, x is an melenent vector, y is
an n el ement vector and Ais an mby n matrix.

ARGUMENTS
M (i nput)
On entry, Mspecifies the nunber of rows of the
matrix A. M>= 0. Unchanged on exit.
N (i nput)

On entry, N specifies the nunber of colums of the
matrix A, N >= 0. Unchanged on exit.

ALPHA (i nput)
On entry, ALPHA specifies the scalar al pha.
Unchanged on exit.

X (i nput)
(1 +(m-1)*abs(INCX)). Before entry, the
incremented array X nmust contain the m el enent
vector x. Unchanged on exit.

I NCX (i nput)
On entry, INCX specifies the increment for the
elements of X |INCX nust not be zero. Unchanged
on exit.

Y (input)
(1 +(n-21)*abs(INCY)). Before entry, the
incremented array Y nmust contain the n el enent
vector y. Unchanged on exit.

I NCY (i nput)

On entry, INCY specifies the increment for the
elenents of Y. INCY nust not be zero. Unchanged
on exit.

A (i nput/output)
Before entry, the | eading mby n part of the array
A nmust contain the matrix of coefficients. On
exit, Ais overwitten by the updated matri x.

LDA (i nput)
On entry, LDA specifies the first dinmension of A
as declared in the calling (sub) program LDA >=
max(1, m). Unchanged on exit.

Page 371 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgerfs - inprove the conputed solution to a system of |inear
equations and provides error bounds and backward error esti-
mates for the sol ution

SYNOPSIS

SUBROUTI NE CGERFS(TRANSA, N, NRHS, A, LDA, AF, LDAF, |PIVOT, B, LDB,
X, LDX, FERR, BERR, WORK, WORK2, |NFO

CHARACTER * 1 TRANSA

COWPLEX A(LDA *), AF(LDAF, *), B(LDB,*), X(LDX *), WORK(*)
INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO

| NTEGER | PI VOT(*)

REAL FERR(*), BERR(*), WORK2(*)

SUBROUTI NE CGERFS_64(TRANSA, N, NRHS, A LDA, AF, LDAF, |PIVOT, B,
LDB, X, LDX, FERR BERR, WORK, WORK2, |NFO)

CHARACTER * 1 TRANSA

COWPLEX A(LDA *), AF(LDAF, *), B(LDB,*), X(LDX *), WORK(*)
INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, |NFO

| NTEGER*8 | Pl VOT(*)

REAL FERR(*), BERR(*), WORK2(*)

F95 | NTERFACE
SUBROUTI NE GERFS([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF], |PIVOT,
B, [LDB], X, [LDX], FERR BERR [WORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: TRANSA

COWPLEX, DI MENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: A AF, B X
INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, |NFO
I NTEGER, DI MENSION(:) :: |PIVOT

REAL, DI MENSI ON(:) :: FERR BERR WORK2

SUBROUTI NE GERFS 64([TRANSA], [N, [NRHS], A, [LDA], AF, [LDAF],
IPIVOT, B, [LDB], X, [LDX], FERR BERR [WORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: TRANSA
COWPLEX, DI MENSION(:) :: WORK

Page 372 of 4153

COWPLEX, DIMENSION(:,:) :: A AF, B, X
INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, |NFO
| NTEGER(8), DIMENSION(:) :: I|PIVOT

REAL, DIMENSION(:) :: FERR BERR WORK2

C | NTERFACE
#i ncl ude <sunperf.h>
voi d cgerfs(char transa, int n, int nrhs, conmplex *a, int
| da, conplex *af, int |daf, int *ipivot, conplex
*b, int Idb, conplex *x, int 1ldx, float *ferr,

float *berr, int *info);

voi d cgerfs_64(char transa, long n, long nrhs, conplex *a,
long lda, conplex *af, long |daf, |ong *ipivot,
conplex *b, long I db, complex *x, long |ldx, float
*ferr, float *berr, long *info);

PURPOSE

cgerfs inproves the conmputed solution to a systemof |inear
equations and provides error bounds and backward error esti-
mates for the sol ution.

ARGUMENTS

TRANSA (i nput)
Specifies the formof the system of equations:
'"N: A* X=B (No transpose)
'"T': A**T * X = B (Transpose)
'C: A**H* X =B (Conjugate transpose)

TRANSA is defaulted to 'N for F95 | NTERFACE.
N (i nput) The order of the matrix A. N >= 0.
NRHS (i nput)
The nunber of right hand sides, i.e., the nunber

of colums of the matrices B and X. NRHS >= 0.

A (input) The original N-by-N natrix A

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, N).

AF (i nput)

The factors L and U from the factorization A =
P*L*U as conputed by CGETRF.

LDAF (i nput)
The | eadi ng di mension of the array AF. LDAF >=
max(1, N).

| PIVOT (i nput)
The pivot indices from CGETRF; for 1<=i<=N, row i
of the matrix was interchanged with row I PIVOT(i).

Page 373 of 4153

B (input) The right hand side natrix B.

LDB (i nput)
The | eading di mension of the array B. LDB >=
max(1, N).

X (i nput/out put)
On entry, the solution matrix X, as conputed by
CCGETRS. On exit, the inproved solution matrix X

LDX (i nput)
The | eading di mension of the array X LDX >=
max(1, N).

FERR (out put)

The estinmated forward error bound for each solu-
tion vector X(j) (the j-th colum of the solution
matrix X). If XTRUE is the true sol ution
corresponding to X(j), FERR(j) 1is an estimated
upper bound for the nagnitude of the |argest ele-
ment in (X(j) - XTRUE) divided by the nagnitude of
the largest elenent in X(j). The estimate is as
reliable as the estinmate for RCOND, and is al npbst
al ways a slight overestimate of the true error.

BERR (out put)
The conponentw se rel ative backward error of each
solution wvector X(j) (i.e., the smallest relative
change in any element of A or B that makes X(j) an
exact sol ution).

WORK (wor kspace)
di mensi on(2*N)

WORK2 (wor kspace)
di mensi on(N)

I NFO (out put)
= 0: successful exit
<0: if INNO= -i, the i-th argunment had an
illegal value

Page 374 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgerqgf - conpute an RQ factorization of a conplex Mby-N

matrix A

SYNOPSIS

SUBROUTI NE CGERQF(M N, A, LDA, TAU, WORK, LDWORK, | NFO

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER M N, LDA, LDWORK, |NFO

SUBROUTI NE CGERQF_64(M N, A, LDA TAU, WORK, LDWORK, |NFQ

COWPLEX A(LDA, *), TAU(*), WORK(*)
INTEGER*8 M N, LDA, LDWORK, |NFO

F95 | NTERFACE
SUBROUTI NE GERQF([M, [N, A [LDA], TAU, [WORK], [LDWORK],

COWPLEX, DIMENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, LDA, LDWORK, |NFO

SUBROUTI NE GERQF_64([M, [N, A [LDA], TAU, [WORK], [LDWORK],

COWPLEX, DI MENSION(:) :: TAU, WORK
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, LDA, LDWORK, |NFO

C | NTERFACE
#i ncl ude <sunperf. h>

void cgerqgf(int m int n, conplex *a, int |lda, conplex *tau,
int *info);

voi d cgerqgf_64(long m long n, conplex *a, long | da, conplex
*tau, long *info);

[INFQ)

Page 375 of 4153

PURPOSE

cgerqgf conputes an RQ factorization of a conplex Mby-N
matrix A A=R* Q

ARGUMENTS

M (i nput) The nunber of rows of the matrix AL M >= 0.
N (i nput) The nunber of colums of the matrix A. N >= 0.

A (i nput/output)

On entry, the Mby-N matrix A On exit, if m <=
n, the wupper triangle of the subarray A(1: mn-
m+1:n) contains the Mby-Mupper triangular matrix
R, if m >=n, the elenents on and above the (m
n)-th subdi agonal contain the Mby-N upper tra-
pezoidal matrix R the remaining elenents, with
the array TAU, represent the unitary matrix Q as a
product of mn(mn) elenentary reflectors (see
Furt her Details).

LDA (i nput)
The | eadi ng di nension of the array A LDA >=
max(1, M.

TAU (out put)
The scal ar factors of the elenentary reflectors
(see Further Details).

WORK (wor kspace)
On exit, if INFO= 0, WORK(1) returns the optinal
L DWORK.

LDWORK (i nput)
The dinension of the array WORK LDWORK >=
max(1, M. For optinmm performance LDWORK >= M NB,
where NB is the optimal bl ocksize.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinmal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK i s issued by XERBLA.

I NFO (out put)
= 0: successful exit
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue

FURTHER DETAILS
The matrix Qis represented as a product of elenmentary
reflectors

Q=H1)" HZ2)" . . . Hk)', where k = mn(mn).
Each H(i) has the form

Page 376 of 4153

Hi) =1 - tau * v * V'
where tau is a conplex scalar, and v is a conplex vector

with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(l:n-k+i-1))
is stored on exit in A(mk+i,1l:n-k+i-1), and tau in TAU(i).

Page 377 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgeru - performthe rank 1 operation A : = al pha*x*y' + A

SYNOPSIS

SUBROUTI NE CGERU(M N, ALPHA, X, INCX, Y, INCY, A LDA

COVPLEX ALPHA
COWPLEX X(*), Y(*), A(LDA *)
INTEGER M N, INCX, | NCY, LDA

SUBROUTI NE CGERU_64(M N, ALPHA, X, INCX, Y, INCY, A LDA

COMPLEX ALPHA
COVPLEX X(*), Y(*), A(LDA *)
INTEGER*8 M N, INCX, | NCY, LDA

F95 | NTERFACE
SUBROUTI NE GER([M, [N], ALPHA, X, [INCX, Y, [INCY], A [LDA])

COWPLEX :: ALPHA

COWPLEX, DIMENSION(:) :: X, Y
COWPLEX, DIMENSION(:,:) :: A
INTEGER :: M N, INCX, INCY, LDA

SUBROUTI NE GER 64([M, [N, ALPHA, X, [INCX], Y, [INCY], A [LDA])

COWPLEX :: ALPHA

COWPLEX, DIMENSION(:) :: X, Y
COWPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M N, INCX, INCY, LDA

C | NTERFACE
#i ncl ude <sunperf.h>

void cgeru(int m int n, complex *alpha, complex *x, int
incx, conplex *y, int incy, conplex *a, int lda);

voi d cgeru_64(long m long n, conplex *alpha, conplex *Xx,

I ong incx, conplex *y, long incy, conmplex *a, |ong
| da);

Page 378 of 4153

PURPOSE

cgeru perforns the rank 1 operation A := alpha*x*y' + A
where al pha is a scalar, x is an melenment vector, y is an n
el ement vector and Ais an mby n matrix.

ARGUMENTS
M (i nput)
On entry, Mspecifies the nunber of rows of the
matrix A, M>= 0. Unchanged on exit.
N (i nput)

On entry, N specifies the nunber of colums of the
matrix A N >= 0. Unchanged on exit.

ALPHA (i nput)
On entry, ALPHA specifies the scalar al pha.
Unchanged on exit.

X (i nput)
(1 +(m-1)*abs(INCX)). Before entry, the
incremented array X nmust contain the m el enent
vector x. Unchanged on exit.

I NCX (i nput)
On entry, INCX specifies the increment for the
elements of X |INCX nust not be zero. Unchanged
on exit.

Y (input)
(1 +(n-21)*abs(INCY)). Before entry, the
incremented array Y nmust contain the n el enent
vector y. Unchanged on exit.

I NCY (input)

On entry, INCY specifies the increment for the
elenents of Y. INCY nust not be zero. Unchanged
on exit.

A (i nput/output)
Before entry, the | eading mby n part of the array
A nmust contain the matrix of coefficients. On
exit, Ais overwitten by the updated matri x.

LDA (i nput)
On entry, LDA specifies the first dinmension of A
as declared in the calling (sub) program LDA >=
max(1, m). Unchanged on exit.

Page 379 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS
. FURTHER DETAILS

NAME

cgesdd - conpute the singular val ue deconposition (SVD) of a
conplex Mby-N matrix A, optionally conputing the left
and/or right singular vectors, by wusing divide-and-conquer
net hod

SYNOPSIS

SUBROUTI NE CGESDD(JOBZ, M N, A LDA S, U, LDU, VT, LDVT, WORK,
LWORK, RWORK, | WORK, | NFO

CHARACTER * 1 JOBZ

COVPLEX A(LDA, *), U(LDU, *), VT(LDVT,*), WORK(*)
INTEGER M N, LDA, LDU, LDVT, LWORK, |NFO

| NTEGER | WORK(*)

REAL S(*), RWORK(*)

SUBROUTI NE CGESDD 64(J0BZ, M N, A LDA S, U, LDU, VT, LDVT, WORK
LWORK, RWORK, | WORK, | NFO

CHARACTER * 1 JOBZ

COWPLEX A(LDA, *), U(LDU, *), VT(LDVT, *), WORK(*)
INTEGER*8 M N, LDA, LDU, LDVT, LWORK, I|NFO

| NTEGER*8 | WORK(*)

REAL S(*), RWORK(*)

F95 | NTERFACE
SUBROUTI NE GESDD(JOBZ, [M, [N, A [LDA, S, U [LDU, VT, [LDVT],
[WORK], [LWORK], [RWORK], [IWORK], [INFQ)

CHARACTER(LEN=1) :: JOBZ

COVPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A U, VT

INTEGER :© M N, LDA LDU, LDVT, LWORK, |NFO
I NTEGER, DI MENSI ON(:) :: |WORK

REAL, DIMENSION(:) :: S, RWORK

SUBROUTI NE GESDD 64(JOBZ, [M, [N], A [LDA], S, U, [LDU, VT, [LDVT],
[WORK], [LWORK], [RWORK], [IWORK], [INFQ)

Page 380 of 4153

CHARACTER(LEN=1) :: JOBZ
COVPLEX, DI MENSION(:) :: WORK
COWPLEX, DIMENSION(:,:) :: A U VT

INTEGER(8) :: M N, LDA, LDU, LDVT, LWORK, |NFO
| NTEGER(8), DIMENSION(:) :: |WORK
REAL, DI MENSION(:) :: S, RWORK

C | NTERFACE

#i ncl ude <sunperf. h>

voi d cgesdd(char jobz, int m int n, conplex *a, int |da,
float *s, conplex *u, int |du, conplex *vt, int
Idvt, int *info);

voi d cgesdd_64(char jobz, long m long n, conplex *a, |ong
Ida, float *s, conplex *u, long |Idu, conplex *vt,
long Idvt, long *info);

PURPOSE

cgesdd conputes the singular val ue deconposition (SVD) of a
conplex Mby-N matrix A, optionally conputing the left
and/ or right singular vectors, by wusing divide-and-conquer
net hod. The SVD is witten

= U* SIGVA * conjugate-transpose(V)

where SIGVA is an Mby-N matrix which is zero except for its
mn(mn) diagonal elenments, Uis an Mby-Munitary matri x,
and Vis an NFby-N unitary matrix. The diagonal el enents of
SIGVA are the singular values of A, they are real and non-
negative, and are returned in descendi ng order. The first
mn(mn) colums of Uand V are the left and right singular
vectors of A

Note that the routine returns VI = VW*H, not V.

The divide and conquer al gorithm nakes very mild assunptions
about floating point arithnmetic. It will work on nachines
with a guard digit in add/subtract, or on those binary
machi nes without guard digits which subtract |ike the Cray
X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
fail on hexadecimal or decinmal nmachines without guard
digits, but we know of none.

ARGUMENTS
JOBZ (i nput)
Specifies options for conputing all or part of the
matrix U
='A: all Mcolums of Uand all Nrows of V*H
are returned in the arrays Uand VTI; ='S: the

first mn(MN) colums of Uand the first mn(MN)
rows of V*H are returned in the arrays U and VT;
='0: |If M>= N, the first Ncolumms of U are
overwitten on the array A and all rows of V*H
are returned in the array VI, otherw se, all

Page 381 of 4153

colums of Uare returned in the array U and the
first Mrows of V**H are overwitten on the array
A = 'N: no colums of Uor rows of V**H are
conput ed.

M (i nput) The nunber of rows of the input matrix A. M >= 0.

N (i nput) The nunber of colums of the input matrix A N >=
0.

A (i nput/output)

On entry, the Mby-N matrix A On exit, if JOBZ =
'O, Ais overwitten with the first N colums of
U (the left singular vectors, stored columwi se)
if M> N Ais overwitten with the first Mrows
of W*H (the right singular vectors, stored row
wi se) otherw se. if JOBZ .ne. 'O, the contents
of A are destroyed.

LDA (i nput)
The | eading di mension of the array A LDA >=
max(1, M.

S (out put)
The singular values of A sorted so that S(i) >=
S(i +1).

U (out put)
UcoL = Mif JOBZ ="'A or JOBZ ="0 and M < N
UCOL = nin(MN) if JOBZ="'S. |If JOBZ="A or

JOBZ ='0 and M< N, Ucontains the Mby-M uni-
tary matrix U, if JOBZ ='S', Ucontains the first
mn(MN) colums of U (the left singular vectors,
stored columwse); if JOBZ ='0O and M>= N, or
JOBZ = 'N, Uis not referenced.

LDU (i nput)
The | eadi ng di mension of the array U LDU >= 1;
if JOBZ ='S or 'A or JOBZ="'0O and M< N, LDU
>= M

VT (output)
If JOBZ ="'A" or JOBZ ='0O and M>= N, VT con-
tains the Nby-N unitary matrix VW*H, if JOBZ =
'S, VT contains the first mMin(MN rows of W*H
(the right singular vectors, stored rowwi se); if
JOBZ ='0 and M< N, or JOBZ = 'N, VI is not
ref er enced.

LDVT (i nput)
The | eadi ng di mension of the array VI. LDVT >= 1;
if JOBZ ="'A" or JOBZ ='O and M>= N, LDVT >= N,
if JOBZ ="'S, LDVT >= min(MN).

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal
LWORK.

LWORK (i nput)
The di mension of the array WORK. LWORK >= 1. |f
LWORK = -1, then a workspace query is assunmed. In

Page 382 of 4153

this case, the routine only cal cul ates the optinal
size of the work array, returns this value as the
first entry of the WORK array, and no error nes-
sage related to LWORK is issued. The mninmm
wor kspace size requirenent is as follows:

If M>= Nand M>= (MN(MN)*17/9):

if JOBZ ="'N, LWORK >= 3*N

if JOBZ = 'O, LWORK >= 2*N*N + 3*N

if JOBZ ='S, LWORK >= N*N + 3*N

if JOBZ ="'A, LMORK >= N*N + 2*N + MElse if M

>= Nand M>= (MN(MN)*5/3):

if JOBZ ='0, LWORK >= 2*N + M+ NN

else LMORK >= 2*N + M Else if M>=N:

if JOBZ = 'O, LWORK >= 2*N + M+ N*N

else LMORK >= 2*N + MElse if M< N and N >=
(MNMN)*17/9):

if JOBZ ='N, LWORK >= 3*M

if JOBZ ='0, LWORK >= 2*MM + 3*M

if JOBZ ='S, LWORK >= MM + 3*M

if JOBZ ="'A, LMVORK >= MM+ 2*M+ N Else if M

< Nand N> (MNMN)*5/3):
if JOBZ ='0, LWORK >= 2*M+ N + MM
else LMORK >= 2*M+ N Else if M< N
if JOBZ ='0, LWORK >= 2*M+ N + MM
el se LMORK >= 2*M + N

RWORK (wor kspace)
The size of workspace RAMORK is not checked in the
routine. If JOBZ ="'N, RWRK nust be at |east
7*mn(MN. Oherwise, RMORK nust be at |east
5*min(MN)*min(MN) + 5*mi n(MN)

| WORK (wor kspace)
di nensi on(8*M N(M N))

I NFO (out put)
= 0: successful exit.

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.

> 0: The updating process of SBDSDC did not con-
ver ge.

FURTHER DETAILS

Based on contri butions by

M ng Gu and Huan Ren, Conputer Science Division, Univer-
sity of

California at Berkel ey, USA

Page 383 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgesv - conpute the solution to a conplex system of |inear
equations A* X =B

SYNOPSIS

SUBROUTI NE CGESV(N, NRHS, A, LDA, |PIVOI, B, LDB, |NFO

COWPLEX A(LDA, *), B(LDB,*)
INTEGER N, NRHS, LDA, LDB, INFO
| NTEGER | PI VOT(*)

SUBROUTI NE CGESV_64(N, NRHS, A, LDA, |PIVOT, B, LDB, I|NFO
COWPLEX A(LDA, *), B(LDB,*)

INTEGER8 N, NRHS, LDA, LDB, |NFO

| NTEGER*8 | Pl VOT(*)

F95 | NTERFACE
SUBROUTI NE GESV([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFQ)

COWPLEX, DIMENSION(:,:) :: A B

INTEGER :: N, NRHS, LDA, LDB, |NFO

I NTEGER, DI MENSION(:) :: |PIVOT

SUBROUTI NE GESV_64([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFQ)
COWPLEX, DIMENSION(:,:) :: A B

INTEGER(8) :: N, NRHS, LDA, LDB, |NFO

| NTEGER(8), DIMENSION(:) :: I|PIVOT

C | NTERFACE
#i ncl ude <sunperf.h>

void cgesv(int n, int nrhs, complex *a, int |Ida, int
*ipivot, conplex *b, int ldb, int *info);

voi d cgesv_64(long n, long nrhs, conplex *a, long lda, |ong
*jpivot, conplex *b, long Idb, long *info);

Page 384 of 4153

PURPOSE

cgesv conputes the solution to a conmplex system of [|inear
equati ons

A* X =B, where Ais an Nby-Nmatrix and X and B are
N-by- NRHS matri ces.

The LU deconposition wth partial pi voti ng and r ow
i nterchanges is used to factor A as

A=P* L*U,
where P is a permutation matrix, L is unit |ower triangular,
and U is upper triangular. The factored formof A is then
used to solve the system of equations A * X = B

ARGUMENTS
N (i nput) The nunber of |inear equations, i.e., the order of
the matrix A N >= 0.
NRHS (i nput)

The nunber of right hand sides, i.e., the nunber
of colums of the matrix B. NRHS >= 0.

A (i nput/output)
On entry, the NNby-N coefficient matrix A On
exit, the factors L and U fromthe factorization A
= P*L*U; the unit diagonal elements of L are not
st or ed.

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, N).

| PI VOT (out put)
The pivot indices that define the pernutation
matrix P; row i of the matrix was interchanged
with row | PIVOT(i).

B (i nput/out put)
On entry, the N-by-NRHS matrix of right hand side
matrix B. On exit, if INFO = 0, the N by-NRHS
solution matrix X

LDB (i nput)
The | eading di mension of the array B. LDB >=
max(1, N).

I NFO (out put)
= 0: successful exit

<0: if INFO=-i, the i-th argunent had an ille-
gal val ue
>0 if INNO=1i, Uii,i) is exactly zero. The

factorization has been conpl eted, but the factor U
is exactly singular, so the solution could not be
conput ed.

Page 385 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgesvd - conpute the singular val ue deconposition (SVD) of a
conplex Mby-N matrix A, optionally conputing the |eft
and/ or right singular vectors

SYNOPSIS

SUBROUTI NE CGESVD(JOBU, JOBVT, M N, A LDA SING U, LDU, VT, LDVT,
WORK, LDWORK, WORK2, | NFO)

CHARACTER * 1 JOBU, JOBVT

COWPLEX A(LDA, *), U(LDU,*), VT(LDVT,*), WORK(*)
INTEGER M N, LDA, LDU, LDVT, LDWORK, |NFO
REAL SING(*), WORK2(*)

SUBROUTI NE CGESVD_64(JOBU, JOBVT, M N, A LDA SING U, LDU, VT,
LDVT, WORK, LDWORK, WORK2, | NFO)

CHARACTER * 1 JOBU, JOBVT

COWPLEX A(LDA, *), U(LDU, *), VT(LDVT, *), WORK(*)
INTEGER*8 M N, LDA, LDU, LDVT, LDWORK, |NFO
REAL SING(*), WORK2(*)

F95 | NTERFACE
SUBROUTI NE GESVD(JOBU, JOBVT, [M, [N, A [LDA], SING U, [LDU, VT,
[LDVT], [WORK], [LDWORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: JOBU, JOBVT

COWPLEX, DI MENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: A U VT

INTEGER :: M N, LDA, LDU, LDVT, LDWORK, | NFO
REAL, DI MENSION(:) :: SING WORK2

SUBROUTI NE GESVD 64(JOBU, JOBVT, [M, [N, A [LDA], SING U, [LDY,
VT, [LDVT], [WORK], [LDWORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: JOBU, JOBVT

COWPLEX, DI MENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: A U VT

INTEGER(8) :: M N, LDA, LDU, LDVT, LDWORK, |INFO
REAL, DI MENSION(:) :: SING WORK2

Page 386 of 4153

C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgesvd(char jobu, char jobvt, int m int n, conplex *a,
int Ida, float *sing, conplex *u, int |du, conplex
*vt, int ldvt, int *info);

voi d cgesvd_64(char jobu, char jobvt, long m long n, com
plex *a, long lda, float *sing, complex *u, |ong
| du, conplex *vt, long ldvt, |long *info);

PURPOSE

cgesvd conputes the singular val ue deconmposition (SVD) of a
conplex Mby-N matrix A, optionally conmputing the |eft
and/ or right singular vectors. The SVDis witten

= U* SIGVA * conjugate-transpose(V)

where SIGMA is an Mby-N matrix which is zero except for its
mn(mn) diagonal elements, Uis an Mby-Munitary matri x,
and Vis an NNby-N unitary matrix. The diagonal el enents of
SIGVA are the singular values of A, they are real and non-
negati ve, and are returned in descendi ng order. The first
mn(mn) colums of Uand V are the left and right singular
vectors of A

Note that the routine returns V**H, not V.

ARGUMENTS
JOBU (i nput)
Specifies options for conputing all or part of the
matrix U
='A: all Mcolums of Uare returned in array
U

='S: the first mn(mn) colums of U (the Ileft
singular vectors) are returned in the array U, =
'O: the first mn(mn) colums of U (the left
singular vectors) are overwitten on the array A
='N: no colums of U (no |left singular vectors)
are conput ed.

JOBVT (i nput)
Specifies options for conputing all or part of the

matrix V*H
="A: all Nrows of V*H are returned in the
array VT;

='S: the first min(mn) rows of V**H (the right
singular vectors) are returned in the array VI, =
'O: the first min(mn) rows of V**H (the right
singular vectors) are overwitten on the array A
='N: norow of V*H (no right singular vec-
tors) are conputed.

JOBVT and JOBU cannot both be 'O.
M (i nput) The nunber of rows of the input matrix A. M >= 0.

Page 387 of 4153

N (i nput) The nunber of colums of the input matrix A. N >=
0.

A (i nput/output)
On entry, the Mby-N matrix A. On exit, if JOBU =

‘0, A is overwitten wth the first mn(mn)
colums of U (the left singular vectors, stored
columwise); if JOBVT ='O, Ais overwitten with

the first mn(mn) rows of V*H (the right singu-
|l ar vectors, stored romise); if JOBU .ne. 'O and
JOBVT .ne. 'O, the contents of A are destroyed.

LDA (i nput)
The | eading dimension of the array A LDA >=
max(1, M.

SI NG (out put)
The singular values of A sorted so that SINGI)

>= S| NG +1).

U (input) (LDU M if JOBU="A" or (LDUmMn(MN) if JOBU =
'S, If JOBU="A, Ucontains the Mby-Munitary
matrix U, if JOBU= 'S, U contains the first
mn(mn) colums of U (the left singular vectors,
stored columwi se); if JOBU="'N or 'O, Uis not

ref erenced.

LDU (i nput)
The | eadi ng di nension of the array U LDU >= 1;
if JoBU="S or 'A, LDU>= M

VT (i nput)
If JOBVT = "A', VI contains the Nby-N unitary
matrix V*H, if JOBVT = 'S, VT contains the first
mn(mn) rows of V**H (the right singular vectors,
stored rowwise); if JOBVT ='N or 'O, VT is not
ref erenced.

LDVT (i nput)
The | eadi ng di mension of the array VI. LDVT >= 1;
if JOBVT = "A, LDVT >= N, if JOBVT = 'S, LDVT >=
mn(MN.

WORK (wor kspace)
On exit, if INFO =0, WORK(1) returns the optinal
L DWORK.

LDWORK (i nput)
The di mension of the array WORK LDWORK >= 1.
LDWORK >= 2*M N(M N) +MAX(M N) For good perfor-
mance, LDWORK shoul d general ly be |arger.

If LDWORK = -1, then a workspace query is assuned;
the routine only calculates the optinal size of
the WORK array, returns this value as the first
entry of the WORK array, and no error nessage
related to LDWORK is issued by XERBLA.

WORK2 (wor kspace)
DI MENSION(5*M N(MN)). On exit, if INFO > O,
WORK2(1: MN(M N) - 1) cont ai ns t he unconver ged

Page 388 of 4153

superdi agonal elenents of an upper bidiagonal
matrix B whose diagonal is in SING (not neces-
sarily sorted). B satisfies A=U* B* VI, so it
has the sanme singular values as A and singular
vectors related by U and VT.

I NFO (out put)
= 0: successful exit.
<0: if INFO=-i, the i-th argunent had an ille-
gal val ue.
> 0: if CBDSQR did not converge, |NFO specifies
how many superdi agonal s of an internedi ate bidi ag-
onal formB did not converge to zero. See the
description of WORK2 above for details.

Page 389 of 4153

Contents

. NAME
. SYNOPSIS
o F95 INTERFACE
o CINTERFACE
. PURPOSE
. ARGUMENTS

NAME

cgesvx - use the LU factorization to conpute the solution to
a conpl ex systemof linear equations A * X = B,

SYNOPSIS

SUBROUTI NE CGESVX(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, [Pl VOT,
EQUED, R C, B, LDB, X, LDX, RCOND, FERR BERR WORK,
WORK2, | NFO)

CHARACTER * 1 FACT, TRANSA, EQUED

COWPLEX A(LDA, *), AF(LDAF, *), B(LDB,*), X(LDX *), WORK(*)
INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO

| NTEGER | PI VOT(*)

REAL RCOND

REAL R(*), C(*), FERR(*), BERR(*), WORK2(*)

SUBROUTI NE CGESVX_64(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, |PIVOT,
EQUED, R C, B, LDB, X, LDX, RCOND, FERR BERR WORK,
WORK2, | NFO)

CHARACTER * 1 FACT, TRANSA, EQUED

COWPLEX A(LDA *), AF(LDAF, *), B(LDB,*), X(LDX *), WORK(*)
INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, |NFO

| NTEGER*8 | Pl VOT(*)

REAL RCOND

REAL R(*), C(*), FERR(*), BERR(*), WORK2(*)

F95 | NTERFACE
SUBROUTI NE GESVX(FACT, [TRANSA], [N, [NRHS], A [LDA], AF, [LDAF],
IPIVOT, EQUED, R C, B, [LDB], X, [LDX], RCOND, FERR,
BERR [WORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
COWPLEX, DI MENSI ON(:) :: WORK

COWLEX, DIMENSION(:,:) :: A AF, B X
INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, |NFO
I NTEGER, DI MENSION(:) :: |PIVOT

REAL :: RCOND

REAL, DIMENSION(:) :: R C, FERR BERR WORK2

Page 390 of 4153

SUBROUTI NE GESVX_64(FACT, [TRANSA], [N, [NRHS], A [LDA], AF, [LDAF],
IPIVOT, EQUED, R C, B, [LDB], X [LDX], RCOND, FERR,
BERR [WORK], [WORK2], [INFQ)

CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
COVPLEX, DI MENSION(:) :: WORK

COWPLEX, DIMENSION(:,:) :: A AF, B, X
INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, |NFO
| NTEGER(8), DIMENSION(:) :: I|PIVOT

REAL :: RCOND

REAL, DIMENSION(:) :: R C, FERR BERR WORK2

C | NTERFACE
#i ncl ude <sunperf.h>

voi d cgesvx(char fact, char transa, int n, int nrhs, conplex

*a, int lda, conplex *af, int |ldaf, int *ipivot,
char equed, float *r, float *c, complex *b, int
| db, conplex *x, int |Idx, float *rcond, float

*ferr, float *berr, int *info);

voi d cgesvx_64(char fact, char transa, long n, |long nrhs,
conplex *a, long I da, complex *af, long |daf, |ong
*jpivot, char equed, float *r, float *c, conplex
*b, long |db, conplex *x, long |dx, float *rcond,
float *ferr, float *berr, long *info);

PURPOSE

cgesvx uses the LU factorization to conpute the solution to
a conpl ex system of |inear equations

A* X =B, where Ais an Nby-Nmatrix and X and B are
N-by- NRHS matri ces.

Error bounds on the solution and a condition estimate are
al so provi ded.

The followi ng steps are perforned:
1. If FACT = 'E, real scaling factors are conputed to

equilibrate
t he system

TRANS = 'N : diag(R) *A*di ag(C) *inv(diag(Q)*X =
diag(R *B
TRANS = 'T': (diag(R *A*diag(C))**T *inv(diag(R))*X =
diag(C*B
TRANS = 'C: (diag(R *A*diag(C))**H *inv(diag(R))*X